Method of treating a ceramic discharge vessel

Abstract
The present invention is a ceramic discharge vessel for use in high-intensity-discharge (HID) lamps. The discharge vessel has a ceramic body and at least one seal region comprised of an aluminum oxynitride material. The seal region further has a surface layer for contacting a frit material wherein the surface layer is less reactive than the aluminum oxynitride material with respect to the molten frit during sealing. Preferably, the surface layer has a lower nitrogen content than the aluminum oxynitride material. The less reactive surface acts to minimize the formation of bubbles in the sealing frit during the sealing operation.
Description
TECHNICAL FIELD

This invention is related to ceramic discharge vessels for high intensity discharge (HID) lamps at least partially constructed with an aluminum oxynitride ceramic. More particularly, this invention is related to sealing the aluminum oxynitride ceramic to a frit material.


BACKGROUND OF THE INVENTION

Ceramic metal halide lamps for general illumination utilize translucent polycrystalline alumina (PCA) discharge vessels. PCA is translucent, not transparent, due to birefringence of the hexagonal alumina grains. Because of the lack of transparency, a PCA discharge vessel is generally not suitable for focused-beam, short-arc lamps such as projection lamps and automotive headlights. For focused-beam lamps, a transparent ceramic like sapphire is required.


Aluminum oxynitride (AlON) is a transparent ceramic material with in-line transmittance values as high as that of sapphire. AlON has a cubic spinel structure and a composition that may be generally represented by the empirical formula Al(64+x)/3O32-xNx where 2.75≦x≦5. The mechanical strength and thermal expansion of AlON are close to those of PCA, so that AlON should be able to survive the stresses in high-intensity discharge (HID) lamps. In fact, several sources have identified AlON as a material suitable for HID lamps, for example, Japanese Patent No. 09-92206 and U.S. Pat. Nos. 5,924,904 and 5,231,062.


However, there remain a number of technical difficulties which must be overcome for AlON to be considered as a reliable material for HID lamps. One in particular is the reaction of AlON with the glass/ceramic frit materials used to seal the discharge vessels. In a typical HID lamp, the function of the frit is to hermetically seal the ceramic body of the discharge vessel to the feedthrough portion of the electrode assembly. The reaction of the AlON with the frit results in the formation of gas bubbles in the frit that may degrade the quality and function of the hermetic seal, particularly when higher pressures are present in the discharge vessel. Thus, it would be an advantage to be able control or eliminate the formation of these bubbles.


SUMMARY OF THE INVENTION

It is an object of the invention to obviate the disadvantages of the prior art.


It is another object of the invention to control or eliminate the formation of bubbles in the frit seals of ceramic discharge vessels having aluminum oxynitride present in a seal region.


It is a further object of the invention to provide a method of treating a ceramic discharge vessel to yield a surface layer that is less reactive with a molten frit material.


In accordance with an aspect of the invention, there is provided a ceramic discharge vessel that comprises a ceramic body and at least one seal region comprised of an aluminum oxynitride material. The seal region has a surface layer for contacting a frit material, the surface layer being less reactive to the frit material during sealing than the aluminum oxynitride material.


In accordance with another aspect of the invention, there is provided a method of treating a ceramic discharge vessel. The method comprises providing a ceramic discharge vessel having a ceramic body and at least one seal region comprised of an aluminum oxynitride material, and heating at least the seal region in a reducing atmosphere to form a less reactive surface layer. Preferably, the seal region is heated in a N2-8% H2 atmosphere at about 1400° C. to about 1700° C. for about 1 to about 10 minutes.


In accordance with another aspect of the invention, an aluminum oxide layer is deposited on the seal region to form the less reactive surface layer.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a cross-sectional illustration of a ceramic discharge vessel according to this invention.



FIG. 2 is a cross-sectional illustration of the ceramic discharge vessel of FIG. 1 after the electrode assemblies have been sealed therein.



FIG. 3 is a magnified cut-away view of one of the frit seal regions of the discharge vessel shown in FIG. 2.



FIG. 4 is an SEM micrograph that shows the formation of bubbles in the frit region of an untreated aluminum oxynitride discharge vessel.



FIG. 5 is an optical photomicrograph of a cross section of a treated aluminum oxynitride capillary tube according to this invention.





DETAILED DESCRIPTION OF THE INVENTION

For a better understanding of the present invention, together with other and further objects, advantages and capabilities thereof, reference is made to the following disclosure and appended claims taken in conjunction with the above-described drawings.


A preferred frit material for sealing ceramic discharge vessels is the Dy2O3—Al2O3—SiO2 glass-ceramic system. This system is widely used by lighting manufacturers to seal PCA discharge vessels because of its halide resistance and favorable melting and thermal expansion characteristics. The Dy2O3—Al2O3—SiO2 frit seal consists of DA (3Dy2O3-5Al2O3) and DS (Dy—Si—O) crystalline phases in a Dy—Al—Si—O glassy matrix. When sealed to PCA parts, some alumina from the PCA part is dissolved in the frit at the frit-PCA interface, but there are typically no bubbles in the frit seals of the PCA parts. As described previously, this is not the case when the same frit is used with aluminum oxynitride (AlON) parts.


During the sealing operation, AlON in contact with the molten Dy2O3—Al2O3—SiO2 frit reacts to become Al2O3 with some limited amount of nitrogen dissolved in the frit. Most of the nitrogen evolved from the reaction cannot be accommodated in the frit glass and escapes as gas bubbles in the frit melt. An example of the problem can be seen in FIG. 4 which is a photomicrograph of a cross section of a frit-sealed, as-sintered AlON capillary taken with a scanning electron microscope (SEM). The presence of large bubbles in the frit is clearly evident.


The reactions between the Dy2O3—Al2O3—SiO2 frit and the aluminum oxynitride are believed to first involve the formation of a substoichiometric aluminum oxynitride, Al23O27N5-x, as in Equation (1). As the nitrogen level in the Dy—Al—S—O glass reaches its solubility limit, more nitrogen gas is formed than can be dissolved in the molten frit.

Al23O27N5+Dy—Al—Si—O→Al23O27N5-x+Dy—Al—Si—O1-y—Ny+2(x-y)N2+y/2O2  (1)


As the above reaction proceeds, the substoichiometric Al23O27N5-x, eventually becomes Al2O3 plus AlN, as shown in Equation (2).

Al23O27N5-x→9Al2O3+5 AlN1-x/5  (2)


In order to at least reduce the likelihood of the above reactions, the present invention involves forming a less reactive surface layer in at least the frit seal regions of the discharge vessel. In a preferred method, the AlON discharge vessel is heated in a reducing atmosphere to decompose the outer surface to form Al2O3 and AlN. The AlN may further react with a residual partial pressure of oxygen in the furnace to form Al2O3 and thereby reduce the amount of nitrogen in the surface layer. In the presence of molten frit, Al2O3 in the surface layer would tend to dissolve into the frit while any AlN that may still be present would not dissolve much at all. In addition, the presence of Al2O3 and AlN in the surface region would tend to shift the above reactions to the left, and thereby reduce the release of nitrogen gas. In an alternate method, the surface layer is comprised of an aluminum oxide layer that has been deposited at least on the seal region of the AlON discharge vessel. In this method, the aluminum oxide layer may be formed by any of several well-known techniques including reactive sputtering and chemical vapor deposition. Preferably, the aluminum oxide layer is 1 to 20 micrometers in thickness.


Referring to FIG. 1, there is shown a cross-sectional illustration of a ceramic discharge vessel 1 for a metal halide lamp wherein the discharge vessel 1 has a ceramic body 3 comprised of an aluminum oxynitride material. The ceramic body 3 has opposed capillary tubes 5 extending outwardly from opposite sides along a central axis 6. The capillaries 5 have a central bore 9 for receiving an electrode assembly and a seal region 8 adjacent to the distal end 11 of the capillary 5. The seal region 8 has a surface layer 7 for contacting a frit material. The surface layer 7 is less reactive than the aluminum oxynitride material with respect to the molten frit during sealing. Preferably, the surface layer 7 has a lower nitrogen content than the bulk aluminum oxynitride material. The less reactive surface layer acts to minimize the formation of gas bubbles in the frit during sealing. Although it is preferred to have the entire discharge vessel made from aluminum oxynitride, it is not necessary for this invention. This invention also applies equally to ceramic discharge vessels that use other ceramic materials in conjunction with AlON, provided that AlON is used in the seal region. In the case where the whole discharge vessel is made from AlON, it is preferred to treat the entire discharge vessel including the seal region in order to reduce the number of processing steps. However, the treatment should not substantially adversely impact the transparency of the vessel. Otherwise, the treatment should be limited to the seal regions and other optically less important sections.


The ceramic discharge vessel of FIG. 1 is shown in FIG. 2 with the electrodes assemblies 20 sealed to capillaries 5. Discharge chamber 12 contains a metal halide fill material that may typically comprise mercury plus a mixture of metal halide salts, e.g., NaI, CaI2, DyI3, HoI3, TmI3, and TlI. The discharge chamber 12 will also contain a buffer gas, e.g., 30 to 300 torr Xe or Ar. Higher fill gas pressures may also be used, e.g., up to 30 bar Xe at 20° C. Such higher pressures are useful for lamps where instant starting is required, e.g., automotive lamps. The electrode assemblies in this embodiment are constructed of a niobium feedthrough 22, a tungsten electrode 26, and a molybdenum coil 24 that is wound around a molybdenum or Mo—Al2O3 cermet rod that is welded between the tungsten electrode 26 and niobium feedthrough 22. A tungsten coil 30 or other suitable means of forming a point of attachment for the arc may be affixed to the end of the tungsten electrode.


The frit material 17 creates a hermetic seal between the electrode assembly 20 and capillary 5. This is better seen in FIG. 3. The frit 17 in its molten state has flowed along the electrode assembly 20 to the molybdenum coil 24. Seal region 8 has been previously treated according to this invention to form the less reactive surface layer 7 to reduce reactions with the molten frit. Once solidified, the frit 17 forms a hermetic seal between the electrode assembly 20 and capillary 5. In metal halide lamps, it is usually desirable to minimize the penetration of the frit material into the capillary to prevent an adverse reaction with the corrosive metal halide fill.


The preferred frit material is a Dy2O3—Al2O3—SiO2 frit having a composition of 67-68 wt. % Dy2O3, 11-16 wt. % Al2O3, and 22-13 wt. % SiO2. Other oxide-based frits may also be used, e.g., Dy2O3—Al2O3—SiO2—La2O3 and Dy2O3—Al2O3—SiO2—MoO3. Melting of the frit starts at about 1350° C. A typical frit sealing cycle involves: heating under vacuum to about 1000° C., holding at 1000° C. for a short time, filling with argon gas, fast heating to 1500-1650° C., holding at 1500-1650° C., and then fast cooling to solidify the frit. Crystallization upon cooling produces a complex mixture of several crystalline phases in a glassy matrix.


EXAMPLES

An experiment was conducted to test the stability of AlON in a N2-8% H2 atmosphere at 1000° C. and 1200° C. for 100 hours. As-sintered AlON capillaries were used. The AlON parts remained clear and transparent after 100 hours at 1000° C. under N2-8% H2, but became translucent after 100 hours at 1200° C. under N2-8% H2. Polished sections indicated the formation of AlN and Al2O3 in the surface region of AlON treated under N2-8% H2 at 1200° C. for 100 h. This can be seen in FIG. 5 which is an optical photomicrograph of a cross section of the capillary. The surface layer appears as a slightly lighter band at the edge of the AlON capillary. Further investigation by energy-dispersive x-ray (EDX) analysis found that this surface layer had no detectable nitrogen present compared to the bulk AlON which is consistent with the decomposition of the AlON surface.


Limiting the AlON decomposition to a relatively thin surface layer is desirable so that the AlON parts are still translucent. Preferably the layer is from 1 to 20 micrometers thick. Other atmospheres such as air (AlON becomes Al2O3) could be used, but dry or wet hydrogen (AlON becomes AlN), or vacuum (AlON becomes sub-stoichiometric AlON), result in either more drastic or too little decomposition. More precise control is needed in order to limit the amount of decomposition. With a N2-8% H2 atmosphere, the decomposition is relatively easy to control so that it occurs only in the desired surface layer.


Another set of as-sintered AlON capillaries were treated in N2-8% H2 at 1650° C. for 1 minute and 10 minutes. The 1650° C. temperature was selected because it was a temperature that approximated normal Dy2O3—Al2O3—SiO2 frit sealing conditions. The pretreated AlON capillaries along with controls (as-sintered AlON and PCA) were sealed under a variety of conditions with a Dy2O3—Al2O3—SiO2 frit in a W-element, Mo-shield furnace under either vacuum or a static argon gas at various pressures (0.3 torr to 300 torr to 1 bar). A niobium wire was inserted into the end of the capillary and then a frit ring was placed over the protruding end of the wire and adjacent to the end of the capillary. The capillaries were sealed in a vertical orientation with frit ring placed on top. The pressure of argon gas during the frit sealing experiment was found to affect the decomposition of the frit itself. At high temperatures (1400-1600° C.) under vacuum, the frit itself would evaporate. A static pressure of argon gas was necessary to prevent premature vaporization of the frit.


The pretreatment to form the less reactive surface layer alters only the surface of the AlON, and does not significantly affect the translucency of the capillaries (which is required for observation of the frit flow during melting). The pretreated AlON capillaries clearly exhibited substantially fewer bubbles than the as-sintered AlON controls. This demonstrates that the pretreatment of the seal regions of aluminum oxynitride (AlON) discharge vessels will at least reduce the occurrence of bubbles in the frit during sealing.


While there has been shown and described what are at the present considered the preferred embodiments of the invention, it will be obvious to those skilled in the art that various changes and modifications may be made therein without departing from the scope of the invention as defined by the appended claims.

Claims
  • 1. A method of treating a ceramic discharge vessel, comprising: (a) providing a ceramic discharge vessel having a ceramic body, the ceramic body having at least one seal region, the seal region being comprised of an aluminum oxynitride material; and(b) heating the seal region in a reducing atmosphere to form a surface layer having a lower nitrogen content than the aluminum oxynitride, the surface layer being disposed in the seal region so that it contacts a frit material that forms a seal in the seal region when the discharge vessel is sealed, and the surface layer being less reactive to the frit material during sealing than the aluminum oxynitride.
  • 2. The method of claim 1 wherein the reducing atmosphere contains a N2-8% H2 gas mixture.
  • 3. The method of claim 2 wherein the seal region is heated to a temperature in a range from about 1400° C. to about 1700° C.
  • 4. The method of claim 3 wherein the seal region is heated for about 1 to about 10 minutes.
  • 5. The method of claim 1 wherein the frit material is comprised of Dy2O3, Al2O3 and SiO2.
CROSS REFERENCES TO RELATED APPLICATIONS

This Application is a division of copending application Ser. No. 11/047,069, filed Jan. 31, 2005.

US Referenced Citations (22)
Number Name Date Kind
3026210 Coble Mar 1962 A
4076991 Datta Feb 1978 A
4481300 Hartnett et al. Nov 1984 A
4520116 Gentilman et al. May 1985 A
4686070 Maguire et al. Aug 1987 A
4720362 Gentilman et al. Jan 1988 A
5096862 Mathers et al. Mar 1992 A
5231062 Mathers et al. Jul 1993 A
5668440 Inukai et al. Sep 1997 A
5861714 Wei et al. Jan 1999 A
5924904 Fujii et al. Jul 1999 A
6020685 Wei et al. Feb 2000 A
6075314 Huettinger et al. Jun 2000 A
7187128 Niimi Mar 2007 B2
7247591 Wei Jul 2007 B2
7453212 Selverian Nov 2008 B2
7659220 Zheng et al. Feb 2010 B1
20020032118 Oshio Mar 2002 A1
20040150343 Takahashi Aug 2004 A1
20050174053 Gunter Aug 2005 A1
20050258759 Wei Nov 2005 A1
20060202627 Dudik et al. Sep 2006 A1
Foreign Referenced Citations (5)
Number Date Country
2438274 Mar 2004 CA
1 398 823 Mar 2004 EP
01-092354 Apr 1989 JP
9-92206 Apr 1997 JP
WO 2004049389 Jun 2004 WO
Related Publications (1)
Number Date Country
20080132139 A1 Jun 2008 US
Divisions (1)
Number Date Country
Parent 11047069 Jan 2005 US
Child 12028922 US