A system and method for treating abnormal epithelium in an esophagus.
Two of the major functions of the human esophagus are the transport of food from intake to the stomach and the prevention of retrograde flow of gastrointestinal contents. The retrograde flow is, in part, prevented by two esophageal sphincters which normally remain closed and which are functional rather than distinct entities. In particular, a lower esophageal sphincter normally remains closed until parasympathetic activation causes its relaxation, allowing food to pass into the stomach from the esophagus. Various types of food and other activity may cause relaxation of the sphincter, such as fatty meals, smoking and beverages having xanthine content. Certain drugs or pharmaceuticals also may cause relaxation of this lower esophageal sphincter, as well as localized trauma or other problems such as neuromuscular disorders.
Regardless, patients having such difficulties may present with clinical indications including dysphagia, or difficulty in swallowing, as well as more classic symptoms of heartburn and other similar complaints. Recurrent problems of this nature often lead to a disorder known as reflux esophagitis, consisting of esophageal mucosa damage due to the interaction of the gastric or intestinal contents with portions of the esophagus having tissue not designed to experience such interaction. As suggested above, the causative agent for such problems may vary.
The treatment for the underlying cause of such inflammatory mechanisms is not the subject of this patent application, but rather the invention is focused on treatment of secondary damage to tissue in the effected region of the esophagus.
An ablation catheter and method of use is provided to endoscopically access portions of the human esophagus experiencing undesired growth of columnar epithelium. The ablation catheter system and method includes controlled depth of ablation features and use of either radio frequency spectrum, non-ionizing ultraviolet radiation, warm fluid or microwave radiation, which may also be accompanied by improved sensitizer agents.
Various inflammatory disorders result in human patients who experience retrograde flow of gastric or intestinal contents from the stomach 10, as shown in
Means for accomplishing this procedure according to this invention includes use of the radio frequency spectrum at conventional levels to accomplish ablation of mucosal or submucosal level tissue. Such ablation is designed to remove the columnar growths 30 from the portions of the esophagus 15 so effected. In one embodiment, as shown in
In one embodiment the flexible shaft comprises a coaxial cable surrounded by an electrical insulation layer and comprises a radiant energy distribution means located at its distal end. In one form of the invention, a positioning and distending device around the distal end of the instrument is of sufficient size to contact and expand the walls of the body cavity in which it is placed (e.g. the esophagus) both in the front of the distribution means as well as on the sides of the distribution means. For example, the distal head of the instrument can be supported at a controlled distance from the wall of the esophagus by an expandable balloon member 52 so as to regulate and control the amount of energy transferred to the tissue comprising the esophageal wall. The balloon is preferably bonded to a portion of the flexible shaft at a point spaced from the distal head means.
Another embodiment comprises using the distending or expandable balloon member as the vehicle to deliver the ablation energy. A critical feature of this embodiment includes means by which the energy is transferred from the distal head portion of the invention to the membrane comprising the balloon member. For example, one type of energy distribution that may be appropriate and is incorporated herein in its entirety is shown in U.S. Pat. No. 5,713,942, in which an expandable balloon is connected to a power source which provides radio frequency power having the desired characteristics to selectively heat the target tissue to a desired temperature. The balloon 52 of the current invention may be constructed of an electroconductive elastomer such as a mixture of polymer, elastomer, and electroconductive particles, or it may comprise a nonextensable bladder having a shape and a size in its fully expanded form which will extend in an appropriate way to the tissue to be contacted. In another embodiment, an electroconductive member may be formed from an electroconductive elastomer wherein an electroconductive material such as copper is deposited onto a surface and an electrode pattern is etched into the material and then the electroconductive member is attached to the outer surface of the balloon member. In one embodiment, the electroconductive member, e.g. the balloon member 52, has a configuration expandable in the shape to conform to the dimensions of the expanded (not collapsed) inner lumen of the human lower esophageal tract. In addition, such electroconductive member may consist of a plurality of electrode area segments 58 having thermistor means or the like associated with each electrode segment by which the temperature from each of a plurality of segments is monitored and controlled by feedback arrangement. In another embodiment, it is possible that the electroconductive member may have means for permitting transmission of microwave energy to the ablation site. In yet another embodiment, the distending or expandable balloon member may have means for carrying or transmitting a heatable fluid within one or more portions of the member so that the thermal energy of the heatable fluid may be used as the ablation energy source.
A preferred device, such as that shown in
In one embodiment, the system disclosed herein may be utilized as a procedural method of treating Barrett's esophagus. This method includes the detection and diagnosis of undesired columnar epithelium within the esophagus. After determining that the portion or portions of the esophagus having this undesired tissue should be partially ablated, then the patient is prepared as appropriate according to the embodiment of the device to be utilized. Then, the practitioner prepares the patient as appropriate and inserts, in one embodiment, via endoscopic access and control, the ablation device shown and discussed herein through the mouth of the patient. Further positioning of portions of the device occur until proper location and visualization identifies the ablation site in the esophagus. Selection and activation of the appropriate quadrant(s) or portion(s)/segment(s) on the ablation catheter member is performed by the physician, including appropriate power settings according to the depth of cautery desired. Additional settings may be necessary as further ablation is required at different locations and/or at different depths within the patient's esophagus. Following the ablation, appropriate follow-up procedures as are known in the field are accomplished with the patient during and after removal of the device from the esophagus. The ablation treatment with ultraviolet light may also be accompanied by improved sensitizer agents, such as hematoporphyrin derivatives such as Photofrin® (porfimer sodium, registered trademark of Johnson & Johnson Corporation, New Brunswick, N.J.).
In yet another embodiment of the method of the invention, the system disclosed herein may be utilized as a procedural method of treating dysplasia or cancerous tissue in the esophagus. After determining that the portion or portions of the esophagus having undesired tissue which should be partially ablated, then the patient is prepared as appropriate according to the embodiment of the device to be utilized and treatment is provided as described above.
In yet another method of the invention, the practitioner may first determine the length of the portion of the esophagus requiring ablation and then may choose an ablation catheter from a plurality of ablation catheters of the invention, each catheter having a different length of the electrode member associated with the balloon member. For example, if the practitioner determined that 1 centimeter of the esophageal surface required ablation, an ablation catheter having 1 centimeter of the electrode member could be chosen for use in the ablation. The length of the electrode member associated with the balloon member can vary in length from 1 to 10 cm.
In yet another embodiment, a plurality of ablation catheters wherein the radiant energy distribution means are associated with the balloon member can be provided wherein the diameter of the balloon member when expanded varies from 12 mm to 25 mm. In this method, the practitioner will choose an ablation catheter having a diameter when expanded which will cause the esophagus to stretch and the mucosal layer to thin out, thus, reducing blood flow at the site of the ablation. The esophagus normally is 5 to 6 mm thick, with the method of the invention the esophagus is stretched and thinned so that the blood flow through the esophageal vasculature is occluded. It is believed that by reducing the blood flow in the area of ablation, the heat generated by the radiant energy is less easily dispersed to other areas of the esophagus thus focusing the energy to the ablation site.
One means a practitioner may use to determine the appropriate diameter ablation catheter to use with a particular patient would be to use in a first step a highly compliant balloon connected to pressure sensing means. The balloon would be inserted into the esophagus and positioned at the desired site of the ablation and inflated until an appropriate pressure reading was obtained. The diameter of the inflated balloon would be determined and an ablation device of the invention having a balloon member capable of expanding to that diameter would be chosen for use in the treatment. It is well known that the esophagus may be expanded to a pressure of 60-120 lbs./square inch. In the method of this invention, it is desirable to expand the expandable electroconductive member such as a balloon sufficiently to occlude the vasculature of the submucosa, including the arterial, capillary or venular vessels. The pressure to be exerted to do so should therefore be greater than the pressure exerted by such vessels.
Operation and use of a device of the invention are described as follows. The device used is shown schematically in
The electrode patterns of the invention may vary, other possible electrode patterns are shown in
In this case the electrodes were attached to the outside surface of an esophageal dilation balloon 72 having a diameter of 18 mm. The device was adapted to use radio frequency by attaching wires 74 as shown in
The balloon was deflated and the catheter inserted into the esophagus as described below. In addition to the series of three different electrode patterns a number of different energy factors were applied to the esophagus of a normal immature swine (about 25 kgs). First, an endoscope was passed into the stomach of the subject. The device of the invention was placed into the distal esophagus using endoscopic guidance. The balloon member was inflated to press the electrodes against the esophageal mucosa. There was no indication that balloon dilation resulted in untoward effects on the esophagus.
Once the balloon member and electrodes were in place the first set of radio frequency (“RF”) applications were made. Following endoscopic evaluation of the treated areas, the device was withdrawn proximally. The placement of the device was evaluated endoscopically to assure a gap of normal tissue between the area of the first application and the second application, which gap will assure identification of the two treatment areas during post procedure evaluations. The procedure was repeated a third time using a similar procedure to that of the second application. During the treatment the tissue impedance was monitored as an indicator of the progress of the treatment, high impedance being an indication of desiccation. Accordingly, the practitioner can determine through monitoring the tissue impedance when sufficient ablation has occurred.
The treatment parameters and observations from the first set of RF applications are shown in Table 1. The effect of the treatment was evaluated endoscopically. The areas of the esophagus treated (the “treatment patterns”) were clearly visible as white bands. Untreated areas had the normal red/pink color.
As can be seen from the table, once the observed impedance at the ablation site reached 300 ohms the radio frequency generator shut off the signal. The treatment parameters and observations from the second set of RF applications made mid level in the esophagus are shown in Table 2. As before the effect of the treatment was evaluated endoscopically. The treatment patterns were clearly visible.
The treatment parameters and observations from the third set of RF applications are depicted in Table 3. The effect of the treatment was evaluated endoscopically. The treatment patterns were clearly visible as white bands as compared to the normal red/pink color.
7Monopolar
The treatment transformer tap was changed for the bipolar treatments from 50 to 35. Of note is the observation that towards the end of the monopolar treatments, the watts output as reported on the generator decreased from a setting of 15 watts to a reading of 3 to 4 watts. The increase in impedance observed in the study may be useful as an endpoint for controlling the RF energy at the ablation site.
The RF energy can be applied to the electroconductive members in a variety of ways. In one embodiment, it is applied in the bipolar mode to the bipolar rings through simnultaneous activation of alternating rings. In another embodiment, it is applied to the bipolar rings through sequential activation of pairs of rings. In another embodiment, the RF energy can be applied in monopolar mode through sequential activation of individual monopolar bands or simultaneous activation of the monopolar bands.
After the treatment of the swine esophagus as described above using radio frequency, the esophagus was extirpated and fixed in 10 percent normal buffered formalin (NBF). Three distinct lesion areas were observed corresponding to the three treatment sites and the esophagus was divided into three sections that approximated the three treatment zones. Each segment was cut into 4 to 5 mm thick serial cross sections. Selected sections from each treatment segment were photographed and the photographs of representative treatment segments were assembled side by side to compare similar catheter electrode patterns among the three treatment regimens. The following observations were made. Almost all the treated segments demonstrated necrosis of the mucosa. Changes with the submucosal, muscularis and adventitial layers were observed, typically demonstrated by tissue discoloration suggestive of hemorrhage within the tissue. Finally in comparing the tissue to the normal esophageal morphology, most treated segments were dilated with thinned walls. Thus, all the electrode patterns and treatment parameters resulted in ablation of the mucosal layer of the esophagus.
The treated esophagus was sectioned into 44 sections with each section labeled as either a treatment region or a region adjacent to a treatment region. Each section was processed for histological examination and stained with H&E and reviewed twice. The following parameters were estimated and noted.
The following table summarizes the percent slough, percent death in the mucosa and submucosa and percent death in the muscularis as determined during the above-described study.
Various modifications to the above-mentioned treatment parameters can be made to optimize the ablation of the abnormal tissue. To obtain shallower lesions than the ones obtained in the above-mentioned study the RF energy applied may be increased while decreasing the treatment time. Also, the electrode patterns may be modified such as shown
While a preferred embodiment of the present invention has been described, it should be understood that various changes, adaptations and modifications may be made therein without departing from the spirit of the invention and the scope of the appended claims.
This is a divisional application of U.S. Ser. No. 09/714,344 filed Nov. 16, 2000, U.S. Patent No. 6,551,310, which claims priority of U.S. Provisional Application Ser. No. 60/165,687 filed Nov. 16, 1999, each of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4640298 | Pless | Feb 1987 | A |
4658836 | Turner | Apr 1987 | A |
4674481 | Boddie et al. | Jun 1987 | A |
4776349 | Nashef et al. | Oct 1988 | A |
4930521 | Metzger et al. | Jun 1990 | A |
4949147 | Bacuvier | Aug 1990 | A |
4955377 | Lennox et al. | Sep 1990 | A |
4979948 | Geddes et al. | Dec 1990 | A |
5006119 | Acker et al. | Apr 1991 | A |
5010895 | Maurer et al. | Apr 1991 | A |
5045056 | Behl | Sep 1991 | A |
5056532 | Hull | Oct 1991 | A |
5117828 | Metzger et al. | Jun 1992 | A |
5151100 | Abele et al. | Sep 1992 | A |
5275169 | Afromowitz et al. | Jan 1994 | A |
5277201 | Stern | Jan 1994 | A |
5336222 | Durgin | Aug 1994 | A |
5428658 | Oettinger et al. | Jun 1995 | A |
5443470 | Stern et al. | Aug 1995 | A |
5454809 | Janssen | Oct 1995 | A |
5456682 | Edwards et al. | Oct 1995 | A |
5496271 | Burton et al. | Mar 1996 | A |
5505730 | Edwards | Apr 1996 | A |
5514130 | Baker | May 1996 | A |
5522815 | Durgin | Jun 1996 | A |
5542916 | Hirsch et al. | Aug 1996 | A |
5549661 | Kordis et al. | Aug 1996 | A |
5562720 | Stern et al. | Oct 1996 | A |
5566221 | Smith et al. | Oct 1996 | A |
5569241 | Edwards | Oct 1996 | A |
5599345 | Edwards et al. | Feb 1997 | A |
5621780 | Smith et al. | Apr 1997 | A |
5658278 | Imran et al. | Aug 1997 | A |
5713942 | Stern et al. | Feb 1998 | A |
5730128 | Pomeranz et al. | Mar 1998 | A |
5748699 | Smith | May 1998 | A |
5769846 | Edwards et al. | Jun 1998 | A |
5769880 | Truckai et al. | Jun 1998 | A |
5833688 | Sieben | Nov 1998 | A |
5836874 | Swanson et al. | Nov 1998 | A |
5846196 | Siekmeyer et al. | Dec 1998 | A |
5861036 | Godin | Jan 1999 | A |
5891134 | Goble et al. | Apr 1999 | A |
5895355 | Schaer | Apr 1999 | A |
5964755 | Edwards | Oct 1999 | A |
6006755 | Edwards | Dec 1999 | A |
6033397 | Laufer et al. | Mar 2000 | A |
6041260 | Stern et al. | Mar 2000 | A |
6053172 | Hovda et al. | Apr 2000 | A |
6053913 | Tu et al. | Apr 2000 | A |
6071277 | Farley et al. | Jun 2000 | A |
6073052 | Zelickson et al. | Jun 2000 | A |
6086558 | Bower et al. | Jul 2000 | A |
6091993 | Bouchier et al. | Jul 2000 | A |
6092528 | Edwards | Jul 2000 | A |
6095966 | Chornenky et al. | Aug 2000 | A |
6102908 | Tu et al. | Aug 2000 | A |
6112123 | Kelleher et al. | Aug 2000 | A |
6123703 | Tu et al. | Sep 2000 | A |
6123718 | Tu et al. | Sep 2000 | A |
6138046 | Dalton | Oct 2000 | A |
6146149 | Daoud | Nov 2000 | A |
6179836 | Eggers | Jan 2001 | B1 |
6238392 | Long | May 2001 | B1 |
6254598 | Edwards et al. | Jul 2001 | B1 |
6258087 | Edwards et al. | Jul 2001 | B1 |
6273886 | Edwards et al. | Aug 2001 | B1 |
6321121 | Zelickson et al. | Nov 2001 | B1 |
6325798 | Edwards et al. | Dec 2001 | B1 |
6325800 | Durgin | Dec 2001 | B1 |
6355031 | Edwards et al. | Mar 2002 | B1 |
6355032 | Hovda et al. | Mar 2002 | B1 |
6358245 | Edwards et al. | Mar 2002 | B1 |
6363937 | Hovda et al. | Apr 2002 | B1 |
6383181 | Johnston et al. | May 2002 | B1 |
6394949 | Crowley et al. | May 2002 | B1 |
6402744 | Edwards et al. | Jun 2002 | B2 |
6405732 | Edwards et al. | Jun 2002 | B1 |
6415016 | Chornenky et al. | Jul 2002 | B1 |
6423058 | Edwards et al. | Jul 2002 | B1 |
6425877 | Edwards | Jul 2002 | B1 |
6428536 | Panescu et al. | Aug 2002 | B2 |
6432104 | Durgin | Aug 2002 | B1 |
6440128 | Edwards et al. | Aug 2002 | B1 |
6454790 | Neuberger et al. | Sep 2002 | B1 |
6464697 | Edwards et al. | Oct 2002 | B1 |
6488658 | Long | Dec 2002 | B1 |
6547776 | Gaiser et al. | Apr 2003 | B1 |
6547787 | Altman et al. | Apr 2003 | B1 |
6551310 | Ganz et al. | Apr 2003 | B1 |
6562034 | Edwards et al. | May 2003 | B2 |
6572578 | Blanchard | Jun 2003 | B1 |
6572639 | Ingle et al. | Jun 2003 | B1 |
6589238 | Edwards et al. | Jul 2003 | B2 |
6695764 | Silverman | Feb 2004 | B2 |
6752806 | Durgin | Jun 2004 | B2 |
20010041887 | Crowley | Nov 2001 | A1 |
20020013581 | Edwards et al. | Jan 2002 | A1 |
20020111623 | Durgin | Aug 2002 | A1 |
20020143325 | Sampson et al. | Oct 2002 | A1 |
20020147447 | Long | Oct 2002 | A1 |
20020156470 | Shadduck | Oct 2002 | A1 |
20020177847 | Long | Nov 2002 | A1 |
20020183739 | Long | Dec 2002 | A1 |
20030009165 | Edwards et al. | Jan 2003 | A1 |
20030045869 | Ryan | Mar 2003 | A1 |
20030181900 | Long | Sep 2003 | A1 |
20030181905 | Long | Sep 2003 | A1 |
20030216727 | Long | Nov 2003 | A1 |
20040087936 | Stern et al. | May 2004 | A1 |
20040215235 | Jackson et al. | Oct 2004 | A1 |
20040215296 | Ganz et al. | Oct 2004 | A1 |
20050096713 | Starkebaum | May 2005 | A1 |
Number | Date | Country |
---|---|---|
WO 9935987 | Jul 1999 | WO |
WO 9942046 | Aug 1999 | WO |
WO 9955245 | Nov 1999 | WO |
WO 0001313 | Jan 2000 | WO |
WO 0059393 | Oct 2000 | WO |
WO 0066021 | Nov 2000 | WO |
WO 0135846 | May 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20030158550 A1 | Aug 2003 | US |
Number | Date | Country | |
---|---|---|---|
60165687 | Nov 1999 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09714344 | Nov 2000 | US |
Child | 10370645 | US |