Method of tongue preconditioning in preparation for lingual orthodontic treatment

Information

  • Patent Grant
  • 11612458
  • Patent Number
    11,612,458
  • Date Filed
    Friday, March 30, 2018
    6 years ago
  • Date Issued
    Tuesday, March 28, 2023
    a year ago
Abstract
Disclosed herein are devices, systems, and method for preconditioning lingual tissue for lingual orthodontic treatment, including the application of lingual braces. Protuberances may be affixed to the lingual surfaces of one or more of a patient's teeth prior to the introduction of an orthodontic appliance to allow time for the tongue to adapt to the presence of foreign structures. The protuberances may promote keratinization of the lingual tissue. The protuberances may be removed prior to the application of the orthopedic appliance. The protuberances can be pre-fabricated or fabricated in situ on the surfaces of the teeth. The protuberances may be any suitable material, including metal, polymer, or ceramic.
Description
BACKGROUND
Field of the Invention

This invention relates in some aspects to orthodontic appliances, including methods for tongue preconditioning prior to the placement of orthodontic appliances such as brackets and archwires.


SUMMARY

In some embodiments, disclosed herein is a method of preconditioning the lingual tissue of a patient for orthodontic treatment. The method includes coupling one or more protuberances to the lingual surfaces of one or more of the patient's teeth; allowing the lingual tissue to adapt to the presence of the one or more protuberances; decoupling the one or more protuberances from the lingual surfaces of the one or more teeth; and applying one or more orthodontic appliances to the lingual surfaces of one or more of the patient's teeth subsequent to the decoupling of the one or more protuberances.


The protuberances may comprise any suitable material. For example, the protuberances can be fabricated from metal, polymer, and/or ceramic. The protuberances may be affixed to the lingual surfaces of teeth using a standard orthodontic adhesive. The protuberances can have a smooth distal end, which may be flat and/or rounded, for contacting the patient's lingual tissue. In some embodiments, the protuberances may be formed in situ. The protuberances may be formed from a curable (e.g., photo-curable) resin and can be further shaped after curing. The protuberances may be repurposed orthodontic buttons. In some embodiments, the protuberances are specifically configured to imitate the subsequently applied orthodontic appliance. The protuberances may have the same hardness as the orthodontic appliance. The protuberances may be softer than the orthodontic appliance. The protuberances may generally have smooth and rounded edges. The protuberances may have the same size and/or dimensions as the subsequently applied orthodontic appliance. The protuberances may have reduced or diminished profiles compared to the orthodontic appliance or may have larger sizes and profiles compared to the orthodontic appliance.


The protuberances may be applied to the same teeth expected to receive orthodontic appliances and/or to different teeth. Any number of protuberances may be applied, for example one protuberance, one protuberance per every few teeth, one protuberance per tooth, more than one protuberance per tooth, or any number in between. The protuberances may be placed on teeth uniformly across the mouth or may be localized to teeth within certain areas of the mouth. The protuberances may be applied one, two, three, four, five weeks or more prior to the introduction of the orthodontic appliance. The protuberances can be removed immediately prior to, one to several days prior to, or, in some instances, subsequently to the introduction of the orthodontic appliance. The protuberances applied in a given treatment may be the same as each other or different from each other. In some embodiments, protuberances may be applied according to a dynamic protocol, in which protuberances are replaced, removed, and/or added across several visits prior to the introduction of the orthodontic appliance. The protuberances may provide an intermediate sensation level relative to the orthodontic appliance and/or provide a graduated adaptation to the orthodontic appliance.


In one aspect of the invention, disclosed is a method of preconditioning the lingual tissue of a patient for orthodontic treatment. The method includes coupling one or more protuberances to the lingual surfaces of one or more of the patient's teeth; allowing the lingual tissue to adapt to the presence of the one or more protuberances; decoupling the one or more protuberances from the lingual surfaces of the one or more teeth; and applying one or more orthodontic appliances to the lingual surfaces of one or more of the patient's teeth subsequent to the decoupling of the one or more protuberances.


In some embodiments, the protuberances may not be configured to facilitate in the realigning of the patient's teeth. The one or more orthodontic appliances may be lingual braces comprising a plurality of brackets and at least one archwire. Applying the one or more orthodontic appliances may include placing an orthodontic component on at least one of the one or more teeth from which the one or more protuberances were decoupled. Applying the one or more orthodontic appliances may include placing an orthodontic component on each of the one or more teeth from which the one or more protuberances were decoupled.


Allowing the lingual tissue to adapt may include leaving the one or more protuberances in place for at least one week, at least two weeks, at least three weeks, or at least four weeks. Allowing the lingual tissue to adapt may include leaving the one or more protuberances in place for no longer than two months, no longer than six weeks, or no longer than four weeks.


The one or more protuberances may comprise metal. The one or more protuberances may be orthodontic buttons. The one or more protuberances may comprise one or more polymers. Coupling the one or more protuberances may comprise applying an adhesive to the lingual surfaces of the one or more of the patient's teeth. Coupling the one or more protuberances may comprise forming the one or more protuberances in situ on the lingual surfaces of the one or more of the patient's teeth. Forming the one or more protuberances in situ may include depositing a resin on the lingual surfaces of the one or more of the patient's teeth and photo-curing the resin. Forming the one or more protuberances may include shaping the protuberance in situ after the resin has been cured. The one or more protuberances may be softer than the one or more orthodontic appliances.


The one or more protuberances may each include a proximal end and a distal end and coupling the one or more protuberances may include adhering the proximal ends to the lingual surface of the one or more of the patient's teeth. The distal end of each protuberance may be flat or rounded. The one or more protuberances may include at least two protuberances. Decoupling the one or more protuberances and applying the one or more orthodontic appliances may both occur within twenty-four hours.





BRIEF DESCRIPTION OF THE DRAWINGS

These drawings are illustrative embodiments and do not present all possible embodiments of this invention.



FIG. 1 illustrates an image of a patient's mouth in which two protuberances have been placed on the lingual surfaces of two of the patient's teeth.



FIG. 2 illustrates a method of preconditioning lingual tissue of a patient.



FIG. 3 illustrates a method of preconditioning lingual tissue of a patient.





DETAILED DESCRIPTION

Orthodontic appliances are used to correct malocclusion of the teeth and may be affixed to a person's teeth for an extended period of time (e.g., months to years) as necessary to gradually realign one or more teeth. Lingual braces which apply brackets to the lingual (i.e. inner) sides of the teeth, as opposed to the buccal (i.e. outer) sides of the teeth, offer several advantages. Primarily, lingual braces hide the orthodontic appliance from the plain view of others, as the orthodontic appliances are positioned behind the teeth of the orthodontic patient, giving the braces an “invisible” quality. They also hide any white spot lesions that may be left behind on the tooth after removal of the orthodontic appliance. However, a transient challenge with lingual orthodontic appliances, such as lingual braces, can be the adjustment of the patient's tongue to the new sensation of foreign structures within the mouth, especially structures on the lingual side of the teeth which are more frequently felt by the tongue. It may take several weeks (e.g., 2-3 weeks) for a patient's tongue to adapt to the presence of lingual braces. During this time, orthodontic appliances, particularly lingual appliances, may irritate the tongue (e.g., cause pain) and interfere with speech and/or eating, both functions for which the tongue is highly involved. The tongue is a muscular organ which also functions to help clean the teeth. Therefore, even in a resting state, a portion of the tongue is likely in physical contact with the lingual sides of multiple teeth. Thus, the abrupt introduction of an orthodontic appliance, which may comprise multiple components such as brackets and archwires, may provide severe and persistent discomfort, irritation, and/or annoyance to the patient, until the tongue has sufficiently adjusted. Orthodontic appliances may be made smaller and/or made with smoother profiles to reduce irritation and other effects of the appliance on the patient's teeth. However, these changes cannot completely eliminate the effect of the appliance's introduction into the mouth on the patient's tongue. Furthermore, the functional requirements of the orthodontic appliance may preclude making otherwise optimal and/or drastic alterations to the appliance for the purpose of reducing detectability of the appliance by the tongue. For example, many orthodontic appliances are fabricated from metal components, which may be especially irritating to the tongue given the hardness of the metal. However, the structural properties of the metal (e.g., the strength or rigidity) may be desirable for functionally realigning the patient's teeth. Similarly, complex geometries of a bracket or an archwire may serve an important functional purpose which prevents the geometries from being readily modified.


Disclosed herein are devices, systems, and methods for preconditioning a tongue to foreign orthodontic structures introduced into the oral cavity. The disclosed embodiments may be used to allow the tongue to more gradually adapt to the presence of an orthodontic appliance. The disclosed embodiments are particularly useful for preconditioning the tongue in preparation for the application of lingual orthodontic appliances.


The devices disclosed herein may include one or more protuberances which are configured to be applied to one or more surfaces of a patient's teeth. In some embodiments, the protuberance is a prefabricated structure which can be affixed (e.g., bonded) to the patient's tooth. FIG. 1 illustrates an image of a patient's mouth, in which examples of two metal lingual protuberances 100 have been bonded to the lingual surfaces of two adjacent teeth to precondition the patient's tongue for lingual orthodontic treatment. The protuberance may comprise a generally flat adhesion surface for coupling to the tooth. The generally flat adhesion surface may comprise a textured surface (e.g., knurled, bumped, ridged, etc.) for increasing surface area for an adhesive and promoting a stronger bond to the tooth. In some embodiments, the generally flat adhesion surface may be smooth. The protuberance may comprise a projection 101 extending from the generally flat adhesion surface. The projection 101 may comprise a smooth, generally flat distal end or a smooth, generally rounded distal end for interacting with the tongue (the generally flat adhesion surface comprising a proximal end). The smooth surface of the projection 101 may provide a minimally irritating geometry for the tongue to contact. Minimally irritating geometries may be desirable for gradually inducing the tongue to adapt to the presence of an orthodontic appliance.


In some embodiments, the projection 101 may extend from the edges of an outer circumference of the generally flat surface directly to a distal end the projection, such that the protuberance 100 is generally bullet-shaped, dome shaped, or cylindrical shaped. In some embodiments, the proximal end of the protuberance 100 may comprise a thin tab 102 comprising the generally flat dental-facing adhesion surface on one side and a flat smooth lingual-facing surface on the opposite side from which the protrusion extends, as shown in FIG. 1. The thin tab 102 may be circular, as in FIG. 1, or may be any other shape (e.g., rectangular, polygonal, oblong, etc.). The protrusion 101 may extend from a portion of the smooth lingual-facing surface, such as the center of the lingual-facing surface so that the lingual-facing surface is generally annular to the protrusion. A tab configuration may provide a larger surface area for bonding the protuberance 100 to a tooth while allowing independent control over the size of the protrusion. The smooth lingual-facing surface of the tab may provide a minimally detectable structure. In some implementations, the tab may comprise apertures extending through the tab from the dental-facing adhesion surface to the lingual-facing surface. The apertures may be configured to allow improved bonding by providing more surface area for an adhesive to affix to the protuberance 100. In some embodiments, the projection may comprise a post 103 (e.g., a cylindrical post) with a bulb 104 at the distal end. The bulb 104 may have a larger diameter than the post 103. The bulb 104 can include the smooth generally flat distal end, as in FIG. 1, or a rounded distal end configured to contact the tongue. The tongue may be able to detect other portions of the protuberance 100 proximal to the distal end as well. In many embodiments, the distal end of the protuberance 100 will be the most detectable portion of the protuberance 100.


The radius of curvature of a generally rounded distal end may be configured to modulate the detectability (e.g., noticeability or the amount of irritation) of the protuberance by the tongue. A smaller radius of curvature may produce a more “pointed” distal end which may be more detectable by the tongue than a larger radius of curvature. The length of the protuberance, the general diameter of the protuberance, and/or the shape of the protuberance surface, particularly the distal end of the protuberance (including the radius of curvature) may be used to modulate the detectability and feel of the protuberance by the tongue (e.g., lingual tissue). In some embodiments, the distal end may be rounded with a generally flat surface positioned at the apex of the protrusion.


In some embodiments, the protuberance may comprise more complex geometries. The protuberance may comprise shapes such as cuboids, pyramids, cones, etc. In some implementations the protuberance may comprise non-round geometries with rounded edges and/or corners to avoid cutting, puncturing, and/or injuring the lingual tissue. The protuberances may comprise multiple protrusions. In some embodiments, the protuberances may be fabricated in size and/or shape to more closely resemble the anticipated orthodontic appliance (e.g., bracket). The protuberance may be the same or similar to the structure and/or geometry of the orthodontic appliance. The length, size, shape, footprint (e.g., on the dental surface), and/or rigidity of the protuberance may be selected to match that of the anticipated orthodontic appliance or to provide a subtler (e.g., diminished or smoother) placeholder for the anticipated orthodontic appliance. In some implementations, the protuberance resembles the orthodontic appliance but is comprised of a softer (e.g., an elastomeric material). In some implementations, the protuberance comprises a similar size and/or overall shape to the orthodontic appliance, but comprises a reduced profile or rounded edges. In some implementations, the protuberance may not be related to the specific orthodontic appliance at all (e.g., it may be a general use protuberance and/or a repurposed orthodontic button).


In some embodiments, the protuberance may comprise multiple protrusions extending from multiple (e.g., adjacent) teeth which are joined by an intervening structure. The intervening structure may resemble, for example, an archwire. The intervening structure may be made from the same or different materials as the protrusions. For example, the intervening structure may be metal or it may be a softer elastomeric rubber or plastic. The protrusions and the intervening structure may be integrally formed or assembled prior to or after placement of the protrusions on the teeth.


The protuberances may be fabricated from any suitable material (e.g., non-toxic). The protuberances may be generally tasteless to the user. The protuberances may provide a subtle, generally pleasant taste. The protuberances may be made from a single material, a composite of materials, or comprise portions fabricated from different materials. The protuberances may be fabricated from the same material(s) as the orthodontic appliance for which the tongue is being preconditioned. For example, the protuberances may be fabricated from metal (e.g., stainless steel, titanium, nitinol, etc.). The protuberances can also comprise polymer-based materials (including plastics, rubbers, and/or hydrogels) and/or ceramics. In some embodiments, the protuberances may be fabricated from a softer material than the orthodontic appliance, in order to provide an intermediate level of irritation or detectability for the tongue to adjust to prior to introduction of the orthodontic appliance, which generally comprises metal. For example, the protuberance(s) may be a soft or semi-rigid rubber used to precondition the tongue for the application of metal brackets and/or a metal archwire. Polymer based-materials may provide a large range of structural properties depending, for example, on cross-link densities, molecular weights, curing protocols, etc.


Pre-fabricated protuberances can be bonded to a patient's teeth using any standard dental/orthodontic adhesive (e.g., resin or glue). The adhesive may be a curable adhesive. In some implementations, the adhesive is a photo-curable adhesive that is solidified by application of certain wavelengths of light, which may be provided by a standard dental or orthodontic instrument. The protuberance can be affixed to the tooth in the same manner as an orthodontic appliance (e.g., a bracket).


In some embodiments, the protuberance is not pre-fabricated but formed directly on the surface of the tooth. For example, the protuberance may be formed from an adhesive resin, such as a resin used to adhere pre-fabricated protuberances or orthodontic appliances to the surfaces of teeth and/or to provide tooth filler material. The resin may be directly applied to (e.g., injected onto) a surface of a tooth, such as the lingual surface, formed into an appropriate shape, and cured. The resin may be formed into a generally globular shape or other rounded configuration. The resin can be further shaped after curing. For example, the hardened resin may be shaved, cut, drilled, polished, compressed, heated, molded, etc. to shape the resin into an appropriate protuberance configuration. The resin may be configured to be suitably thick and/or viscous prior to curing so that it may be at least partially shaped into a desired configuration without losing shape and/or sliding off the tooth surface prior to curing. In some embodiments, additional components (e.g., plasticizers) may be added to standard adhesive resins to adjust the physical properties of the resin and configure them for shaping into protuberances. In some embodiments, the curable adhesive resin may be a combination of a standard curing adhesive, or another type of adhesive, and other polymers for providing other physical properties to the protuberance. The other components may, for example, modulate the rigidity/elasticity, toughness, porosity, curing time, etc.


Systems incorporating the protuberances may use one or more protuberances strategically positioned on the teeth. In implementations where multiple protuberances are employed, the protuberances may be identical or similar to each other or protuberances of different sizes, shapes, and/or configurations may be used. In some implementations, the protuberances may be standard orthodontic appliances (e.g., buttons that are used for anchoring orthodontic components, including metal buttons for anchoring metal braces and resin buttons for anchoring invisible aligners) which may be repurposed in accordance with the systems and methods disclosed herein.


In some embodiments, protuberances may be applied to each tooth that is expected to receive an orthodontic bracket. The protuberances may be placed in approximately the same position the bracket is planned to be placed or may be placed in an alternative position on the surface of the tooth. In some embodiments, the protuberances may be placed on fewer than the number of teeth expected to receive orthodontic attachments. In some embodiments, the protuberances may be placed on more teeth than are expected to receive orthodontic attachments. The number of protuberances employed may be unrelated to the number of teeth expected to receive orthodontic appliances. The orthodontist may generally space the protuberances across the teeth according to an adjustment strategy. For example, the protuberances may be uniformly spaced across the teeth to generally provide stimuli for all portions of the lingual tissue. The orthodontist may employ as few protuberances as needed to adequately stimulate all portions of the tongue. For example, the orthodontist may place a protuberance on every other tooth, every three teeth, etc.


In some embodiments, the orthodontist may place a higher number of protuberances to over-stimulate the tongue. For example, the orthodontist may employ higher number of protuberances which are relatively less irritating to promote a higher degree of adaption (e.g., keratinization) of the tongue. Alternatively, the orthodontist may employ a lower number of relatively more irritating protuberances to promote a desired degree of adaptation. Protuberances may be employed on the lower teeth, upper teeth, or both. Providing protuberances on either the upper or lower set of teeth may be sufficient to promote the desired adaption. In some implementations, the orthodontist may alternate applying protuberances between upper and lower teeth for a given type of tooth or tooth position (e.g., as located medially-to-distally on the left and right sides of the mouth). In some embodiments, the orthodontist may choose placements of protuberances that are configured to target more sensitive parts of the tongue. In some embodiments, the orthodontist may choose placements that are configured to target less sensitive parts of the tongue.


In some implementations, the protuberances are placed after the development of a patient-specific orthodontic treatment plan. The development of the orthodontic treatment plan may comprise several steps. The patient's teeth may be manually examined by an orthodontist (or dentist). X-rays of the patient's teeth may be taken. Other suitable imaging means may be used to visualize the patient's teeth as well, including optical 3D scanning. A computational model and/or physical model of the patient's teeth may be generated. For example, a digital model can be created from images of the patient's teeth and a physical model may be fabricated from the digital model, through means such as 3D printing or other suitable techniques. The model may include one or more teeth, all the teeth, portions of gingival tissue, portions of the jaw, etc. Computational and/or physical models of the patient's teeth may be adjusted into a target and/or corrected form. Models of intermediate forms between the imaged malocclusion state of the teeth and the final form may be generated as well. The selection of appropriate orthodontic appliances and the anticipated placement and/or positioning of the orthodontic appliances on the patient's teeth may be determined prior to placement of the protuberances. The orthodontic treatment plan may be entirely or partly determined by computational means or may be entirely or partly determined by the orthodontist's own judgment. As described elsewhere herein, the placement of the protuberances may or may not relate to the placement of the orthodontic appliances. In some implementations, the protuberances are placed prior to the development of a specific orthodontic treatment plan. For example, the orthodontist may examine the patient, including imaging the patient's teeth, place the protuberances, and develop the orthodontic treatment plan while the protuberances are in place and the patient's tongue has begun adapting.


The protuberances may be placed on the teeth in the same manner as any standard orthodontic appliance (e.g., bracket). Pre-fabricated protuberances may, for example, be individually applied to each tooth or they may be indirectly bonded. In indirectly bonding, the protuberances may be placed in a tray which is applied to multiple teeth all at once to adhere the protuberances to the teeth. In some implementations, sections of trays may be used to apply the protuberances to a portion of the patient's teeth. In some embodiments, the protuberance may be formed in situ, as described elsewhere herein. For example, the orthodontist may use a syringe to inject a droplet of photo-curable resin onto the lingual surface of a patient's tooth. The orthodontist may use an instrument to roughly shape (e.g., round, flatten, or smooth) the droplet. The orthodontist may insert a light-delivery instrument into the patient's mouth and shine the light on the resin until the resin has cured to form a protuberance of a desired stiffness, which is adequately affixed to the surface of the patient's tooth. The orthodontist may then use other instruments (e.g., a drill and a polisher) to shape the protuberance into the desired shape. For example, the orthodontist may shave the protuberance into a cylindrical-shaped, dome-shaped, or bullet-shaped protrusion then polish the surface of the protrusion to create a smooth surface with no sharp or jagged edges.


The orthodontist may place the protuberances on the patient's teeth an appropriate amount of time before the delivery of the orthodontic appliance to allow the patient's mouth, particularly the lingual tissue, to adjust to the protuberance. The protuberances may be for applied approximately, at least about, or no more than about: one week prior to orthodontic treatment, two weeks prior to orthodontic treatment, three weeks prior to orthodontic treatment, four weeks prior to orthodontic treatment, five weeks prior to orthodontic treatment, ranges in between, etc. In some embodiments, the protuberances may be applied more than five weeks prior to orthodontic treatment. In some embodiments, the protuberances may be applied less than one week prior to orthodontic treatment, such as 1, 2, 3, 4, 5, or 6 days before orthodontic treatment. In some embodiments, two to four weeks may provide sufficient time to allow the patient's lingual tissue to adjust to the protuberances. The amount of time allowed for adequate adjustment may depend on the type and/or number of protuberances applied and/or the type of orthodontic appliance that will be introduced. In some embodiments, the orthodontist will remove the protuberances from the teeth immediately prior to introducing the orthodontic appliance(s) for which the tongue was preconditioned. The orthodontist may remove the protuberances in the same manner as removing any other orthodontic appliance and/or adhesive/resin from a patient's tooth. For example, the orthodontist may use a drill, pliers, polisher, and other standard tools to remove the appliance and/or any adhesive resin adhered to the tooth. The orthodontist may clean the surface of the tooth before applying the orthodontic appliance. In some embodiments, the orthodontist may remove the protuberances one or more days before introducing the orthodontic treatment. The amount of time between removal of the protuberances and the introduction of the orthodontic appliance may be short enough such that the lingual tissue does not readapt to the absence of foreign structures in the mouth.


In some embodiments, the orthodontist may apply a dynamic preconditioning protocol. For example, the orthodontist may gradually introduce more protuberances to the patient's teeth over the course of several visits (e.g., two visits, three visits, etc.). For another example, the orthodontist may transition from less detectable protuberances to more detectable (e.g., more severe) protuberances to promote a more gradual adaptation of the lingual tissue. In some instances, the protuberances may be replaced with protuberances of different sizes, shapes, and/or material properties (e.g., stiffness). In some instances, more detectable protuberances may be added in addition to the less detectable protuberances. In some embodiments, the protuberances are configured to change characteristics in situ, such as being volumetrically expandable, e.g., fillable with a filler, or expand by absorbing fluid from the patient's oral cavity. In some embodiments, the protuberances are degradable, e.g., biodegradable over time and can naturally disappear. The more detectable protuberances may be positioned on distinct teeth from the less detectable protuberances, may be positioned on the same teeth adjacent to the less detectable protuberances, or may be positioned over top the less detectable protuberances. In some embodiments, protuberances may be configured to be coupled (e.g. mated together), such that, for example, a more detectable protuberance can be configured as a shell which may be readily placed over the less detectable protuberance, allowing a quicker procedure. Coupled protuberances may be able to be removed from the surface of the tooth altogether. In some implementations, all the protuberances may be removed during a single visit. Other dynamic protocols are contemplated as well. Multiple visits within a dynamic preconditioning protocol may be spaced uniformly across the total preconditioning period (e.g., one visit per week, one visit every two weeks, etc.). In some embodiments, the visits may be spaced non-uniformly. For example, the visits, and accompanying protuberance swaps, removals, and/or additions, may be concentrated toward the beginning of the preconditioning period, toward the middle of the preconditioning period, toward the end of the preconditioning period, or any combination thereof.


The protuberance may be configured for general use or may be specifically configured for a specific orthodontic appliance. In some implementations, the protuberance may be configured to mate with the orthodontic appliance such that it provides a base support for coupling the orthodontic appliance to the tooth, while also serving to precondition the lingual tissue prior to introduction of the orthodontic appliance. For example, the protuberance may be configured as a button to which an orthodontic bracket may be secured (e.g., snapped onto or glued onto). Such complementary configurations may allow a more streamlined procedure in which the protuberance is applied first and in a subsequent visit the orthodontic appliance is more quickly applied to the teeth without needing to remove the protuberance. In some implementations, where the protuberance neither cooperates with nor interferes with the placement of the orthodontic appliance, the orthodontic appliance may be removed subsequently to the placement of the orthodontic appliance.


Not to be limited by theory, but the placement of the protuberances, particularly on the lingual surfaces of teeth, in some embodiments, may gradually promote adaptation of the patient's tongue by stimulating keratinization of the patient's lingual tissue. Keratin is a fibrous structural protein that protects epithelial cells from damage and/or stress. Keratin is found in various tissues, including skin, nails, hair, etc., and coats the tongue. By way of non-limiting example, the protuberances may promote accumulation and/or hardening of keratin on the tongue's surface, making the tongue tougher and/or less sensitive to the protuberances and/or subsequently placed orthodontic appliances. The protuberances may stimulate other physiological changes within the lingual tissue that adapt the tissue to the presence of the protuberances and precondition the tissue for orthodontic treatment. The protuberances may act to promote adaptation by other means as well. For example, the protuberances may psychologically condition the patient to adjust to the presence of orthodontic appliances in the mouth. The persistent stimulation of lingual tissue may gradually produce a diminished neurological response (e.g., stimulation) as the nervous system of the patient adapts or desensitizes to the presence of the protuberances. The tongue may gradually be retrained to operate, such as in speaking and eating, in the presence of the protuberances and/or orthodontic appliances. The patient can, in some embodiments, feel less pain or discomfort from the subsequent orthodontic appliances as a result of the placement of the protuberances ahead of time. Other modes of adaptation are contemplated as well. In some embodiments, the protuberances may be applied to other surfaces of the teeth (e.g., buccal) and/or used to precondition other oral tissue (e.g., buccal, gingival, labial, etc.) for orthodontic treatment.


Various other modifications, adaptations, and alternative designs are of course possible in light of the above teachings. For example, features including brackets disclosed in U.S. Pub. No. 2014/0120491 A1 to Khoshnevis et al., hereby incorporated by reference in its entirety, can be utilized or modified or use with embodiments as disclosed herein. Therefore, it should be understood at this time that within the scope of the appended claims the invention may be practiced otherwise than as specifically described herein. It is contemplated that various combinations or subcombinations of the specific features and aspects of the embodiments disclosed above may be made and still fall within one or more of the inventions. Further, the disclosure herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element, or the like in connection with an embodiment can be used in all other embodiments set forth herein. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed inventions. Thus, it is intended that the scope of the present inventions herein disclosed should not be limited by the particular disclosed embodiments described above. Moreover, while the invention is susceptible to various modifications, and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the invention is not to be limited to the particular forms or methods disclosed, but to the contrary, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the various embodiments described and the appended claims. Any methods disclosed herein need not be performed in the order recited. The methods disclosed herein include certain actions taken by a practitioner; however, they can also include any third-party instruction of those actions, either expressly or by implication. For example, actions such as “placing a protuberance” includes “instructing the placing of a protuberance.” The ranges disclosed herein also encompass any and all overlap, sub-ranges, and combinations thereof. Language such as “up to,” “at least,” “greater than,” “less than,” “between,” and the like includes the number recited. Numbers preceded by a term such as “approximately”, “about”, and “substantially” as used herein include the recited numbers (e.g., about 10%=10%), and also represent an amount close to the stated amount that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount.



FIG. 2 illustrates a method 200 of preconditioning lingual tissue (e.g., the tongue) of a patient. At block 202, one or more protuberances can be coupled (e.g., adhered with an adhesive) to the surfaces of one or more of the patient's teeth. At block 204, the method 200 can include allowing lingual tissue of the patient to adapt to the presence of the one or more protuberances. At block 206, the method 200 can include decoupling the one or more protuberances from the lingual surfaces of the one or more of the patient's teeth. At block 208, the method 200 can include applying one or more orthodontic appliances to the lingual surfaces of one or more of the patient's teeth subsequent to decoupling the one or more protuberances.



FIG. 3 illustrates a method 300 of preconditioning lingual tissue (e.g., the tongue) of a patient. At block 302, the method 300 can include depositing a resin on the lingual surfaces of one or more of the patient's teeth and photo-curing the resign to form one or more protuberances in situ on the lingual surfaces. At block 304, the method 300 can include allowing lingual tissue of the patient to adapt to the presence of the one or more protuberances. At block 306, the method 300 can include removing the one or more protuberances from the lingual surfaces of the one or more of the patient's teeth. At block 308, the method 300 can include applying one or more orthodontic appliances to the lingual surfaces of one or more of the patient's teeth subsequent to removing the one or more protuberances.

Claims
  • 1. A method of preconditioning a tongue of a patient for orthodontic treatment, the method comprising: adhering a first protuberance to a first lingual surface of a first tooth of the patient with adhesive, the first protuberance comprising a distal free end spaced away from the first lingual surface that is configured to contact the tongue;adhering a separate second protuberance to a second lingual surface of a second tooth of the patient with adhesive, the second protuberance comprising a distal free end spaced away from the second lingual surface that is configured to contact the tongue;allowing the tongue to adapt to a presence of the first and second protuberances for a duration of time to precondition the tongue for orthodontic treatment;decoupling the first and second protuberance from the first and second lingual surfaces of the first tooth and second tooth of the patient; andapplying one or more orthodontic appliances to one or more lingual surfaces of one or more teeth of the patient subsequent to decoupling the first and second protuberances.
  • 2. The method of claim 1, wherein the first and second protuberances are not configured to facilitate realigning teeth of the patient.
  • 3. The method of claim 1, wherein the one or more orthodontic appliances comprises one or more brackets configured to engage with at least one archwire.
  • 4. The method of claim 1, wherein applying one or more orthodontic appliances comprises placing an orthodontic component on at least one of the first lingual surface of the first tooth or second lingual surface of the second tooth.
  • 5. The method of claim 4, wherein applying one or more orthodontic appliances comprises placing an orthodontic component on each of the first lingual surface of the first tooth and second lingual surface of the second tooth.
  • 6. The method of claim 1, wherein the duration of time comprises at least one week.
  • 7. The method of claim 1, wherein the duration of time comprises no longer than six weeks.
  • 8. The method of claim 1, wherein the first and second protuberances comprise metal.
  • 9. The method of claim 8, wherein the first and second protuberances are orthodontic buttons.
  • 10. The method of claim 1, wherein the first and second protuberances comprise one or more polymers.
  • 11. The method of claim 1, wherein the first and second protuberances are softer than the one or more orthodontic appliances.
  • 12. The method of claim 1, wherein the first and second protuberances each comprise a proximal end that is adhered to the first and second lingual surfaces, wherein the distal free end of each of the first and second protuberances extends, respectively, away from the proximal ends in a lingual direction, and wherein the distal free end of each of the first and second protuberance is flat or rounded.
  • 13. The method of claim 1, wherein decoupling the first and second protuberances and applying the one or more orthodontic appliances both occur within twenty-four hours.
  • 14. A method of preconditioning a tongue of a patient for orthodontic treatment, the method comprising: depositing a first resin deposit on a first lingual surface of a first tooth of the patient;depositing a second resin deposit on a second lingual surface of a second tooth of the patient;curing the first resin deposit to form a first protuberance, the first protuberance extending away from the first lingual surface in a lingual direction;curing the second resin deposit to form a second protuberance, the second protuberance extending away from the second lingual surface in the lingual direction;allowing the tongue to adapt to a presence of the first and second protuberances for a duration of time to precondition the tongue for orthodontic treatment;removing the first and second protuberances from the first and second lingual surfaces; andapplying one or more orthodontic appliances to the first lingual surface or the second lingual surface subsequent to decoupling the first and second protuberances.
  • 15. The method of claim 14, wherein curing the first resin deposit to form the first protuberance comprises shining light on the first resin deposit with a light-delivery instrument, and wherein curing the second resin deposit to form the second protuberance comprises shining light on the second resin deposit with the light-delivery instrument.
  • 16. The method of claim 14, further comprising shaping the first and second protuberances in situ after the curing the first resin deposit and the curing the second resin deposit.
  • 17. The method of claim 16, wherein shaping the first and second protuberances comprises shaving the first and second protuberances into dome shapes.
  • 18. The method of claim 16, wherein shaping the first and second protuberances comprises polishing the first and second protuberances.
US Referenced Citations (648)
Number Name Date Kind
1005131 Angle et al. Oct 1911 A
1307382 Stanton Jun 1919 A
1429749 Maeulen et al. Sep 1922 A
1638006 Aderer Feb 1926 A
2257069 Peak Sep 1941 A
2495692 Brusse Jan 1950 A
2524763 Brusse Oct 1950 A
2582230 Brusse Jan 1952 A
3256602 Broussard Jun 1966 A
3262207 Kesling Jul 1966 A
3374542 Moylan, Jr. Mar 1968 A
3593421 Brader Jul 1971 A
3600808 Reeve Aug 1971 A
3683502 Wallshein Aug 1972 A
3691635 Wallshein Sep 1972 A
3762050 Dal Pont Oct 1973 A
3765091 Northcutt Oct 1973 A
3878610 Coscina Apr 1975 A
3936938 Northcutt Feb 1976 A
3949477 Cohen et al. Apr 1976 A
3975823 Sosnay Aug 1976 A
4103423 Kessel Aug 1978 A
4171568 Forster Oct 1979 A
4192070 Lemchen et al. Mar 1980 A
4193195 Merkel et al. Mar 1980 A
4197643 Burstone et al. Apr 1980 A
4268250 Reeve May 1981 A
4330273 Kesling May 1982 A
4354833 Fujita Oct 1982 A
4354834 Wilson Oct 1982 A
4382781 Grossman May 1983 A
4385890 Klein May 1983 A
4412819 Cannon Nov 1983 A
4424033 Wool Jan 1984 A
4436510 Klein Mar 1984 A
4479779 Wool Oct 1984 A
4483674 Schütz Nov 1984 A
4490112 Tanaka et al. Dec 1984 A
4501554 Hickham Feb 1985 A
4516938 Hall May 1985 A
4533320 Piekarsky Aug 1985 A
4561844 Bates Dec 1985 A
4582487 Creekmore Apr 1986 A
4585414 Kottermann Apr 1986 A
4592725 Goshgarian Jun 1986 A
4634662 Rosenberg Jan 1987 A
4656860 Orthuber et al. Apr 1987 A
4659310 Kottermann Apr 1987 A
4664626 Kesling May 1987 A
4674978 Acevedo Jun 1987 A
4676747 Kesling Jun 1987 A
4725229 Miller Feb 1988 A
4797093 Bergersen Jan 1989 A
4797095 Armstrong et al. Jan 1989 A
4838787 Lerner Jun 1989 A
4842514 Kesling Jun 1989 A
4872449 Beeuwkes Oct 1989 A
4881896 Bergersen Nov 1989 A
4892479 McKenna Jan 1990 A
4897035 Green Jan 1990 A
4900251 Andreasen Feb 1990 A
4978323 Freedman Dec 1990 A
5011405 Lemchen Apr 1991 A
5044947 Sachdeva et al. Sep 1991 A
5055039 Abbatte et al. Oct 1991 A
5092768 Korn Mar 1992 A
5114339 Guis May 1992 A
5123838 Cannon Jun 1992 A
5127828 Suyama Jul 1992 A
5131843 Hilgers et al. Jul 1992 A
5154606 Wildman Oct 1992 A
5174754 Meritt Dec 1992 A
5176514 Viazis Jan 1993 A
5176618 Freedman Jan 1993 A
5238404 Andreiko Aug 1993 A
5242304 Truax et al. Sep 1993 A
5248257 Cannon Sep 1993 A
5259760 Orikasa Nov 1993 A
5312247 Sachdeva et al. May 1994 A
5344315 Hanson Sep 1994 A
5368478 Andreiko Nov 1994 A
5380197 Hanson Jan 1995 A
5399087 Arndt Mar 1995 A
5431562 Andreiko Jul 1995 A
5447432 Andreiko Sep 1995 A
5454717 Andreiko Oct 1995 A
RE35169 Lemchen et al. Mar 1996 E
5516284 Wildman May 1996 A
5624258 Wool Apr 1997 A
5630715 Voudouris May 1997 A
5683243 Andreiko Nov 1997 A
5683245 Sachdeva et al. Nov 1997 A
5722827 Allesee Mar 1998 A
5816800 Brehm Oct 1998 A
5820370 Brosius Oct 1998 A
5863198 Doyle Jan 1999 A
5890893 Heiser Apr 1999 A
5975893 Chishti et al. Nov 1999 A
5993208 Jonjic Nov 1999 A
6015289 Andreiko Jan 2000 A
6036489 Brosius Mar 2000 A
6042374 Farzin-Nia et al. Mar 2000 A
6086364 Brunson Jul 2000 A
6089861 Kelly Jul 2000 A
6095809 Kelly et al. Aug 2000 A
6099304 Carter Aug 2000 A
6123544 Cleary Sep 2000 A
6183250 Kanno et al. Feb 2001 B1
6190166 Sasakura Feb 2001 B1
6196839 Ross Mar 2001 B1
6217325 Chishti et al. Apr 2001 B1
6227850 Chishti et al. May 2001 B1
6244861 Andreiko Jun 2001 B1
6250918 Sachdeva et al. Jun 2001 B1
6315553 Sachdeva et al. Nov 2001 B1
6318994 Chishti et al. Nov 2001 B1
6318995 Sachdeva et al. Nov 2001 B1
6334853 Kopelman et al. Jan 2002 B1
6350120 Sachdeva et al. Feb 2002 B1
6358045 Farzin-Nia et al. Mar 2002 B1
6371761 Cheang et al. Apr 2002 B1
6394801 Chishti et al. May 2002 B2
6398548 Muhammad et al. Jun 2002 B1
6413084 Rubbert et al. Jun 2002 B1
6431870 Sachdeva Aug 2002 B1
6450807 Chishti et al. Sep 2002 B1
6464496 Sachdeva et al. Oct 2002 B1
6471511 Chishti et al. Oct 2002 B1
6471512 Sachdeva et al. Oct 2002 B1
6512994 Sachdeva Jan 2003 B1
6514074 Chishti et al. Feb 2003 B1
6532299 Sachdeva et al. Mar 2003 B1
6540512 Sachdeva et al. Apr 2003 B1
6554613 Sachdeva et al. Apr 2003 B1
6572693 Wu et al. Jun 2003 B1
6582226 Jordan et al. Jun 2003 B2
6587828 Sachdeva Jul 2003 B1
6595774 Risse Jul 2003 B1
6554611 Chishti et al. Aug 2003 B2
6602070 Miller et al. Aug 2003 B2
6612143 Butscher et al. Sep 2003 B1
6616444 Andreiko Sep 2003 B2
6626666 Chishti et al. Sep 2003 B2
6629840 Chishti et al. Oct 2003 B2
6632089 Rubbert Oct 2003 B2
6648640 Rubbert Nov 2003 B2
6663385 Tepper Dec 2003 B2
6679700 McGann Jan 2004 B2
6682344 Stockstill Jan 2004 B1
6685469 Chishti et al. Feb 2004 B2
6685470 Chishti et al. Feb 2004 B2
6688885 Sachdeva et al. Feb 2004 B1
6699037 Chishti et al. Mar 2004 B2
6702575 Hilliard Mar 2004 B2
6705863 Phan et al. Mar 2004 B2
6722880 Chishti et al. Apr 2004 B2
6728423 Rubbert et al. Apr 2004 B1
6729876 Chishti et al. May 2004 B2
6732558 Butscher et al. May 2004 B2
6733285 Puttler et al. May 2004 B2
6733287 Wilkerson May 2004 B2
6733288 Vallittu et al. May 2004 B2
6736638 Sachdeva et al. May 2004 B1
6738508 Rubbert et al. May 2004 B1
6739869 Taub et al. May 2004 B1
6744914 Rubbert et al. Jun 2004 B1
6744932 Rubbert et al. Jun 2004 B1
6746241 Townsend-Hansen Jun 2004 B2
6755064 Butscher Jun 2004 B2
6771809 Rubbert et al. Aug 2004 B1
6776614 Wiechmann Aug 2004 B2
6830450 Knopp et al. Dec 2004 B2
6845175 Kopelman et al. Jan 2005 B2
6846179 Chapouland Jan 2005 B2
6851949 Sachdeva et al. Feb 2005 B1
6860132 Butscher Mar 2005 B2
6893257 Kelly May 2005 B2
6928733 Rubbert et al. Aug 2005 B2
6948931 Chishti et al. Sep 2005 B2
6971873 Sachdeva Dec 2005 B2
6988889 Abels Jan 2006 B2
7008221 McGann Mar 2006 B2
7013191 Rubbert Mar 2006 B2
7020963 Cleary et al. Apr 2006 B2
7029275 Rubbert Apr 2006 B2
7033171 Wilkerson Apr 2006 B2
7037107 Yamamoto May 2006 B2
7056115 Phan et al. Jun 2006 B2
7063531 Maijer et al. Jun 2006 B2
7068836 Rubbert et al. Jun 2006 B1
7076980 Butscher Jul 2006 B2
7077646 Hilliard Jul 2006 B2
7077647 Choi et al. Jul 2006 B2
7080979 Rubbert et al. Jul 2006 B2
7092107 Babayoff et al. Aug 2006 B2
7094053 Andreiko Aug 2006 B2
7112065 Kopelman et al. Sep 2006 B2
7125248 Phan et al. Oct 2006 B2
7134874 Chishti et al. Nov 2006 B2
7156661 Choi et al. Jan 2007 B2
7160110 Imgrund et al. Jan 2007 B2
7172417 Sporbert et al. Feb 2007 B2
7175428 Nicholson Feb 2007 B2
7186115 Goldberg et al. Mar 2007 B2
7188421 Cleary et al. Mar 2007 B2
7214056 Stockstill May 2007 B2
7229282 Andreiko Jun 2007 B2
7234934 Rosenberg Jun 2007 B2
7234936 Lai Jun 2007 B2
7234937 Sachdeva et al. Jun 2007 B2
7240528 Weise et al. Jul 2007 B2
7244121 Brosius Jul 2007 B2
7245977 Simkins Jul 2007 B1
7252506 Lai Aug 2007 B2
7267545 Oda Sep 2007 B2
7283891 Butscher Oct 2007 B2
7296996 Sachdeva Nov 2007 B2
7335021 Nikodem Feb 2008 B2
7347688 Kopelman et al. Mar 2008 B2
7354268 Raby et al. Apr 2008 B2
7357634 Knopp Apr 2008 B2
7361017 Sachdeva Apr 2008 B2
7404714 Cleary et al. Jul 2008 B2
7416408 Farzin-Nia et al. Aug 2008 B2
7442041 Imgrund et al. Oct 2008 B2
7458812 Sporbert et al. Dec 2008 B2
7471821 Rubbert et al. Dec 2008 B2
7578673 Wen et al. Aug 2009 B2
7578674 Chishti et al. Aug 2009 B2
7585172 Rubbert Sep 2009 B2
7590462 Rubbert Sep 2009 B2
7621743 Bathen Nov 2009 B2
7641473 Sporbert Jan 2010 B2
7674110 Oda Mar 2010 B2
7677887 Nicholson Mar 2010 B2
7699606 Sachdeva et al. Apr 2010 B2
7704072 Damon Apr 2010 B2
7717708 Sachdeva May 2010 B2
7722354 Dumas May 2010 B1
7726470 Cinader, Jr. et al. Jun 2010 B2
7726968 Raby et al. Jun 2010 B2
7751925 Rubbert Jul 2010 B2
7811087 Wiechmann Oct 2010 B2
7837464 Marshall Nov 2010 B2
7837466 Griffith et al. Nov 2010 B2
7837467 Butscher Nov 2010 B2
7845938 Kim et al. Dec 2010 B2
7850451 Wiechmann Dec 2010 B2
7871267 Griffith et al. Jan 2011 B2
7878806 Lemchen Feb 2011 B2
7909603 Oda Mar 2011 B2
7950131 Hilliard May 2011 B2
7993133 Cinader, Jr. et al. Aug 2011 B2
8029275 Kesling Oct 2011 B2
8033824 Oda et al. Oct 2011 B2
8038444 Kitching et al. Oct 2011 B2
8047034 Butscher Nov 2011 B2
8057226 Wiechmann Nov 2011 B2
8070487 Chishti et al. Dec 2011 B2
8082769 Butscher Dec 2011 B2
8092215 Stone-Collonge et al. Jan 2012 B2
8102538 Babayoff Jan 2012 B2
8113828 Greenfield Feb 2012 B1
8113829 Sachdeva Feb 2012 B2
8121718 Rubbert Feb 2012 B2
8142187 Sporbert Mar 2012 B2
8152519 Dumas et al. Apr 2012 B1
8192196 Singh Jun 2012 B2
8192197 Sporbert Jun 2012 B2
8194067 Raby Jun 2012 B2
8220195 Maijer et al. Jul 2012 B2
8251699 Reising et al. Aug 2012 B2
8266940 Riemeir et al. Sep 2012 B2
8297970 Kanomi Oct 2012 B2
8308478 Primus et al. Nov 2012 B2
8313327 Won Nov 2012 B1
8359115 Kopelman et al. Jan 2013 B2
8363228 Babayoff Jan 2013 B2
8366440 Bathen Feb 2013 B2
8376739 Dupray Feb 2013 B2
8382917 Johnson Feb 2013 B2
8393896 Oda Mar 2013 B2
8417366 Getto Apr 2013 B2
8439671 Cinader, Jr. May 2013 B2
8451456 Babayoff May 2013 B2
8454364 Taub et al. Jun 2013 B2
8459988 Dumas Jun 2013 B2
8465279 Bathen Jun 2013 B2
8469704 Oda et al. Jun 2013 B2
8479393 Abels et al. Jul 2013 B2
8485816 Macchi Jul 2013 B2
D688803 Gilbert Aug 2013 S
8500445 Borri Aug 2013 B2
8517727 Raby et al. Aug 2013 B2
8545221 Sonte-collenge et al. Oct 2013 B2
8562337 Kuo et al. Oct 2013 B2
8573972 Matov et al. Nov 2013 B2
8591225 Wu et al. Nov 2013 B2
8591226 Griffith et al. Nov 2013 B2
8636505 Fornoff Jan 2014 B2
8638447 Babayoff et al. Jan 2014 B2
8638448 Babayoff et al. Jan 2014 B2
8675207 Babayoff Mar 2014 B2
8678818 Dupray Mar 2014 B2
8690568 Chapouland Apr 2014 B2
8708697 Li et al. Apr 2014 B2
8714972 Eichenberg May 2014 B2
8734149 Phan et al. May 2014 B2
8780106 Chishti et al. Jul 2014 B2
8805048 Batesole Aug 2014 B2
8805563 Kopelman et al. Aug 2014 B2
8807995 Kabbani et al. Aug 2014 B2
8827697 Cinader, Jr. et al. Sep 2014 B2
8845330 Taub et al. Sep 2014 B2
8871132 Abels et al. Oct 2014 B2
8931171 Abels et al. Jan 2015 B2
8932054 Rosenberg Jan 2015 B1
8936464 Kopelman Jan 2015 B2
8961172 Dupray Feb 2015 B2
8968365 Aschmann et al. Mar 2015 B2
8979528 Macchi Mar 2015 B2
8986004 Dumas Mar 2015 B2
8992215 Chapouland Mar 2015 B2
8998608 Imgrund et al. Apr 2015 B2
9022781 Kuo et al. May 2015 B2
9066775 Bukhary Jun 2015 B2
9089386 Hagelganz Jul 2015 B2
9101433 Babayoff Aug 2015 B2
9119689 Kabbani Sep 2015 B2
9127338 Johnson Sep 2015 B2
9144473 Aldo Sep 2015 B2
9204942 Phan et al. Dec 2015 B2
9299192 Kopelman Mar 2016 B2
9301815 Dumas Apr 2016 B2
9329675 Ojelund et al. May 2016 B2
9339352 Cinader et al. May 2016 B2
9402695 Curiel et al. Aug 2016 B2
9427291 Khoshnevis et al. Aug 2016 B2
9427916 Taub et al. Aug 2016 B2
9439737 Gonzales et al. Sep 2016 B2
9451873 Kopelman et al. Sep 2016 B1
9492246 Lin Nov 2016 B2
9498302 Patel Nov 2016 B1
D774193 Makmel et al. Dec 2016 S
9510757 Kopelman Dec 2016 B2
9517112 Hagelganz et al. Dec 2016 B2
9529970 Andreiko Dec 2016 B2
9539064 Abels et al. Jan 2017 B2
9554875 Gualano Jan 2017 B2
9566132 Stone-collonge et al. Feb 2017 B2
9566134 Hagelganz et al. Feb 2017 B2
9585733 Voudouris Mar 2017 B2
9585734 Lai et al. Mar 2017 B2
9610628 Riemeier Apr 2017 B2
9615901 Babyoff et al. Apr 2017 B2
9622834 Chapouland Apr 2017 B2
9629551 Fisker et al. Apr 2017 B2
9629694 Chun et al. Apr 2017 B2
9707056 Machata et al. Jul 2017 B2
9788917 Mah Oct 2017 B2
9814543 Huang et al. Nov 2017 B2
9844420 Cheang Dec 2017 B2
9848958 Matov et al. Dec 2017 B2
9867678 Macchi Jan 2018 B2
9867680 Damon Jan 2018 B2
9872741 Gualano Jan 2018 B2
9877804 Chester Jan 2018 B2
9877805 Abels et al. Jan 2018 B2
9925020 Jo Mar 2018 B2
9937018 Martz et al. Apr 2018 B2
9937020 Choi Apr 2018 B2
9962244 Esbech et al. May 2018 B2
9975294 Taub et al. May 2018 B2
9987105 Dupray Jun 2018 B2
10028804 Schulhof et al. Jul 2018 B2
10045834 Gualano Aug 2018 B2
10052177 Andreiko Aug 2018 B2
10058400 Abels et al. Aug 2018 B2
10058401 Tan Aug 2018 B2
10064706 Dickerson Sep 2018 B2
10070943 Fornoff Sep 2018 B2
10076780 Riemeier et al. Sep 2018 B2
10098709 Kitching et al. Oct 2018 B1
10130987 Riemeier et al. Nov 2018 B2
10136966 Reybrouck et al. Nov 2018 B2
10149738 Lee Dec 2018 B2
10179036 Lee Jan 2019 B2
10219877 Khoshnevis et al. Mar 2019 B2
10226312 Khoshnevis et al. Mar 2019 B2
10278791 Schumacher May 2019 B2
10278792 Wool May 2019 B2
10292789 Martz et al. May 2019 B2
10314673 Schulhof et al. Jun 2019 B2
10327867 Nikolskiy et al. Jun 2019 B2
10342640 Cassalia Jul 2019 B2
10368961 Paehl et al. Aug 2019 B2
10383707 Roein Peikar et al. Aug 2019 B2
D859663 Cetta et al. Sep 2019 S
10413386 Moon et al. Sep 2019 B2
10426575 Raslambekov Oct 2019 B1
10478271 Patel Nov 2019 B2
10485638 Salah Nov 2019 B2
10588717 Chun et al. Mar 2020 B2
10595966 Carrier, Jr. et al. Mar 2020 B2
10603137 Alauddin et al. Mar 2020 B2
10636522 Katzman et al. Apr 2020 B2
10639130 Blees et al. May 2020 B2
10639134 Shangjani et al. May 2020 B2
10717208 Raslambekov et al. Jul 2020 B1
10772706 Schumacher Sep 2020 B2
10806376 Lotan et al. Oct 2020 B2
10809697 Grapsas Oct 2020 B2
10828133 Tong et al. Nov 2020 B2
10849723 Yancey et al. Dec 2020 B1
10869738 Witte et al. Dec 2020 B2
10881489 Tong et al. Jan 2021 B2
10905527 Roein Peikar et al. Feb 2021 B2
10932887 Hung Mar 2021 B2
10952820 Song et al. Mar 2021 B2
10980614 Roein Peikar et al. Apr 2021 B2
10984549 Goncharov et al. Apr 2021 B2
10993782 Raslambekov May 2021 B1
10993785 Roein Peikar et al. May 2021 B2
11045281 Tsai et al. Jun 2021 B2
11058517 Tong et al. Jul 2021 B2
11058518 Roein Peikar et al. Jul 2021 B2
11058520 Khoshnevis et al. Jul 2021 B2
11072021 Riemeier et al. Jul 2021 B2
11083411 Yancey et al. Aug 2021 B2
11083546 Cassalia Aug 2021 B2
11103330 Webber et al. Aug 2021 B2
11129696 Khoshnevis et al. Sep 2021 B2
11147652 Mason et al. Oct 2021 B2
11229505 Schumacher et al. Jan 2022 B2
11304781 Chun et al. Apr 2022 B2
11317994 Peikar et al. May 2022 B2
11317995 Peikar et al. May 2022 B2
11324572 Peikar et al. May 2022 B2
11331165 Owen May 2022 B2
11337486 Oda et al. May 2022 B2
20010055741 Dixon et al. Dec 2001 A1
20020006597 Andreiko et al. Jan 2002 A1
20020010568 Rubbert et al. Jan 2002 A1
20020081546 Tricca et al. Jun 2002 A1
20020098460 Farzin-Nia Jul 2002 A1
20020192617 Phan Dec 2002 A1
20030049582 Abels et al. Mar 2003 A1
20030180689 Arx et al. Sep 2003 A1
20030194677 Sachdeva et al. Oct 2003 A1
20040048222 Forster et al. Mar 2004 A1
20040072120 Lauren Apr 2004 A1
20040083611 Rubbert et al. May 2004 A1
20040166459 Voudouris Aug 2004 A1
20040219471 Cleary et al. Nov 2004 A1
20050043837 Rubbert Feb 2005 A1
20050074716 Cleary et al. Apr 2005 A1
20050106529 Abolfathi et al. May 2005 A1
20050181332 Sernetz Aug 2005 A1
20050191592 Farzin-Nia et al. Sep 2005 A1
20050233276 Kopelman Oct 2005 A1
20050244780 Abels et al. Nov 2005 A1
20050244781 Abels et al. Nov 2005 A1
20050244790 Kuperman Nov 2005 A1
20060068354 Jeckel Mar 2006 A1
20060223021 Cinader et al. Oct 2006 A1
20060223031 Cinader, Jr. et al. Oct 2006 A1
20060257813 Highland Nov 2006 A1
20060257821 Cinader, Jr. et al. Nov 2006 A1
20070015103 Sorel Jan 2007 A1
20070031773 Scuzzo Feb 2007 A1
20070031775 Andreiko Feb 2007 A1
20070087302 Reising Apr 2007 A1
20070111154 Sampermans May 2007 A1
20070134611 Nicholson Jun 2007 A1
20070141525 Cinader, Jr. Jun 2007 A1
20070154859 Hilliard Jul 2007 A1
20070172788 Hill, II et al. Jul 2007 A1
20070190478 Goldberg et al. Aug 2007 A1
20070231768 Hutchinson Oct 2007 A1
20070287121 Cinader et al. Dec 2007 A1
20080032250 Kopelman et al. Feb 2008 A1
20080057460 Hicks Mar 2008 A1
20080063995 Farzin-Nia et al. Mar 2008 A1
20080160475 Rojas-Pardini Jul 2008 A1
20080199825 Jahn Aug 2008 A1
20080227049 Sevinc Sep 2008 A1
20080233530 Cinader Sep 2008 A1
20080248439 Griffith et al. Oct 2008 A1
20080254403 Hilliard Oct 2008 A1
20080286711 Corcoran et al. Nov 2008 A1
20080305450 Steen Dec 2008 A1
20090004619 Oda et al. Jan 2009 A1
20090042160 Ofir Feb 2009 A1
20090191502 Cao Jul 2009 A1
20090197217 Butscher et al. Aug 2009 A1
20090220907 Suyama Sep 2009 A1
20090220920 Primus et al. Sep 2009 A1
20100092903 Sabilla Apr 2010 A1
20100092905 Martin Apr 2010 A1
20100105000 Scommegna Apr 2010 A1
20100129765 Mohr et al. May 2010 A1
20100129766 Hilgers May 2010 A1
20100178628 Kim Jul 2010 A1
20100179789 Sachdeva et al. Jul 2010 A1
20100193979 Goldberg et al. Aug 2010 A1
20100279243 Cinader, Jr. et al. Nov 2010 A1
20100304321 Patel Dec 2010 A1
20110008745 McQuillan Jan 2011 A1
20110027743 Cinader, Jr. et al. Feb 2011 A1
20110059414 Hirsch Mar 2011 A1
20110091832 Kim et al. Apr 2011 A1
20110220612 Kim Sep 2011 A1
20110250556 Heiser Oct 2011 A1
20110270583 Getto et al. Nov 2011 A1
20110287376 Walther Nov 2011 A1
20110314891 Gilbert Dec 2011 A1
20120148972 Lewis Jun 2012 A1
20120208144 Chiaramonte Aug 2012 A1
20120315595 Beaudoin Dec 2012 A1
20120322019 Lewis Dec 2012 A1
20130065193 Curiel et al. Mar 2013 A1
20130122443 Huang et al. May 2013 A1
20130196281 Thornton Aug 2013 A1
20130196282 Eichelberger et al. Aug 2013 A1
20130315595 Barr Nov 2013 A1
20140120491 Khoshnevis et al. May 2014 A1
20140154637 Hansen et al. Jun 2014 A1
20140170586 Cantarella Jun 2014 A1
20140255864 Machata et al. Sep 2014 A1
20140287376 Hultgren et al. Sep 2014 A1
20150010879 Kurthy Jan 2015 A1
20150064641 Gardner Mar 2015 A1
20150072299 Alauddin et al. Mar 2015 A1
20150140501 Kim May 2015 A1
20150313687 Blees et al. Nov 2015 A1
20150351872 Jo Dec 2015 A1
20150359610 Gonzalez et al. Dec 2015 A1
20160074139 Machata et al. Mar 2016 A1
20160095670 Witte et al. Apr 2016 A1
20160106522 Kim Apr 2016 A1
20160166357 Portalupi Jun 2016 A1
20160175073 Huang Jun 2016 A1
20160206403 Ouellette Jul 2016 A1
20160228214 Sachdeva et al. Aug 2016 A1
20160242871 Morton Aug 2016 A1
20160270885 Kwon et al. Sep 2016 A1
20160278883 Fasci et al. Sep 2016 A1
20160287354 Viecilli et al. Oct 2016 A1
20160310239 Paehl et al. Oct 2016 A1
20160361141 Tong et al. Dec 2016 A1
20160361142 Tong et al. Dec 2016 A1
20160374780 Carrillo Gonzalez et al. Dec 2016 A1
20170086948 Von Mandach Mar 2017 A1
20170105817 Chun et al. Apr 2017 A1
20170128169 Lai et al. May 2017 A1
20170135793 Webber et al. May 2017 A1
20170151037 Lee Jun 2017 A1
20170156823 Roein et al. Jun 2017 A1
20170165532 Khan et al. Jun 2017 A1
20170196660 Lee Jul 2017 A1
20170224444 Viecilli et al. Aug 2017 A1
20170231721 Akeel et al. Aug 2017 A1
20170252140 Murphy Sep 2017 A1
20170281313 Kim Oct 2017 A1
20170281314 Freimuller Oct 2017 A1
20170296304 Tong et al. Oct 2017 A1
20170312052 Moss et al. Nov 2017 A1
20180014916 Cinader, Jr. et al. Jan 2018 A1
20180021108 Cinader, Jr. et al. Jan 2018 A1
20180049847 Oda et al. Feb 2018 A1
20180071057 Rudman Mar 2018 A1
20180110589 Gao Apr 2018 A1
20180132974 Rudman May 2018 A1
20180153651 Tong et al. Jun 2018 A1
20180185120 Wool Jul 2018 A1
20180185121 Pitts et al. Jul 2018 A1
20180214250 Martz Aug 2018 A1
20180221113 Tong et al. Aug 2018 A1
20180235437 Ozerov et al. Aug 2018 A1
20180303583 Tong et al. Oct 2018 A1
20180338564 Oda et al. Nov 2018 A1
20190001396 Riemeier et al. Jan 2019 A1
20190019187 Miller et al. Jan 2019 A1
20190090988 Schumacher et al. Mar 2019 A1
20190090989 Jo Mar 2019 A1
20190125494 Li et al. May 2019 A1
20190142551 Dickenson et al. May 2019 A1
20190159871 Chan May 2019 A1
20190163060 Skamser et al. May 2019 A1
20190175304 Morton Jun 2019 A1
20190231488 Dickerson Aug 2019 A1
20190247147 Grande et al. Aug 2019 A1
20190252065 Katzman et al. Aug 2019 A1
20190321136 Martz et al. Oct 2019 A1
20190321138 Peikar et al. Oct 2019 A1
20190328491 Hostettler et al. Oct 2019 A1
20190343606 Wu et al. Nov 2019 A1
20190350682 Cinader, Jr. et al. Nov 2019 A1
20190365507 Khoshnevis et al. Dec 2019 A1
20200000551 Li et al. Jan 2020 A1
20200066391 Sachdeva et al. Feb 2020 A1
20200107911 Roein Peikar et al. Apr 2020 A1
20200129272 Roein Peikar et al. Apr 2020 A1
20200138549 Chun et al. May 2020 A1
20200146779 Zhang May 2020 A1
20200146791 Schülke et al. May 2020 A1
20200188063 Cinader, Jr. et al. Jun 2020 A1
20200229903 Sandwick Jul 2020 A1
20200275996 Tong et al. Sep 2020 A1
20200345455 Peikar et al. Nov 2020 A1
20200345459 Schueller et al. Nov 2020 A1
20200345460 Peikar et al. Nov 2020 A1
20200352765 Lin Nov 2020 A1
20200375699 Roein Peikar et al. Dec 2020 A1
20200390524 Peikar et al. Dec 2020 A1
20200405191 Lotan et al. Dec 2020 A1
20200405452 Song et al. Dec 2020 A1
20210007830 Peikar et al. Jan 2021 A1
20210007832 Roein Peikar et al. Jan 2021 A1
20210068928 Witte et al. Mar 2021 A1
20210093422 Tong et al. Apr 2021 A1
20210128275 Suh et al. May 2021 A1
20210134450 Katzman et al. May 2021 A1
20210137644 Benarouch et al. May 2021 A1
20210145547 Roein Peikar et al. May 2021 A1
20210177551 Roein Peikar et al. Jun 2021 A1
20210186662 Roein Peikar et al. Jun 2021 A1
20210205049 Cinader, Jr. Jul 2021 A1
20210212803 Tong et al. Jul 2021 A1
20210244505 Tong et al. Aug 2021 A1
20210244507 Curiel et al. Aug 2021 A1
20210251730 Curiel et al. Aug 2021 A1
20210330430 Khoshnevis et al. Oct 2021 A1
20210338380 Park et al. Nov 2021 A1
20210346127 Cassalia Nov 2021 A1
20210353389 Peikar et al. Nov 2021 A1
20210401548 Oda et al. Dec 2021 A1
20220008169 Reisman Jan 2022 A1
20220023009 Tong et al. Jan 2022 A1
20220031428 Khoshnevis et al. Feb 2022 A1
20220039922 Yamaguchi Feb 2022 A1
20220061964 Khoshnevis et al. Mar 2022 A1
20220087783 Khoshnevis et al. Mar 2022 A1
20220133438 Wratten, Jr. et al. May 2022 A1
20220168072 Tong et al. Jun 2022 A1
20220183797 Khoshnevis et al. Jun 2022 A1
20220226076 Roein Peikar et al. Jul 2022 A1
20220226077 Roein Peikar et al. Jul 2022 A1
Foreign Referenced Citations (82)
Number Date Country
1372872 Oct 2002 CN
201079455 Jul 2008 CN
201320224 Oct 2009 CN
102215773 Oct 2011 CN
202365955 Aug 2012 CN
202892116 Apr 2013 CN
203074896 Jul 2013 CN
103505293 Jan 2014 CN
203506900 Apr 2014 CN
104188728 Dec 2014 CN
204049881 Dec 2014 CN
205126459 Apr 2016 CN
105596098 May 2016 CN
105662615 Jun 2016 CN
205569100 Sep 2016 CN
106029002 Oct 2016 CN
106137419 Nov 2016 CN
3915807 Nov 1990 DE
20 2018 003 574 Aug 2018 DE
10 2018 005 769 Jan 2020 DE
10 2018 133 705 Jul 2020 DE
10 2015 017 301 Mar 2022 DE
1139902 Oct 2001 EP
1276433 Jan 2003 EP
1 379 193 Feb 2007 EP
2076207 Jul 2009 EP
1 073 378 Jan 2012 EP
2522298 Nov 2012 EP
2617383 Jul 2013 EP
2315046 Apr 2010 ES
2 525 469 Oct 1983 FR
3 056 393 Oct 2018 FR
2009205330 Sep 2009 JP
100549294 Jan 2006 KR
100737442 Jul 2007 KR
100925286 May 2009 KR
101583547 Jan 2016 KR
101584737 Jan 2016 KR
101723674 Apr 2017 KR
133408 Oct 2013 RU
WO 0180761 Nov 2001 WO
WO 0185047 Nov 2001 WO
WO 03045266 Jun 2003 WO
WO 2005008441 Jan 2005 WO
WO 2005094716 Oct 2005 WO
WO 2007069286 Jun 2007 WO
WO 2008051774 May 2008 WO
WO 2011034522 Mar 2011 WO
WO 2011090502 Jul 2011 WO
WO 2011103669 Sep 2011 WO
WO 2012089735 Jul 2012 WO
WO 2012140021 Oct 2012 WO
WO 2013019398 Feb 2013 WO
WO 2014070920 May 2014 WO
WO 2016148961 Sep 2016 WO
WO 2016149008 Sep 2016 WO
WO 2016199972 Dec 2016 WO
WO 2016210402 Dec 2016 WO
WO 2017007079 Jan 2017 WO
WO 2017112004 Jun 2017 WO
WO 2017184632 Oct 2017 WO
WO 2017194478 Nov 2017 WO
WO 2017198640 Nov 2017 WO
WO 2018102588 Jun 2018 WO
WO 2018122862 Jul 2018 WO
WO 2018144634 Aug 2018 WO
WO 2018195356 Oct 2018 WO
WO 2019135504 Jul 2019 WO
WO 2020095182 May 2020 WO
WO 2020178353 Sep 2020 WO
WO 2020180740 Sep 2020 WO
WO 2020223744 Nov 2020 WO
WO 2020223745 Nov 2020 WO
WO 2021087158 May 2021 WO
WO 2021105878 Jun 2021 WO
WO 2021214613 Oct 2021 WO
WO 2021225916 Nov 2021 WO
WO 2021226618 Nov 2021 WO
WO 2021225916 Dec 2021 WO
WO 2021252675 Dec 2021 WO
WO 2022099263 May 2022 WO
WO 2022099267 May 2022 WO
Non-Patent Literature Citations (22)
Entry
U.S. Appl. No. 15/249,262, filed Aug. 26, 2016, Tong et al.
Coro, Jorge C et al., “MEAW Therapy” MEAW Therapy-Orthodontic Products, accessed via http://www.orthodonticproductsonline.com/2012/11/meaw-therapy/on Mar. 14, 2016, published Nov. 12, 2012 in 6 pages.
ElSheikh, Moaaz Mohamed, et al. “A Forsus Distalizer: a Pilot Typodont Study”. Jul.-Dec. 2004, KDJ, vol. 7, No. 2, pp. 107-115.
EP Search Report dated Jun. 23, 2016 in EP application No. 13850778.5 in 5 pages.
Gilbert, Alfredo. An in-office wire-bending robot for lingual orthodontics. ResearchGate. Article in Journal of clinical orthodontics: JCO, Apr. 2011.
Glauser-Williams Orthodontics: Appliances, http://www.glauserwilliamsorthodontics.com/treatments/orthodontic-appliances.php, accessed Nov. 30, 2015 in 4 pages.
Jiang et al. Bending Process Analysis and Structure Design of Orthodontic Archwire Bending Robot. International Journal of Smart Home. vol. 7, No. 5 (2013), pp. 345-352. http://dx.doi.org/10.14257/ijsh.2013.7.5.33.
Jiang et al. A Review on Robot in Prosthodontics and Orthodontics. Hindawi Publishing Corporation. Advances in Mechanical Engineering. Article ID 198748. 2014. 11 pages.
Mahony, Derek, “How We Got From There to Here and Back”. Dental Learning Hub (Capture of web page dated Jun. 24, 2013 downloaded from http://web.archive.org/web/20130624145806/http://www.dental-learninghub.com/Clinical/Orthodontics.aspx, downloaded Feb. 7, 2014).
Miller, R.J. et al. “Validation of Align Technology's Treat III™ Digital Model Superimposition Tool and Its Case Application”. Orthodontic Craniofacial Res.,2003, vol. 6 (Suppl 1): pp. 143-149.
SureSmile. 2013. About SureSmile. (Capture of web page dated Jun. 21, 2013 downloaded from http://web.archive.org/web/20130621031404/http://suresmile.com/About-SureSmile, downloaded Feb. 7, 2014).
Xia, et al. Development of a Robotic System for Orthodontic Archwire Bending. 2016 IEEE International Conference on Robotics and Automation (ICRA). Stockholm, Sweden, May 16-21, 2016. pp. 730-735.
Yang, Won-Sik, et al. “A Study of the Regional Load Deflection Rate of Multiloop Edgewise Arch Wire.” Angle Orthodontist, 2001, vol. 7, No. 2, pp. 103-109.
International Search Report for International Application No. PCT/US2013/067560 dated Feb. 14, 2014.
International Search Report for International Application No. PCT/US2017/028180 dated Aug. 14, 2017.
International Search Report and Written Opinion for International Application No. PCT/US 2017/064021 dated Mar. 6, 2018.
International Search Report for International Application No. PCT/US2018/016293 dated May 10, 2018.
International Search Report for International Application No. PCT/US2018/028437 dated Aug. 9, 2018.
IPhone 3D scanning to dental software, screen shots at 0:09 and 7:00 of YouTube video, https://www.youtube.com/watch?v=QONGdQ3QiFE, uploaded Oct. 1, 2018 in 2 pages.
Invisalign® SmileView™, How Would You Look with Straight Teeth?, https://www.invisalign.com/get-started/invisalign-smiieview?v=0#start, printed Jun. 7, 2022 in 2 pages.
A ScanBox demo, https://www.youtube.com/watch?v=MsCfv2PDQOo, screen shots at 0:08 and 0:19 of YouTube video, uploaded May 5, 2019 in 2 pages.
Southern Maine Orthodontics, Virtual Orthodontic Treatment, https://southernmainebraces.com/virtual-orthodontic-treatment/, printed Jun. 7, 2022 in 3 pages.
Provisional Applications (1)
Number Date Country
62480168 Mar 2017 US