Related subject matter is disclosed in co-pending, commonly-assigned, patent application Ser. No. 12/088,047, filed Jun. 12, 2008 and titled “METHOD FOR MAKING A THIN-FILM ELEMENT” to Deguet et al.
This application is a U.S. nationalization of PCT Application No. PCT/FR2006/001945, filed Aug. 11, 2006, and claims priority to French Patent Application No. 0508555, filed Aug. 16, 2005.
The invention concerns a method of transferring a thin film, such as a layer with a thickness typically less than 1 μm, onto a support.
In the context of the production of stacked structures that are formed, in particular thin layers carried by a support (for example a substrate), it has already been proposed to transfer a thin layer onto the substrate by means of a method that comprises the following main steps:
the formation of a weakened zone at a given depth in a substrate consisting of the material that is to form the thin layer, for example by implantation of a gas at that depth;
the bonding of the implanted substrate (referred to as the donor substrate) onto the support, for example by molecular bonding; and
the separation of the donor substrate amputated from the thin layer (situated between the weakened zone and the initial surface of the donor substrate) and the support, which then carries the thin layer, by fracture (generally during a heat treatment step, usually between 200° C. and 600° C.) in the previously weakened zone.
This kind of solution is described in French patent application No. FR 2 681 472, for example; it is used, for example, to deposit a thin layer of silicon onto a support consisting of a silicon substrate covered with a thin layer of insulative silicon oxide (SiO2) in order to obtain an SOI (Silicon-On-Insulator) type structure.
Although the method described briefly hereinabove can be applied as such in the situation that has just been referred to, certain problems can arise in the conventional application of this method in different contexts, for example if the donor substrate and the support have very different mechanical characteristics.
This is the case in particular if it is required to replace the thin layer of silicon with a thin layer of germanium (Ge) that has certain advantageous electronic properties (such as the mobility of the electrical carriers, which improves the performance of circuits produced on germanium).
The production of this kind of structure (referred to as GeOI, standing for Germanium-On-Insulator) by means of the method previously referred to is, for example, the subject of the paper “Germanium-On-Insulator (GeOI) Structure Realized by the Smart Cut™ Technology”, F. Letertre et al., in MRS proceedings, 809 B4.4 (2004).
In this instance, the conventional application of the thin layer transfer method referred to hereinabove leads to bonding a silicon substrate onto a substrate implanted with germanium, with a view to their separation, in the zone weakened by implantation, by heat treatment. This solution is problematic, however, because of the large difference between the coefficients of thermal expansion of the two materials used (2.6×10−6/° C. for silicon and 5.8×10−6/° C. for germanium). The sudden releasing, at the moment of fracture, of the stresses stored in the structure can cause one or even both substrates to break.
The paper referred to above also proposes carrying out implantation in a layer of germanium, the thickness of which can vary from one micron to a few microns and which is formed epitaxially on the surface of a standard silicon substrate (750 μm thick). The structure subjected to the separation heat treatment therefore behaves as a homostructure because of the small thickness of the germanium compared to the thickness of the two silicon substrates.
This latter solution is nevertheless less advantageous from the electronic point of view because of the high number of dislocations and greater roughness in the epitaxial germanium.
Another known solution for producing a structure including a layer of a first material on a substrate of a second material is, after assembly of a substrate of the first material with the substrate of the second material, to carry out chemical-mechanical thinning of the substrate in the first material. However, this technique cannot be used to obtain layers with a thickness of the order of one micron with a thickness of good homogeneity. Using this technique, the greater the thinning, the less homogeneous the thickness of the residual layer.
To solve these various problems, and to propose a solution that combines in particular simple implementation, high mechanical strength during the fracture heat treatment, and good electrical crystalline properties of the structure obtained, the invention provides a method for transferring a thin layer of a first material onto a first support formed of a second material, characterized by the following steps:
providing a structure including a layer at least part of which comes from a bulk substrate of the first material and which is attached to a second support formed of a third material having a coefficient of thermal expansion different from that of the first material and close to that of the second material;
forming in the layer a buried weakened zone at a given depth delimiting in the structure the thin layer to be transferred;
bonding the layer attached to the second support to the first support; and
fracturing the layer in the weakened zone, including at least one heat treatment step.
In this kind of method, the second support provides good mechanical cooperation with the first support (similar temperature-related changes to the second and third materials), independently of the material of the thin layer to be transferred (first material).
The thickness of the layer is preferably such that the mechanical behavior as a function of temperature of the structure obtained after bonding is imposed by the second support and the first support. The layer is then sufficiently thin not to be involved in the mechanical temperature behavior of the structure obtained after bonding. The fracture step therefore takes place under good conditions whatever the nature of this material, so that the material can be chosen freely, for example for its electrical properties.
According to the invention, the materials and the thicknesses used, and in particular the thickness of the layer of the first material, are chosen so that the release of the stresses stored in the structure at the moment of fracture does not cause either of the structures obtained after fracture to break.
The fracture step can also include a step of applying mechanical loads: mechanical forces (insertion of a blade, traction and/or bending and/or shear forces) and/or ultrasound or microwaves; the step of forming a weakened zone can be carried out by implantation of one or more gaseous species.
The coefficient of thermal expansion of the first material differs from the coefficient of thermal expansion of each of the second and third materials by at least 10%, for example.
The coefficient of thermal expansion of the second material can be chosen to differ by less than 10% from the coefficient of thermal expansion of the third material. The structure obtained after bonding can then be considered to constitute a homostructure. The second material is identical to the third material, for example.
The thickness of the layer attached to the second support is less than 15% of the thickness of the second support, for example, which prevents any significant mechanical impact of this layer on the structure resulting from the bonding step, and in particular limits the elastic energy stored in this structure during heat treatment. This thickness must of course be chosen as a function of the difference between the coefficients of thermal expansion existing in the structure and the temperature that the structure must be able to withstand. The lower this temperature, the thicker the layer attached to the second support can be. Similarly, the smaller the coefficient of thermal expansion difference, the greater this thickness can be.
The second material is silicon, for example. The first material can be germanium.
The thickness of the layer of the first material (before fracture) is between 1 μm and 50 μm, for example.
In an embodiment described hereinafter, the method can include a preliminary step of bonding a solid plate of the first material to the second support, for example at raised temperature (typically between 100° C. and 200° C.). In this case, the layer obtained from the plate and attached to the second support can be obtained by a step of thinning the plate of the first material, for example by chemical-mechanical thinning (which can be effected by a method known as grinding, followed by polishing).
The method can also include a step of epitaxial deposition of the first material onto a portion of the layer (residual layer) remaining attached to the second support after fracture. The crystalline quality of the residual layer being good, that of the epitaxially deposited layer will also be good.
Thus the epitaxially deposited layer can be used for further thin film transfer, for example by means of the following steps:
forming a buried weakened zone in the epitaxial layer;
bonding the epitaxial layer onto a third support; and
fracturing the epitaxial layer in the weakened zone.
In one possible implementation of the method, the layer attached to the second support is obtained entirely from the bulk substrate. This ensures that the whole of the layer is of very good crystalline quality.
In another possible implementation, the layer attached to the second support includes an epitaxial layer of the first material. As already indicated, this enables continued transfer of thin layers based on a residual layer at the same time as retaining good crystalline quality by virtue of the portion obtained from the bulk substrate.
In this case the layer attached to the second support can also include an epitaxial layer of a fourth material the thickness of which is such that its crystalline structure is imparted by the first material. This layer can then be used for other functions, without calling into question the crystalline quality of the layers of the first material.
For example, the method can include a step of elimination of the epitaxial layer of the first material after fracture using the epitaxial layer of the fourth material as a stop layer.
Other features and advantages of the present invention will become apparent in the light of the following description, given with reference to the appended drawings, in which
In these figures, the various layers are shown with diagrammatic thicknesses, not directly proportional to reality, in order to clarify their description.
The various steps of one example of a method according to the invention are described next with reference to these figures.
This example uses a plate 2 of bulk germanium (which therefore has good crystalline electrical properties), here with a typical diameter of 200 mm and a thickness of 750 μm, on which a surface layer 4 of silicon oxide (SiO2) has been deposited, for example by PECVD (Plasma Enhanced Chemical Vapor Deposition) using SiH4 chemistry at 380° C., as represented in
A germanium plate 2 with no surface layer, or with one or more surface layers of a different kind, could be used instead.
The silicon oxide layer 4 can be prepared by densification (for example in nitrogen at 600° C. for one hour). The germanium plate 2—silicon oxide layer 4 structure is then prepared for the bonding described hereinafter, for example by chemical cleaning and/or chemical-mechanical polishing for hydrophilic type bonding.
This structure represented in
The assembly of the germanium plate 2 on the silicon substrate 6 (where applicable with interposed silicon oxide layers 4, 8) is represented during bonding in
This bonding can be consolidated in an oven, for example at 200° C. for two hours.
This bonding can advantageously be carried out at raised temperature, for example between 100° C. and 200° C., which generates stresses in the structure that can compensate some of the stresses generated by subsequent heat treatments and in particular the fracture heat treatment, thereby reducing the risk of breakage.
The germanium plate 2 is then thinned, preferably by the combination of grinding followed by chemical-mechanical polishing and where appropriate, chemical etching (polishing producing a good final roughness and chemical etching removing the defects created by grinding). Other thinning techniques could be used, provided that they guarantee the integrity of the structure (in particular provided that they do not necessitate too high a temperature increase of the structure).
The final thickness of germanium must be such that the mechanical behavior of the germanium/silicon assembly is essentially dictated by the silicon 6, so that the mechanical behavior of the assembly as a function of temperature is like that of a homostructure, to be more precise so that the elastic energy stored in the structure during subsequent heat treatments, and in particular during the fracture heat treatment (and even more particularly at the moment of fracture of the structure) does not lead to the structure breaking. A thickness of 1 μm to 50 μm, for example 20 μm, is typically chosen for this germanium layer.
The structure represented in
Because of the process used to produce it, the roughness and the crystalline structure of the thinned germanium layer 3 are close to those of a bulk germanium substrate and the crystalline and electrical properties of the thin layers formed as described hereinafter from the thinned layer 3 of germanium are therefore particularly good.
As explained hereinafter, the reduced thickness of the thinned germanium layer 3 and its bonding to the silicon substrate 6 forming a support nevertheless produce a structure having a different mechanical behavior than a bulk germanium substrate, which will be advantageous when used in the separation step described hereinafter.
What is more, because of the higher thermal conductivity of silicon than germanium, this (germanium/silicon) structure shows better evacuation of heat during subsequent technology steps than the solution using a germanium substrate.
The structure represented in
Before bonding to the support that is to receive the thin layer (essentially a silicon substrate in the example described here), the structure produced beforehand and represented in
depositing a layer of silicon dioxide (SiO2), for example by PECVD, as before;
optional densification of the silicon oxide layer in nitrogen at between 400° C. and 600° C. for one hour; and
cleaning and/or chemical-mechanical polishing (to improve compatibility with hydrophilic bonding).
Alternatively, it is of course possible not to deposit any oxide and to prepare the germanium surface directly for bonding it to the support that is to receive the thin layer.
A weakened zone 14 is produced in the thinned germanium layer 3, at a depth that corresponds to the thickness of the thin film to be transferred (generally of the order of a few hundred nanometers, for example between a few tens of nanometers and 1000 nm), for example by implantation of gaseous species, here hydrogen ions (H+), with an energy between a few keV and 250 keV and at a dosage rate between 3.1016 and 7.1016 H+/cm2; typically, with an implantation energy of 100 kev and a dosage rate of 5.1016 H+/cm2, an implantation depth of approximately 700 nm is obtained.
The implantation step is carried out after formation of the silicon oxide layer (SiO2) layer and before cleaning the surface, for example.
After this implantation step, and where applicable these preparation steps, the donor structure is therefore as shown in
That structure is then bonded (by the silicon oxide layer 12 deposited on the thinned germanium layer 3, i.e. the surface that has been subjected to implantation), for example by hydrophilic bonding to the support onto which the thin layer is to be transferred, consisting here primarily of a silicon substrate 18 (generally of the order of 750 μm thick for a substrate of 200 mm thickness), covered by a silicon oxide (SiO2) layer 16.
The assembly represented in
This separates the support formed by the silicon substrate 18 covered by the silicon oxide layer 16, which henceforth carries a thin layer 22 of germanium (coming from the thinned layer 3), and the donor structure peeled off this transferred thin layer, as represented in
Because the thinned germanium layer 3 is thin compared to the silicon substrates 6, 18 (shown diagrammatically in the figures, in practice in a ratio of the order of at least 1 to 10) and the mechanical compatibility (here in terms of thermal expansion) of the two substrates 6, 18 (here made from the same material), the assembly referred to hereinabove (and represented in
The release of the elastic energy stored in the structure at the moment of fracture is controlled and does not lead to breakage of the structures obtained after fracture.
After the step of fracturing the weakened zone (and consequently separation of the
There is therefore obtained, where applicable after finishing treatments of the polishing and thermal annealing type, a plate of GeOI (i.e. of germanium on insulator) with electrical properties of the germanium layer that are particularly beneficial.
The donor structure, consisting mainly of the silicon substrate 6 and the residual germanium layer 20 (thinned germanium layer 3 peeled from the thin layer 22), can then be recycled (for example by grinding and/or polishing techniques) in order to be used again as a donor structure for the transfer of a new thin layer of germanium, in this case obtained from the residual layer 20 (this is because, even when peeled from the thin layer 22, the donor structure is essentially constituted as it was beforehand, and represented in
According to one advantageous implementation possibility, the thinned layer 3 or the residual layer 20 of germanium of the donor structure can serve as a seed for the epitaxial growth of germanium on that structure. Because of the crystalline quality of the thinned (or residual) layer, the crystalline quality of this epitaxial layer will be close to that of a bulk germanium substrate. The thin layer transfer process can therefore be repeated using the epitaxial layer.
Alternatively, there can be produced epitaxially (on the thinned layer 3 or the residual layer 20) successively and iteratively germanium (to a thickness of a few microns, for example 2 μm) and silicon (typically to a thickness of a few nanometers) to form an alternating stack of silicon and germanium.
The epitaxial silicon layers are so thin that the germanium imposes its lattice parameter so that good crystalline quality is maintained in the epitaxial germanium layer.
On the other hand, the combined thickness of the epitaxial layers and the initial germanium layer 3, 20 must remain sufficiently small for the mechanical behavior as a function of temperature of the structure obtained to be imposed by the silicon substrate.
This variant can use the thin silicon layer as a stop layer during successive transfers.
The following process can also be used:
implantation is effected in the epitaxial layer of germanium situated on top of the stack (exterior layer) to define in that layer the thin film to be transferred;
the thin film is transferred as indicated hereinabove;
the rest of the exterior germanium layer is eliminated by selective etching (for example H2O2 etching);
the silicon stop layer is then eliminated by selective etching (for example using TMAH—tetramethylammonium hydroxide); and
the process is repeated on the next germanium layer.
This method avoids the use of polishing after fracture and therefore the non-homogeneous thickness that usually results.
The examples that have just been described constitute only possible embodiments of the inventions which is not limited to them.
Number | Date | Country | Kind |
---|---|---|---|
05 08555 | Aug 2005 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FR2006/001945 | 8/11/2006 | WO | 00 | 3/25/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/020351 | 2/22/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3901423 | Hillberry et al. | Aug 1975 | A |
3915757 | Engel | Oct 1975 | A |
3957107 | Altoz et al. | May 1976 | A |
3993909 | Drews et al. | Nov 1976 | A |
4006340 | Gorinas | Feb 1977 | A |
4028149 | Deines et al. | Jun 1977 | A |
4039416 | White | Aug 1977 | A |
4074139 | Pankove | Feb 1978 | A |
4107350 | Berg et al. | Aug 1978 | A |
4108751 | King | Aug 1978 | A |
4121334 | Wallis | Oct 1978 | A |
4170662 | Weiss et al. | Oct 1979 | A |
4179324 | Kirkpatrick | Dec 1979 | A |
4244348 | Wilkes | Jan 1981 | A |
4252837 | Auton | Feb 1981 | A |
4254590 | Eisele et al. | Mar 1981 | A |
4274004 | Kanai | Jun 1981 | A |
4324631 | Meckel et al. | Apr 1982 | A |
4346123 | Kaufmann | Aug 1982 | A |
4361600 | Brown | Nov 1982 | A |
4368083 | Bruel et al. | Jan 1983 | A |
4412868 | Brown et al. | Nov 1983 | A |
4452644 | Bruel et al. | Jun 1984 | A |
4468309 | White | Aug 1984 | A |
4471003 | Cann | Sep 1984 | A |
4486247 | Ecer et al. | Dec 1984 | A |
4490190 | Speri | Dec 1984 | A |
4500563 | Ellenberger et al. | Feb 1985 | A |
4508056 | Bruel et al. | Apr 1985 | A |
4536657 | Bruel | Aug 1985 | A |
4539050 | Kramler et al. | Sep 1985 | A |
4542863 | Larson | Sep 1985 | A |
4566403 | Fournier | Jan 1986 | A |
4567505 | Pease | Jan 1986 | A |
4568563 | Jackson et al. | Feb 1986 | A |
4585945 | Bruel et al. | Apr 1986 | A |
4630093 | Yamaguchi et al. | Dec 1986 | A |
4684535 | Heinecke et al. | Aug 1987 | A |
4704302 | Bruel et al. | Nov 1987 | A |
4717683 | Parrillo et al. | Jan 1988 | A |
4764394 | Conrad | Aug 1988 | A |
4837172 | Mizuno et al. | Jun 1989 | A |
4846928 | Dolins et al. | Jul 1989 | A |
4847792 | Barna et al. | Jul 1989 | A |
4853250 | Boulos et al. | Aug 1989 | A |
4887005 | Rough et al. | Dec 1989 | A |
4891329 | Reisman et al. | Jan 1990 | A |
4894709 | Phillips et al. | Jan 1990 | A |
4904610 | Shyr | Feb 1990 | A |
4920396 | Shinohara et al. | Apr 1990 | A |
4929566 | Beitman | May 1990 | A |
4931405 | Kamijo et al. | Jun 1990 | A |
4948458 | Ogle | Aug 1990 | A |
4952273 | Popov | Aug 1990 | A |
4956698 | Wang | Sep 1990 | A |
4960073 | Suzuki et al. | Oct 1990 | A |
4975126 | Margail et al. | Dec 1990 | A |
4982090 | Wittmaack | Jan 1991 | A |
4996077 | Moslehi et al. | Feb 1991 | A |
5013681 | Godbey et al. | May 1991 | A |
5015353 | Hubler et al. | May 1991 | A |
5034343 | Rouse et al. | Jul 1991 | A |
5036023 | Dautremont-Smith et al. | Jul 1991 | A |
5110748 | Sarma | May 1992 | A |
5120666 | Gotou | Jun 1992 | A |
5138422 | Fujii et al. | Aug 1992 | A |
5198371 | Li | Mar 1993 | A |
5200805 | Parsons et al. | Apr 1993 | A |
5232870 | Ito et al. | Aug 1993 | A |
5234535 | Beyer et al. | Aug 1993 | A |
5242863 | Xiang-Zheng et al. | Sep 1993 | A |
5250446 | Osawa et al. | Oct 1993 | A |
5256581 | Foerstner et al. | Oct 1993 | A |
5259247 | Bantien | Nov 1993 | A |
5300788 | Fan et al. | Apr 1994 | A |
5310446 | Konishi et al. | May 1994 | A |
5374564 | Bruel | Dec 1994 | A |
5400458 | Rambosek | Mar 1995 | A |
5405802 | Yamagata et al. | Apr 1995 | A |
5413951 | Ohori et al. | May 1995 | A |
5442205 | Brasen et al. | Aug 1995 | A |
5494835 | Bruel | Feb 1996 | A |
5524339 | Gorowitz et al. | Jun 1996 | A |
5539241 | Abidi et al. | Jul 1996 | A |
5559043 | Bruel | Sep 1996 | A |
5567654 | Beilstein, Jr. et al. | Oct 1996 | A |
5611316 | Oshima et al. | Mar 1997 | A |
5618739 | Takahashi et al. | Apr 1997 | A |
5622896 | Knotter et al. | Apr 1997 | A |
5633174 | Li | May 1997 | A |
5661333 | Bruel et al. | Aug 1997 | A |
5714395 | Bruel | Feb 1998 | A |
5741733 | Bertagnolli et al. | Apr 1998 | A |
5753038 | Vichr et al. | May 1998 | A |
5804086 | Bruel | Sep 1998 | A |
5811348 | Matsushita et al. | Sep 1998 | A |
5817368 | Hashimoto | Oct 1998 | A |
5854123 | Sato et al. | Dec 1998 | A |
5863830 | Bruel et al. | Jan 1999 | A |
5863832 | Doyle et al. | Jan 1999 | A |
5877070 | Goesele et al. | Mar 1999 | A |
5880010 | Davidson | Mar 1999 | A |
5882987 | Srikrishnan | Mar 1999 | A |
5897331 | Sopori | Apr 1999 | A |
5909627 | Egloff | Jun 1999 | A |
5920764 | Hanson et al. | Jul 1999 | A |
5953622 | Lee et al. | Sep 1999 | A |
5966620 | Sakaguchi et al. | Oct 1999 | A |
5981400 | Lo | Nov 1999 | A |
5985412 | Gösele | Nov 1999 | A |
5993677 | Biasse et al. | Nov 1999 | A |
5994207 | Henley et al. | Nov 1999 | A |
6010591 | Gösele | Jan 2000 | A |
6013563 | Henley et al. | Jan 2000 | A |
6013954 | Hamajima | Jan 2000 | A |
6020252 | Aspar et al. | Feb 2000 | A |
6033974 | Henley et al. | Mar 2000 | A |
6048411 | Henley et al. | Apr 2000 | A |
6054363 | Sakaguchi et al. | Apr 2000 | A |
6054370 | Doyle | Apr 2000 | A |
6057212 | Chan et al. | May 2000 | A |
6071795 | Cheung et al. | Jun 2000 | A |
6080640 | Gardner et al. | Jun 2000 | A |
6096433 | Kikuchi et al. | Aug 2000 | A |
6103597 | Aspar et al. | Aug 2000 | A |
6103599 | Henley et al. | Aug 2000 | A |
6118181 | Merchant et al. | Sep 2000 | A |
6127199 | Inoue | Oct 2000 | A |
6146979 | Henley et al. | Nov 2000 | A |
6150239 | Goesele et al. | Nov 2000 | A |
6156215 | Shimada et al. | Dec 2000 | A |
6159323 | Joly et al. | Dec 2000 | A |
6190998 | Bruel et al. | Feb 2001 | B1 |
6197695 | Joly et al. | Mar 2001 | B1 |
6198159 | Hosoma et al. | Mar 2001 | B1 |
6200878 | Yamagata et al. | Mar 2001 | B1 |
6204079 | Aspar et al. | Mar 2001 | B1 |
6225190 | Bruel et al. | May 2001 | B1 |
6225192 | Aspar et al. | May 2001 | B1 |
6251754 | Ohshima et al. | Jun 2001 | B1 |
6271101 | Fukunaga | Aug 2001 | B1 |
6276345 | Nelson et al. | Aug 2001 | B1 |
6287940 | Cole et al. | Sep 2001 | B1 |
6294478 | Sakaguchi et al. | Sep 2001 | B1 |
6303468 | Aspar et al. | Oct 2001 | B1 |
6306720 | Ding | Oct 2001 | B1 |
6310387 | Seefeldt et al. | Oct 2001 | B1 |
6316333 | Bruel et al. | Nov 2001 | B1 |
6323108 | Kub et al. | Nov 2001 | B1 |
6323109 | Okonogi | Nov 2001 | B1 |
6346458 | Bower | Feb 2002 | B1 |
6362077 | Aspar et al. | Mar 2002 | B1 |
6362082 | Doyle et al. | Mar 2002 | B1 |
6407929 | Hale et al. | Jun 2002 | B1 |
6417075 | Haberger et al. | Jul 2002 | B1 |
6429094 | Maleville et al. | Aug 2002 | B1 |
6429104 | Auberton-Herve | Aug 2002 | B1 |
6465892 | Suga | Oct 2002 | B1 |
6504235 | Schmitz et al. | Jan 2003 | B2 |
6513564 | Bryan et al. | Feb 2003 | B2 |
6529646 | Wight et al. | Mar 2003 | B1 |
6534380 | Yamauchi et al. | Mar 2003 | B1 |
6548375 | De Los Santos et al. | Apr 2003 | B1 |
6593212 | Kub et al. | Jul 2003 | B1 |
6596569 | Bao et al. | Jul 2003 | B1 |
6607969 | Kub et al. | Aug 2003 | B1 |
6632082 | Smith | Oct 2003 | B1 |
6645831 | Shaheen et al. | Nov 2003 | B1 |
6645833 | Brendel | Nov 2003 | B2 |
6653207 | Ohya et al. | Nov 2003 | B2 |
6727549 | Doyle | Apr 2004 | B1 |
6756285 | Cartier et al. | Jun 2004 | B1 |
6756286 | Aspar et al. | Jun 2004 | B1 |
6762076 | Kim et al. | Jul 2004 | B2 |
6764936 | Daneman et al. | Jul 2004 | B2 |
6770507 | Abe et al. | Aug 2004 | B2 |
6774010 | Chu et al. | Aug 2004 | B2 |
6828214 | Notsu et al. | Dec 2004 | B2 |
6846690 | Farcy et al. | Jan 2005 | B2 |
6887769 | Kellar et al. | May 2005 | B2 |
6893936 | Chen et al. | May 2005 | B1 |
6902987 | Tong et al. | Jun 2005 | B1 |
6927147 | Fitzgerald et al. | Aug 2005 | B2 |
6974759 | Moriceau et al. | Dec 2005 | B2 |
7029548 | Aspar et al. | Apr 2006 | B2 |
20010007367 | Ohkubo | Jul 2001 | A1 |
20010007789 | Aspar et al. | Jul 2001 | A1 |
20020000646 | Gooch et al. | Jan 2002 | A1 |
20020001221 | Hashimoto | Jan 2002 | A1 |
20020025604 | Tiwari | Feb 2002 | A1 |
20020081861 | Robinson et al. | Jun 2002 | A1 |
20020083387 | Miner et al. | Jun 2002 | A1 |
20020145489 | Cornett et al. | Oct 2002 | A1 |
20020153563 | Ogura | Oct 2002 | A1 |
20020185469 | Podlesnik et al. | Dec 2002 | A1 |
20020185684 | Campbell et al. | Dec 2002 | A1 |
20030077885 | Aspar et al. | Apr 2003 | A1 |
20030119279 | Enquist | Jun 2003 | A1 |
20030119280 | Lee et al. | Jun 2003 | A1 |
20030134489 | Schwarzenbach et al. | Jul 2003 | A1 |
20030162367 | Roche | Aug 2003 | A1 |
20030199105 | Kub et al. | Oct 2003 | A1 |
20030234075 | Aspar et al. | Dec 2003 | A1 |
20040009649 | Kub et al. | Jan 2004 | A1 |
20040029358 | Park et al. | Feb 2004 | A1 |
20040126708 | Jing et al. | Jul 2004 | A1 |
20040144487 | Martinez et al. | Jul 2004 | A1 |
20040150006 | Aulnette et al. | Aug 2004 | A1 |
20040157409 | Ghyselen et al. | Aug 2004 | A1 |
20040171232 | Cayrefourcq et al. | Sep 2004 | A1 |
20040209441 | Maleville et al. | Oct 2004 | A1 |
20040222500 | Aspar et al. | Nov 2004 | A1 |
20040235266 | Tong | Nov 2004 | A1 |
20040262686 | Shaheen et al. | Dec 2004 | A1 |
20050029224 | Aspar et al. | Feb 2005 | A1 |
20050042842 | Lei et al. | Feb 2005 | A1 |
20050067377 | Lei et al. | Mar 2005 | A1 |
20050122845 | Lizzi | Jun 2005 | A1 |
20050148122 | Yonehara | Jul 2005 | A1 |
20050148163 | Nguyen et al. | Jul 2005 | A1 |
20060191627 | Aspar et al. | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
101 53 319 | May 2003 | DE |
0 355 913 | Feb 1990 | EP |
0 383 391 | Aug 1990 | EP |
0 410 679 | Jan 1991 | EP |
0 504 714 | Sep 1992 | EP |
0 533 551 | Mar 1993 | EP |
0 293 049 | Sep 1993 | EP |
0 660 140 | Jun 1995 | EP |
0 665 588 | Aug 1995 | EP |
0 703 609 | Mar 1996 | EP |
0 754 953 | Jan 1997 | EP |
0 793 263 | Sep 1997 | EP |
0 801 419 | Oct 1997 | EP |
0 807 970 | Nov 1997 | EP |
0 849 788 | Jun 1998 | EP |
0 889 509 | Jan 1999 | EP |
0 895 282 | Feb 1999 | EP |
0 898 307 | Feb 1999 | EP |
0 917 193 | May 1999 | EP |
0 938 129 | Aug 1999 | EP |
0 902 843 | Mar 2000 | EP |
0 989 593 | Mar 2000 | EP |
0 994 503 | Apr 2000 | EP |
1 050 901 | Nov 2000 | EP |
1 059 663 | Dec 2000 | EP |
1 096 259 | May 2001 | EP |
0 717 437 | Apr 2002 | EP |
0 786 801 | Jun 2003 | EP |
0 767 486 | Jan 2004 | EP |
1 403 684 | Mar 2004 | EP |
0 925 888 | Nov 2004 | EP |
2 671 472 | Jul 1992 | FR |
2 681 472 | Mar 1993 | FR |
2681472 | Mar 1993 | FR |
2 558 263 | Jul 1995 | FR |
2 725 074 | Mar 1996 | FR |
95 08882 | Jun 1996 | FR |
2 736 934 | Jan 1997 | FR |
2 748 850 | Nov 1997 | FR |
2 748 851 | Nov 1997 | FR |
2 758 907 | Jul 1998 | FR |
2 767 416 | Feb 1999 | FR |
2 767 604 | Feb 1999 | FR |
2 771 852 | Jun 1999 | FR |
2 773 261 | Jul 1999 | FR |
2 774 510 | Aug 1999 | FR |
2 781 925 | Feb 2000 | FR |
2 789 518 | Aug 2000 | FR |
2 796 491 | Jan 2001 | FR |
2 797 347 | Feb 2001 | FR |
2 809 867 | Dec 2001 | FR |
2 819 099 | Jul 2002 | FR |
2 847 075 | May 2004 | FR |
2 848 337 | Jun 2004 | FR |
2 861 497 | Apr 2005 | FR |
2 211 991 | Jul 1989 | GB |
53-104156 | Sep 1978 | JP |
58 31519 | Feb 1983 | JP |
59-54217 | Mar 1984 | JP |
61-129872 | Jun 1986 | JP |
62265717 | Nov 1987 | JP |
101004013 | Jan 1989 | JP |
01-128570 | May 1989 | JP |
01-169917 | Jul 1989 | JP |
08017777 | Jan 1990 | JP |
4199504 | Jul 1992 | JP |
07-254690 | Oct 1995 | JP |
7-302889 | Nov 1995 | JP |
8133878 | May 1996 | JP |
09-213594 | Aug 1997 | JP |
09-307719 | Nov 1997 | JP |
10163166 | Jun 1998 | JP |
10233352 | Sep 1998 | JP |
11045862 | Feb 1999 | JP |
11074208 | Mar 1999 | JP |
11087668 | Mar 1999 | JP |
11-145436 | May 1999 | JP |
11-233449 | Aug 1999 | JP |
11317577 | Nov 1999 | JP |
128757 | Jun 2000 | RU |
WO 9520824 | Aug 1995 | WO |
WO 9908316 | Feb 1999 | WO |
WO 9935674 | Jul 1999 | WO |
WO 9939378 | Aug 1999 | WO |
WO 0048238 | Aug 2000 | WO |
WO 0063965 | Oct 2000 | WO |
WO 0111930 | Feb 2001 | WO |
WO 0143168 | Jun 2001 | WO |
WO 0205344 | Jan 2002 | WO |
WO 0247156 | Jun 2002 | WO |
WO 02083387 | Oct 2002 | WO |
WO 03013815 | Feb 2003 | WO |
WO 03021667 | Mar 2003 | WO |
WO 03063213 | Jul 2003 | WO |
WO 2004001810 | Dec 2003 | WO |
WO 2004042779 | May 2004 | WO |
WO 2004044976 | May 2004 | WO |
WO 2004061944 | Jul 2004 | WO |
WO 2005013318 | Feb 2005 | WO |
WO 2005043615 | May 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20090120568 A1 | May 2009 | US |