Manoharan et al., “Novel Functionalization of the Sugar Moiety of Nucleic Acids for Multiple Labeling in the Minor Groove,” Tetrahedron Letters, 32(49), 7171-7174 (Dec. 2, 1991). |
Martin, “38. Ein Neuer Zuzang zu 2′-O-Alkylkribonucleosiden und Eigenschaften deren Oligonucleotide,” Helvetica Chimica Acta, 78(2), 486-504 (Mar. 22, 1995). |
Grandas et al., “Synthesis of Deoxycytidine Oligomers Containing Phosphorothioate Linkages,” Tetrahedron Letters, 30(5), 543-546 (1989). |
Marugg et al., “A New and Versatile Approach to the Preparation of Valuable Deoxynucleoside 3′-Phosphite Intermediates,” Tetrahedron Letters, 27(20), 2271-2274 (1986). |
Letsinger et al., “Cholesteryl-Conjugated Oligonucleotides: Synthesis, Properties, and Activity as Inhibitors of Replication of Human Immunodeficiency Virus in Cell Culture,” Proc. Nat. Acad. Sci. USA, 86, 6553-6556 (Sep. 1989). |
Stec et al.(II), “Stereochemical Studies of the Formation of Chiral Internucleotide Linkages by Phosphoramidite Coupling in the Synthesis of Oligodeoxyribonucleotides,” Tetrahedron Letters, 25(46), 5279-5282 (1984). |
Marugg et al., “Synthesis of Phosphorothioate-Containing DNA Fragments by a Modified Hydroxybenzotriazole Phosphotriester Approach,” Nucleic Acids Research, 12(23), 9095-9110 (Dec. 11, 1984). |
Stec et al. (III), “Automated Solid-Phase Synthesis, Separation, and Stereochemistry of Phosphorothioate Analogues of Oligodeoxyribonucleotides,” J. Amer. Chem. Soc., 106(20), 6077-6079 (Oct. 3, 1984). |
Stec et al. (IV), “Reversed-Phase High-Performance Liquid Chormatographic Separation of Diasteroisomeric Phosphorothioate Analogues of Oligodeoxyribonucleotides and Other Backbone-Modified Congeners of DNA,” J. Chromatography, 326, 263-280 (Jun. 19, 1985). |
Stec et al. (V), “Synthesis and Absolute Configuration of P-Chiral O-Isopropyl Oligonucleotide Triesters,” Tetrahedron Letters, 26(18), 2191-2194 (1985). |
Matsukura et al., “Phosphorothioate Analogs of Oligodeoxynucleotides: Inhibitors of Replication and Cytopathic Effects of Human Immunodeficiency Virus,” Proc. Nat. Acad. Sci USA, 84, 7706-7710 (Nov. 1987). |
Stein et al., “Phosphorothioate and Normal Oligodeoxyribonucleotides with 5′-Linked Acridine: Characterization and Preliminary Kinetics of Cellular Uptake,” Gene, 72(1-2), 333-341 (Dec. 10, 1988). |
Roelen et al., “A Study on the Use of Phenylacetyl Disulfide in the Solid-Phase Synthesis of Oligodeoxynucleoside Phosphorothioates,” Recueil des Travaux Chimiques des Pays-Bas, 110(7-8), 325-331 (Jul.-Aug. 1991). |
Charubala et al., “84. Nucleotides (Part XXXVI). Synthesis and Biological Characterization of Phosphorothioate Analogues of (3′-5′) Adenylate Trimer,” Helvetica Chimica Acta, 74(4), 892-898 (Jun. 19, 1991). |
Routledge et al., “A New Deprotection Strategy for Automated Oligonculeotide Synthesis Using a Novel Silyl-Linked Solid Support,” Bioorganic & Medicinal Chem. Letters, 5(18), 2059-2064 (Sep. 21, 1995). |
Ravikumar et al. (II), “2-Diphenylmethylsilyl (DPSE): A Versatile Protecting Group for Oligodeoxyribonucleotide Synthesis,” Gene, 149(1), 157-161 (Nov. 4, 1994). |
Manoharan et al., “A 2′-ο-Thiol Tether in the Ribose Moiety of Nucleic Acids for Conjugation Chemistry,” Gene, 149(1), 147-156 (Nov. 4, 1994). |
Wyrzykiewicz et al., “Stereo-Reproducibility of the Phosphoramidite Method in the Synthesis of Oligonucleotide Phosphorothioates,” Bioorganic Chemistry, 23(1), 33-41 (Mar. 1995). |
Ravikumar et al. (III), “Use of 2-Diphenylmethylsilyl (DPSE) Protecting Group in Oligodeoxyribonucleotide Synthesis Via Phosphoramidite Approach,” Bioorganic & Medicinal Chem. Letters, 3(12), 2637-2640 (Dec. 1993). |
Lesnikowski et al.(I), “Octa(Thymidine Methanephosphonates) of Partially Defined Stereochemistry: Synthesis and Effect of Chirality at Phosphorus on Binding to Pentadecadeoxyriboadenylic Acid,” Nucleic Acids Research, 18(8), 2109-2115 (1990). |
Lesnikowski et al.(II), “Stereoselective Synthesis of P-Homochiral Oligo(Thymidine Methanephosphonates,” Nucleic Acids Research, 16(24), 11675-11689 (Dec. 1988). |
Alul et al., “Oxalyl-CPG: a labile support for synthesis of sensitive oligonucleotide derivatives”, Nucl. Acids. Res., 1991, 19(7), 1527-1532. |
Beaucage et al., “Advances in the Synthesis of Oligonucleotides by the Phosphoramidite Approach”, Tetra., 1992, 48(12), 2223-2311. |
Berner et al., “Studies on the role of tetrazole in the activation of phosphoramidites”, Nucl. Acids Res., 1989, 17(3), 853-864. |
Brown et al., “Modern machine-aided methods of oligodeoxyribonucleotide synthesis”, Oligonucleotide and Analogs: A Practical Approach, Eckstein, F. (ed.), 1991, IRL Press, 1-24. |
Cook, “Medicinal chemistry of antisense oligonucleotides—future opportunities”, Anti-Cancer Drug Design, 1991, 6, 585-607. |
Cook, Medicinal Chemistry Strategies for Antisense Research, in Antisense Research and Applications.,Crooke et al. (eds.), 1993, CRC Press, Inc. Boca Raton, FL. |
Dahl et al., “Mechanistic studies on the phosphoramidite coupling reaction in oligonucleotide synthesis. I. Evidence for nucleophilic catalysis by tetrazole and rate variations with the phosphorus substituents”, Nucl. Acids Res., 1987, 15(4), 1729-1743. |
Delgardo et al., “The Uses and Properties of PEG-Linked Proteins”, Critical Rev. in Therapeutic Drug Carrier Systems, 1992, 9(3,4), 249-304. |
Efimov et al., “New efficient sulfurizing reagents for the preparation of oligodeoxyribonucleotide phosphorothioate analogues”, Nucl. Acids Res., 1995, 23(20), 4029-4033. |
Englisch et al., “Chemically Modified Oligonucleotides as Probes and Inhibitors”, Angew. Chem. Int. Ed. Engl., 1991, 30(6), 613-629 (Jun.). |
Grandas et al., “Synthesis of Deoxycytidine Oligomers Containing Phosphorodithioate Linkages”, Tetra. Lett., 1989, 30(5), 543-546. |
Greene and Wuts, Protective Groups in Organic Synthesis, 2nd Edition, John Wiley & Sons, New York, 1991. |
Iyer, R. et al., “3H-1, 2-Benzodithiole-3-one 1,1-Dioxide as an Improved Sulfurizing Reagent in the Solid-Phase Synthesis of Oligodeoxyribonucleoside Phosphorothioates”, J. Am. Chem. Soc. 1990, 112, 1253-1254. |
Iyer, R. et al., “The Automated Synthesis of Sulfur-Containing Oligodeoxyribonucleotides Using 3H-1,2-Benzodithiol-3-one 1,1-Dioxide as a Sulfur-Transfer Reagent”, J. Org. Chem. 1990, 55(15), 4693-4699. |
Kamer, P. et al., “An Efficient Approach Toward the Synthesis of Phosphorothioate Diesters via the Schonberg Reaction”, Tetrahedron Letters 1989, 30(48), 6757-6760. |
Kroschwitz, J.I. (ed.), Concise Encyclopedia of Polymer Science and Engineering, John Wiley & Sons, 1990, 858-859. |
Nielsen et al., “Synthesis and Characterization of Dinucleoside Phosphorodithioates”, Tetra. Lett., 1988, 29(24), 2911-2914. |
Nielson et al., “Thermal Instability of Some Alkyl Phosphorodiamides”, J. Chem. Res., 1986, 26-27. |
Ouchi et al., “Synthesis and Antitumor Activity of Poly(Ethylene Glycol)s Linked to 5-Fluorouracil Via a Urethane or Urea Bond”, Drug Design and Discovery, 1992, 9, 93-105. |
Rao, M.V. et al. “Dibenzoyl Tetrasulphide—A Rapid Sulphur Transfer Agent in the Synthesis of Phosphorothioate Analogues of Oligonucleotides”, Tetra. Lett., 1992, 33(33), 4839-4842. |
Ravasio et al., “Selective Hydrogenations Promoted by Copper Catalysis. 1. Chemoselectivity, Regioselectivity, and Stereoselectivity in the Hydrogenation of 3-Substituted Steroids”, J. Org. Chem., 1991, 56, 4329-4333. |
Secrist et al., Abstract 21, Program and Abstract, Tenth International Roundtable, Nucleosides, Nucleotides and their Biological Applications, Park City, Utah, Sep. 16-20, 1992. |
Sanghvi, Antisense Research and Application, S.T. Crooke and B. Lebleu (eds.), CRC Press, Chapter 15, 1993. |
Uhlmann et al., “Antisense Oligonucleotides: A New Therapeutic Principle”, Chem. Rev., 1990, 90(4), 543-584, 5(Jun.). |
Uznanski et al., “Deoxyribonucleoside 3′-Phosphordiamidites as Substrates for Solid Supported Synthesis of Oligodeoxyribonucleotides and Their Phosphorothioate and DNA-Triester Analogues”, Tetra. Lett., 1987, 28, 3401-3404. |
Vu, H. et al., “Internucleotide Phosphite Sulfurization with Tetraethylthiuram Disulfide. Phosphorothioate Oligonucleotide Synthesis via Phosphoramidite Chemistry”, Tetrahedron Letters 1991, 32(26), 3005-3008. |
Wright, P. et al., “Large Scale Synthesis of Oligonucleotides via Phosphoramidite Nucleosides and a High-loaded Polystyrene Support”, Tetrahedron Letters 1993, 34(21), 3373-3376. |
Xu et al., “Efficient introduction of phosphorothioates into RNA oligonucleotides by 3-ethoxy-1,2,4-dithiazoline-5-one (EDITH)”, Nucl. Acids Res., 1996, 24(18), 3643-3644. |
Xu et al., “Use of 1,2,4-dithiazolidine-3, 5-dione (DtsNH) and 3-ethoxy-1,2,4-dithiazoline-5-one (EDITH) for synthesis of phosphorothioate-containing oligodeoxyribonucleotides”, Nucl. Acids Res., 1996, 24(9), 1602-1607. |
Yamana et al., “A Simple Preparation of 5′-Dimethoxytrityl Deoxyribonucleoside 3′-O-Phosphorbisdiethylamidites as Useful Intermediates in the Synthesis of Oligodeoxyribonucleotides and Their Phosphorodiethylamidate Analogs on a Solid Support”, Tetrahedron, 1989, 45(13), 4135-4140. |
Zon et al., “Phosphorothioate oligonucleotides”, Oligonucleotide and Analogs: A Practical Approach, Eckstein, F. (ed.), 1991, IRL Press, 87-103. |