In an effort to reduce back pain through early intervention techniques, some investigators have focused upon nerves contained within the vertebral bodies which are adjacent the problematic disc.
For example, PCT Patent Publication No. WO 01/0157655 (“Heggeness”) discloses ablating nerves contained within the vertebral body by first boring into the vertebral body with a nerve ablation device, placing the tip of the device in close proximity to the nerve, and then ablating the nerves with the tip. Heggeness discloses using laser devices, electricity transmitting devices, fluid transmitting devices and thermal devices, and devices for carrying either chemotherapeutic or radioactive substances as candidate nerve ablation devices.
In describing techniques using electricity transmitting devices, Heggeness discloses “raising the temperature of tip 24 such that the intraosseous nerve is ablated by the heat generated by electrical current passing through tip.” See Heggeness at 8,28.
Heggeness further discloses multiple methods of accessing the intraosseous nerve (ION). However, each of these methods essentially disclose either i) boring a straight channel into the vertebra such that placement of an electrode tip near the end of that channel will bring the electrode tip sufficiently close to the ION to effect its ablation, or ii) accessing the basivertebral nerve (BVN) via the vertebral foramen. None of these techniques recognize how to effectively carry out nerve ablation when the precise locations of the ION is unknown, or when the electrode tip can not be maneuvered relatively close to the ION.
EPO Patent Published Patent Application No. EP 1 059067 A1 (“Cosman”) discloses ablative treatment of metastatic bone tumors, including those within the spine. Pain relief is reportedly achieved by penetrating the bone wall with a suitable probe, and applying heat through the probe to ablate either the bone tumor or the tissue near the bone tumor. Cosman teaches the use of both monopolar and bipolar probes in this application. Cosman also teaches that the treatment may also be used to ablate the nerves and nerve ramifications in and/or around the bone to desensitize them against further tumor encroachment. See Cosman at col. 11, lines 7-11.
However, monopolar approaches require the use of a grounding pad beneath the patient and allows energy to flow from the probe and to dissipate in the surrounding tissue. Because the path by which the energy flows from a monopolar probe to its corresponding pad is uncontrolled, the energy may undesirably flow through sensitive tissue, such as the spinal cord. Since this method may cause undesired local muscle or nerve stimulation, it may be difficult or dangerous to operate in sensitive areas of the human body.
Cosman discloses devices whose electrodes can deviate from the axis of the access channel. In particular, Cosman discloses steerable tips, spring-like electrodes that take a straight shape within the catheter and then curve upon exiting the catheter. Cosman discloses that the curved portion of the electrode may be a rigid and rugged permanent curve, or it may be a flexible configuration so that it can be steered, pushed or guided by the clinician to be positioned at various location. See Cosman at col. 8, lines 40-50). Cosman discloses that electrodes may comprise tubing made of elastic or super-elastic metal such as a spring steel or nitonol tubing so that the electrode can be inserted into straight segments of the cannula and still describes a curved path when the curved portion emerges from the opening. See Cosman at col. 10, lines 11-16. Cosman also discloses an electrode having a flexible but steerable tip which can define an arc, as set by the physician. See Cosman at col. 14, line 3.
In sum, Heggeness and Cosman disclose methods of treating that assume the tip of the electrode can be directed substantially to the target tissue.
A few investigators have examined the effectiveness of heating bone with monopolar RF electrodes. DuPuy, AJR: 175, November 2000, 1263-1266 noted decreased heat transmission at a 10 mm distance from the electrode through cancellous bone in ex vivo studies. DuPuy notes that local heat sinks from the rich epidural venous plexus and cerebrospinal pulsations may account for the decreased heat transmission in cancellous bone. Tillotson, Investigative Radiology, 24:11, November 1989, 888-892, studied the percutaneous ablation of the trigeminal ganglion using RF energy, and found that bone marrow necrosis was limited to a sphere of about 1 cm in diameter, regardless of the probe size and duration of heating. Tillotson further reports that Lindskog showed that the transmission of heat within bone is sharply limited by blood flow, and that lethal temperatures cannot be sustained over great distances.
In sum, these investigators appear to report that the well-vascularized nature of bone appears to limit the heating effect of RF electrodes to a distance of less than about 0.5 cm from the tip.
U.S. Pat. No. 6,312,426 (“Goldberg”) discloses a system of RF plate-like electrodes for effecting large, uniform, and extended ablation of the tissue proximate the plate-like electrodes. In some embodiments, the plate-like electrodes are placed on the surface of the body tissue, where the ablation is desired, and are configured to lie approximately parallel or opposing one another, such that they make a lesion by coagulating most of the body tissue volume between them. Goldberg appears to be primarily directed to the treatment of tumors. Goldberg states that one advantage of the system is that the surgeon need not determine the precise position of the tumor. See Goldberg at col. 3, line 59-60. Goldberg does not appear to specifically discuss the treatment of nerves.
U.S. Pat. No. 6,139,545 (“Utley”) discloses a facial nerve ablation system including at least two spaced apart bi-polar probe electrodes spanning between them a percutaneous tissue region containing a facial nerve branch. Utley teaches that the size and spacing of the electrodes are purposely set to penetrate the skin to a depth sufficient to span a targeted nerve or nerve within a defined region. See col. 5, lines 44-47. Utley further teaches that the system makes possible the non-invasive selection of discrete motor nerve branches, which are small and interspersed in muscle, making them difficult to see and detect, for the purpose of specifically targeting them for ablation. See col. 2, lines 20-24. Utley does not disclose the use of such a system for the treatment of IONS, nor rigid probes, or deployable electrodes. The probes of Utley
In attempting to place an electrode in close proximity to the BVN, the present inventors have found the approaches disclosed in the teachings of the art to be somewhat problematic. In particular, although the location of the BVN is somewhat well known, the BVN is radiolucent and so its precise location can not be easily identified by an X-ray. Since the BVN is also extremely thin, knowingly placing the electrode in close proximity to the BVN may be problematic. Moreover, since conventional RF electrodes appear to heat only a fairly limited volume of bone, misplacement of the electrode tip vis-à-vis the BVN may result in heating a volume of bone that does not contain the BVN.
For example, and now referring to
However, and now referring to
Similarly, and now referring to
Moreover, even if the precise location of the BVN were known, it has been found to be difficult to access the posterior portion of the BVN from a transpedicular approach with a substantially straight probe.
Therefore, the present inventors set out to produce a system that allows the practitioner to heat the BVN without having to know the precise location of the BVN, and without having to precisely place the electrode tip next to the portion of the BVN to be treated.
The present invention relates to the production of a large but well-controlled heating zone within bone tissue to therapeutically treat an ION within the heating zone.
Now referring to
Still referring to
Now referring to
Moreover, the present invention allows the practitioner to therapeutically treat the ION even when the ION is in fact located at the edges of the ION residence zone IRZ. Now referring to
Therefore, the straddling of the ION residence zone by the present invention satisfactorily locates the electrodes so that the total heating zone produced by the electrode activation includes the ION irrespective of the actual location of the ION within the ION residence zone IRZ, thereby guaranteeing that the electrodes will always heat the ION to therapeutically beneficial temperatures.
Therefore, in accordance with the present invention, there is provided a method of therapeutically treating a bone having an intraosseous nerve ION defining first and second sides of the bone, comprising the steps of:
In addition, the present invention provides a very controlled total heating zone which exists substantially only between the paired electrodes. The ability of the present invention to both therapeutically heat the BVN with substantial certainty and to minimize the volume of bone tissue affected by the heating appears to be novel in light of the conventional bone-related technology.
Accordingly, the present invention is further advantageous because it allows the clinician to create a sufficiently large heating zone for therapeutically treating the ION without requiring direct access to the ION.
Thus, in preferred embodiments, the present invention is advantageous because:
Accordingly, there is also provide a method of therapeutically treating a vertebral body having a BVN defining first and second sides of the vertebral body, comprising the steps of:
For the purposes of the present invention, the “resistive heating zone” is the zone of bone tissue that is resistively heated due to an energy loss incurred by current travelling directly through the bone tissue. Resistive heating, “joule” heating and “near-field” heating may be used interchangeably herein. The “conductive heating zone” is the zone of bone tissue that is heated due to the conduction of heat from an adjacent resistive heating zone. The total heating zone THZ in a bone tissue includes both the resistive heating zone and the conductive heating zone. The border between the conductive and resistive heating zones is defined by the locations where the strength of the electric field is 10% of the maximum strength of the electric field between the electrodes. For the purposes of the present invention, the heating zones encompass the volume of bone tissue heated to at least 42° C. by the present invention. For the purposes of the present invention, the “first and second sides” of a vertebral body are the lateral-lateral sides intersected by the BVN.
The therapeutic treatment of the ION may be carried out in accordance with the present invention by resistive heating, conductive heating, or by hybrid heating.
In some embodiments, the therapeutic heating of the ION is provided by both resistive and conductive heating. In some embodiments thereof, as in
In embodiments wherein the therapeutic heating of the ION is provided substantially by both resistive and conductive heating, it is preferred that the length L1 of the ION treated by resistive heating comprise at least 25% of the total therapeutically treated length of ION, more preferably at least 50%. In many embodiments, the peak temperature in the resistive heating zone IR is between 40° C. and 60° C. greater than the peak temperature in the conductive heating zone OC. Preferably, the peak temperature in the resistive heating zone IR is no more than 15° C. greater than the peak temperature in the conductive heating zone OC, more preferably no more than 10° C., more preferably no more than 5 degrees.
Now referring to
In preferred embodiments thereof, it is desired that the separation distance SD between the ION and the resistive heating zone IR be no more than 1 cm. This is desired because the closer the ION is to the resistive heating zone, the higher the temperature experienced by the ION length L2. More preferably, the separation distance is no more than 0.5 cm, more preferably no more than 0.2 cm.
In some embodiments, as in
In preferred embodiments, the present invention is carried out via a dual probe system. In particular, the present invention preferably comprises an energy delivery device comprising a first probe having an active electrode and a second probe having a return electrode. Now referring to
Since aligning the electrodes of such an apparatus to straddle the ION merely requires advancing the probes into the vertebral body, no complicated navigation is required. The present inventors have appreciated that, even if the location of the BVN were precisely known, conventional methods of accessing the BVN require either i) the BVN to be naturally located within the vertebral body so as to intersect the axis of the pedicle (Heggeness), or require a complicated probe configuration or navigation (such as those described by Cosman). Because the dual probe approach simply requires substantially linear advance of a pair of substantially straight probes, it is much simpler and/or much more robust than the conventional methods of accessing nerves in bone. Indeed, with this embodiment of the present invention, the clinician may now desirably access the vertebral body through the pedicles with substantially straight probes and have a high confidence that their activation can therapeutically treat the BVN.
Therefore, in accordance with the present invention, there is provided a method of therapeutically treating a vertebral body having a BVN, comprising the steps of:
Therefore, in accordance with the present invention, there is provided a method of therapeutically treating a vertebral body having a BVN, comprising the steps of:
Now referring to
Now referring to
In some embodiments, the cannula is shaped so as to guide the probe towards the midline of the vertebral body. This inward guidance will help move the electrodes closer to the BVN. In some embodiments, at least a portion of the cannula bore is curved. In some embodiments, at least half of the length of the cannula bore is curved. In other embodiments, substantially only the distal end portion of the cannula bore is curved.
Stylet 201 comprises a shaft 203 having a longitudinal axis A and a proximal 205 and distal end 207. Disposed at the distal end of the shaft is a tip 209 adapted for boring or drilling through cortical bone. The outer diameter DO of the stylet shaft is preferably adapted to be received within the inner diameter DC of the cannula.
For the purposes of the present invention, the combination of the cannula and the stylet is referred to as a “cannulated needle”. In some embodiments, access to the vertebral body is gained by first placing the stylet in the cannula to produce a cannulated needle, piercing the skin with the cannulated needle, and advancing the cannulated needle so that the stylet tip reaches a target tissue region within the cancellous portion of the vertebral body, and then withdrawing the stylet. At this point, the cannula is conveniently located at the target tissue region to receive a probe of the present invention.
Probe 301 comprises a shaft 303 having a longitudinal axis B, a distal end portion 305 and a proximal end portion 307. Disposed near the distal end portion of the probe is first electrode 309 having a first face 331 and a connection face 333. The probe is designed so that the connection face of the first electrode is placed in electrical connection with a first lead 403 of the power supply. In this particular embodiment, the shaft has a longitudinal bore 311 extending from the proximal end portion up to at least the first electrode. Disposed within the bore is a wire 321 electrically connected at its first end 323 to the first electrode and having a second end 325 adapted to be electrically connected to a first lead of a power supply.
Therefore, in accordance with the present invention, there is provided an intraosseous nerve denervation system, comprising:
In some embodiments, the outer surface of the probe is provided with depth markings so that the clinician can understand the extent to which it has penetrated the vertebral body.
In some embodiments in which a cannulated stylet is first inserted, the stylet is removed and the cannula remains in place with its distal opening residing in the target tissue while the probe is inserted into the cannula. In this embodiment, the cannula provides a secure portal for the probe, thereby insuring that the probe can enter the bone safely. This embodiment is especially preferred when the probe is made of a flexible material, or is shaped with an irregular cross-section that could undesirably catch on the bone during probe advancement into the bone.
In the
Now referring to
a) an inner electrically conductive shaft 1403 in electrical connection with a power supply 1409, and
b) an outer insulating jacket 1405 wrapped around a portion of the shaft.
In this configuration. the placement of the jacket provides a distal uninsulated shaft portion 1407 that could be used as an electrode. Preferably, the distal uninsulated portion of the shaft has a length of between 3 mm and 8 mm, and is more preferably about 5 mm. In preferred embodiments thereof, the insulation is selected from the group consisting of polyimide tape, PTFE tape, and heat shrink tubing. Preferred thickness of the insulation range from about 0.00025 to 0.0005 inches.
In other embodiments using insulating jackets, the jacket has either a longitudinally extending slit or slot that exposes a longitudinal surface area of the underlying shaft, thereby producing either an essentially linear or an essentially planar electrode. In such embodiments, the distal end of the shaft may preferably be insulated. In other embodiments using insulating jackets, the insulated portion may comprises a proximal jacket and a distal jacket positioned to provide a space therebetween that exposes a surface area of the underlying shaft to produce the electrode. In some embodiments, the proximal and distal jacket substantially encircle the shaft to provide an annular electrode therebetween.
In some embodiments in which a cannulated stylet is used, both the stylet and the cannula are removed, and the probe is inserted into the hole created by the cannulated stylet. In this embodiment, the hole provides a large portal for the probe. This embodiment conserves the annulus of bone removed by the cannula, and so is preferred when the probe has a relatively large diameter (e.g., more than 8 mm in diameter).
In some embodiments in which a cannulated stylet is used, the cannula comprises at least one electrode In this embodiment, the cannula acts as the probe as well. With this embodiment, the clinician can eliminate steps in the procedure that are related to introducing a body into the cannula. In some embodiments, the outer surface of the cannula is provided with depth markings so that the clinician can understand the extent to which the cannula has penetrated the vertebral body.
In some embodiments in which a cannulated stylet is first inserted, the stylet comprises at least one electrode. In this embodiment, the stylet acts as the probe as well. With this embodiment, the clinician can eliminate steps in the procedure that are related to removing the stylet and introducing a body into the cannula. In some embodiments, the outer surface of the stylet is provided with depth markings so that the clinician can understand the extent to which it has penetrated the vertebral body.
In conducting initial animal experiments with a dual probe embodiment, the present inventors used a bipedicle approach as shown in
In accordance with the present invention the present inventors modified its electrode design to reduce the angle 2δ produces by the inner faces, so that the distance between the proximal end of the electrodes is more equal to the distance between the proximal end of the electrodes (i.e., the faces are more parallel). When the electrodes are provided in such a condition, their orientation reduces the significance of any path of least resistance, and so current flows more evenly across the face of each electrode, thereby providing even heating and greater control over the system.
Therefore, in accordance with the present invention, there is provided an intraosseous nerve denervation device, comprising:
wherein the first and third leads are in electrical connection, and the second and fourth leads are in electrical connection.
Preferably, the electrodes are disposed so that the angle 2δ produced by the inner faces is less than 60 degrees, more preferably no more than 30 degrees. Still more preferably, the angle is less than 1 degree. Most preferably, the inner faces are substantially parallel.
Now referring to
Therefore, in accordance with the present invention, there is provided intraosseous nerve denervation system comprising:
In
In some embodiments, the frustoconical electrode is shaped so that the diameter of its distal end DD is between about 10% and 25% of the diameter of its proximal end D. In some embodiments, the frustoconical nature of the electrode is provided by physically severing the sharp distal end of the electrode. In others, the frustoconical nature of the electrode is provided by insulating the sharp distal end of an electrode.
As noted above, when the probes are placed such that their corresponding electrodes are parallel to each other, the electric field produced by electrode activation is substantially uniform between the distal and proximal portions of the electrodes. However, as the probes are oriented at an angle from parallel, the electric field becomes strongest where the electrodes are closer together. In order to compensate for this non-uniform electric field, in some embodiments of the present invention, the distal ends of the electrodes are tapered. In this tapered state, the regions of the electrodes that are closer together (e.g., the tip) also have a smaller surface area (thereby reducing the electric field in that region), while the regions of the electrodes that are farther apart (e.g., the trunk) have a larger surface area (thereby increasing the electric field in that region). Typically, the effect is largely determined by the cone size, electrode spacing and tissue type therebetween.
In some preferred embodiments of the tapered electrode, and now referring to
Now referring to
Now referring to
Now referring to
Therefore, in accordance with the present invention, there is provided an intraosseous nerve denervation system, comprising:
Now referring to
Therefore, in accordance with the present invention, there is provided an intraosseous nerve denervation system, comprising:
Now referring to
Therefore, in accordance with the present invention, there is provided intraosseous nerve denervation system comprising:
In some embodiments, relatively even heating is provided by providing current density gradients. Now referring to
Therefore, in accordance with the present invention, there is provided an intraosseous nerve denervation system comprising:
Current density gradients can also be produced by providing a plurality of electrodes on each probe. Now referring to
Therefore, in accordance with the present invention, there is provided a method of therapeutically treating a vertebral body having a BVN, comprising the steps of:
Because multiple voltage sources may add complexity to the device, in other embodiments, the differences in voltage may be provided by a single voltage source by using a poorly conductive electrode. In particular, in some embodiments thereof, the probe comprises an electrically conductive probe shaft and a plurality of spaced apart insulating jackets wherein the spacing produces the electrodes of
In another dual probe approach, in some embodiments, and now referring to
Therefore, in accordance with the present invention, there is provided an intraosseous nerve denervation system comprising:
Although the dual probe approach has many benefits, in other embodiments of the present invention, an articulated probe having both active and return electrodes may be used in accordance with the present invention.
Now referring to
Fixed probe 901 comprises a shaft 903 having a longitudinal axis and a distal end portion 905 comprising sharpened distal tip 906 and a proximal end portion 907. Disposed near the distal end portion of the probe is first electrode 909. The fixed probe is designed so that the first electrode is placed in electrical connection with a first lead of a power supply. In this particular embodiment, the shaft has a longitudinal bore 911 running from the proximal end portion up to at least the first electrode. Disposed within the bore is a first wire (not shown) electrically connected at its first end to the first electrode and having a second end adapted to be electrically connected to a first lead of a power supply (not shown). The fixed probe also comprises a recess 927 forming a lateral opening in the shaft and designed to house the pivotable probe when in its undeployed mode.
Pivotable probe 951 comprises a shaft 953 having a longitudinal axis, a distal end portion 955, and a proximal end portion 957 pivotally attached to the fixed probe by pivot 961. The pivot allows the pivoting probe to pivot about the fixed probe. Disposed near the distal end portion of the pivotable probe is second electrode 963. The probe is designed so that the second electrode is placed in electrical connection with a second lead of the power supply.
The pivotable probe has an undeployed mode and a deployed mode. In the un-deployed mode, the pivotable probe is seated within the recess of the fixed probe so that the axis of its shaft is essentially in line with the axis of the fixed probe shaft. In this state, the pivotable probe essentially hides within the fixed probe. In the deployed mode, the pivotable probe extends at a significant angle from the fixed probe so that the axis of its shaft forms an angle of at least 10 degrees with the axis of the fixed probe shaft.
In some embodiments, a pusher rod is used to deploy the pivotable probe. Pusher rod 975 comprises a proximal handle (not shown) for gripping and a distal end portion 977 having a shape for accessing the bore of the fixed probe. Distal end portion has a tip 981 having a shape which, when advanced distally, can push the distal end portion of the pivotable probe laterally out of the recess.
Therefore, in accordance with the present invention, there is provided a device for denervating an ION in a bone, comprising:
In some embodiments, the pivotable device has both an active and a return electrode, and the device is introduced through a single pedicle. The location of these electrodes may vary depending upon the use of the pivotable device. For example, when the active electrode is located on the pivotable probe, the return electrode may be positioned in a location selected from the group consisting of:
a) a location on the fixed probe distal of the pivot (as in
b) a location on the fixed probe proximal of the pivot;
c) a location on the pivotable probe located nearer the pivot; and
d) a location on the pusher rod.
In other embodiments, the locations of the active and return electrodes are reversed from those described above.
In general, it is desirable to operate the present invention in a manner that produces a peak temperature in the target tissue of between about 80° C. and 95° C. When the peak temperature is below 80° C., the off-peak temperatures may quickly fall below about 45° C. When the peak temperature is above about 95° C., the bone tissue exposed to that peak temperature may experience necrosis and produce charring. This charring reduces the electrical conductivity of the charred tissue, thereby making it more difficult to pass RF current through the target tissue beyond the char and to resistively heat the target tissue beyond the char. In some embodiments, the peak temperature is preferably between 86° C. and 94° C.
It is desirable to heat the volume of target tissue to a minimum temperature of at least 42° C. When the tissue experiences a temperature above 42° C., nerves within the target tissue may be desirably damaged. However, it is believed that denervation is a function of the total quantum of energy delivered to the target tissue, i.e., both exposure temperature and exposure time determine the total dose of energy delivered. Accordingly, if the temperature of the target tissue reaches only about 42° C., then it is believed that the exposure time of the volume of target tissue to that temperature should be at least about 30 minutes and preferably at least 60 minutes in order to deliver the dose of energy believed necessary to denervate the nerves within the target tissue.
Preferably, it is desirable to heat the volume of target tissue to a minimum temperature of at least 50° C. If the temperature of the target tissue reaches about 50° C., then it is believed that the exposure time of the volume of target tissue to that temperature need only be in the range of about 2 minutes to 10 minutes to achieve denervation.
More preferably, it is desirable to heat the volume of target tissue to a minimum temperature of at least 60° C. If the temperature of the target tissue reaches about 60° C., then it is believed that the exposure time of the volume of target tissue to that temperature need only be in the range of about 0.01 minutes to 1.5 minutes to achieve denervation, preferably 0.1 minutes to 0.25 minutes.
Typically, the period of time that an ION is exposed to therapeutic temperatures is in general related to the length of time in which the electrodes are activated. However, since it has been observed that the total heating zone remains relatively hot even after power has been turned off (and the electric field eliminated), the exposure time can include a period of time in which current is not running through the electrodes.
In general, the farther apart the electrodes, the greater the likelihood that the ION will be contained within the total heating zone. Therefore, in some embodiments, the electrodes are placed at least 5 mm apart, more preferably at least 10 mm apart. However, if the electrodes are spaced too far apart, the electric field takes on an undesirably extreme dumbbell shape. Therefore, in many preferred embodiments, the electrodes are placed apart a distance of between 5 mm and 25 mm, more preferably between 5 mm and 15 mm, more preferably between 10 mm and 15 mm.
In some embodiments, it is desirable to heat the target tissue so that at least about 1 cc of bone tissue experiences the minimum temperature. This volume corresponds to a sphere having a radius of about 0.6 cm. Alternatively stated, it is desirable to heat the target tissue so the minimum temperature is achieved by every portion of the bone within 0.6 cm of the point experiencing the peak temperature.
More preferably, it is desirable to heat the target tissue so that at least about 3 cc of bone experiences the minimum temperature. This volume corresponds to a sphere having a radius of about 1 cm.
In one preferred embodiment, the present invention provides a steady-state heated zone having a peak temperature of between 80° C. and 95° C. (and preferably between 86° C. and 94° C.), and heats at least 1 cc of bone (and preferably at least 3 cc of bone) to a temperature of at least 50° C. (and preferably 60° C.).
Therefore, in accordance with the present invention, there is provided a method of therapeutically treating a vertebral body having a BVN, comprising the steps of:
As noted above, a peak temperature below about 100° C. is desirable in order to prevent charring of the adjacent tissue, steam formation and tissue popping. In some embodiments, this is accomplished by providing the power supply with a feedback means that allows the peak temperature within the heating zone to be maintained at a desired target temperature, such as 90° C. In some embodiments, between about 24 watts and 30 watts of power is first supplied to the device in order to rapidly heat the relatively cool bone, with maximum amperage being obtained within about 10-15 seconds. As the bone is further heated to the target temperature, the feedback means gradually reduces the power input to the device to between about 6-10 watts.
If the active electrode has no active cooling means, it may become be subject to conductive heating by the heated tissue, and the resultant increased temperature in the electrode may adversely affect performance by charring the adjacent bone tissue. Accordingly, in some embodiments, a cool tip active electrode may be employed. The cooled electrode helps maintain the temperature of the electrode at a desired temperature. Cooled tip active electrodes are known in the art. Alternatively, the power supply may be designed to provided a pulsed energy input. It has been found that pulsing the current favorably allows heat to dissipate from the electrode tip, and so the active electrode stays relatively cooler.
The following section relates to the general structure of preferred energy devices in accordance with the present invention:
The apparatus according to the present invention comprises an electrosurgical probe having a shaft with a proximal end, a distal end, and at least one active electrode at or near the distal end. A connector is provided at or near the proximal end of the shaft for electrically coupling the active electrode to a high frequency voltage source. In some embodiments, a return electrode coupled to the voltage source is spaced a sufficient distance from the active electrode to substantially avoid or minimize current shorting therebetween. The return electrode may be provided integral with the shaft of the probe or it may be separate from the shaft
In preferred embodiments, the electrosurgical probe or catheter will comprise a shaft or a handpiece having a proximal end and a distal end which supports one or more electrode terminal(s). The shaft or handpiece may assume a wide variety of configurations, with the primary purpose being to mechanically support the active electrode and permit the treating physician to manipulate the electrode from a proximal end of the shaft. The shaft may be rigid or flexible, with flexible shafts optionally being combined with a generally rigid external tube for mechanical support. Flexible shafts may be combined with pull wires, shape memory actuators, and other known mechanisms for effecting selective deflection of the distal end of the shaft to facilitate positioning of the electrode array. The shaft will usually include a plurality of wires or other conductive elements running axially therethrough to permit connection of the electrode array to a connector at the proximal end of the shaft.
Preferably, the shaft may be a rigid needle that is introduced through a percutaneous penetration in the patient. However, for endoscopic procedures within the spine, the shaft will have a suitable diameter and length to allow the surgeon to reach the target site (e.g., a disc) by delivering the shaft through the thoracic cavity, the abdomen or the like. Thus, the shaft will usually have a length in the range of about 5.0 to 30.0 cm, and a diameter in the range of about 0.2 mm to about 10 mm. In any of these embodiments, the shaft may also be introduced through rigid or flexible endoscopes.
The probe will include one or more active electrode(s) for applying electrical energy to tissues within the spine. The probe may include one or more return electrode(s), or the return electrode may be positioned on the patient's back, as a dispersive pad. In either embodiment, sufficient electrical energy is applied through the probe to the active electrode(s) to either necrose the blood supply or nerves within the vertebral body.
The electrosurgical instrument may also be a catheter that is delivered percutaneously and/or endoluminally into the patient by insertion through a conventional or specialized guide catheter, or the invention may include a catheter having an active electrode or electrode array integral with its distal end. The catheter shaft may be rigid or flexible, with flexible shafts optionally being combined with a generally rigid external tube for mechanical support. Flexible shafts may be combined with pull wires, shape memory actuators, and other known mechanisms for effecting selective deflection of the distal end of the shaft to facilitate positioning of the electrode or electrode array. The catheter shaft will usually include a plurality of wires or other conductive elements running axially therethrough to permit connection of the electrode or electrode array and the return electrode to a connector at the proximal end of the catheter shaft. The catheter shaft may include a guide wire for guiding the catheter to the target site, or the catheter may comprise a steerable guide catheter. The catheter may also include a substantially rigid distal end portion to increase the torque control of the distal end portion as the catheter is advanced further into the patient's body. Specific deployment means will be described in detail in connection with the figures hereinafter.
In some embodiments, the electrically conductive wires may run freely inside the catheter bore in an unconstrained made, or within multiple lumens within the catheter bore.
The tip region of the instrument may comprise many independent electrode terminals designed to deliver electrical energy in the vicinity of the tip. The selective application of electrical energy is achieved by connecting each individual electrode terminal and the return electrode to a power source having independently controlled or current limited channels. The return electrode(s) may comprise a single tubular member of conductive material proximal to the electrode array. Alternatively, the instrument may comprise an array of return electrodes at the distal tip of the instrument (together with the active electrodes) to maintain the electric current at the tip. The application of high frequency voltage between the return electrode(s) and the electrode array results in the generation of high electric field intensities at the distal tips of the electrode terminals with conduction of high frequency current from each individual electrode terminal to the return electrode. The current flow from each individual electrode terminal to the return electrode(s) is controlled by either active or passive means, or a combination thereof, to deliver electrical energy to the surrounding conductive fluid while minimizing energy delivery to surrounding (non-target) tissue.
Temperature probes associated with the apparatus may preferably be disposed on or within the electrode carrier; between the electrodes (preferred in bipolar embodiments); or within the electrodes (preferred for monopolar embodiments). In some embodiments wherein the electrodes are placed on either side of the ION, a temperature probe is disposed between the electrodes or in the electrodes. In alternate embodiments, the deployable portion of the temperature probe comprises a memory metal.
The electrode terminal(s) are preferably supported within or by an inorganic insulating support positioned near the distal end of the instrument shaft. The return electrode may be located on the instrument shaft, on another instrument or on the external surface of the patient (i.e., a dispersive pad). The close proximity of the dual needle design to the intraosseus nerve makes a bipolar design more preferable because this minimizes the current flow through non-target tissue and surrounding nerves. Accordingly, the return electrode is preferably either integrated with the instrument body, or another instrument located in close proximity thereto. The proximal end of the instrument(s) will include the appropriate electrical connections for coupling the return electrode(s) and the electrode terminal(s) to a high frequency power supply, such as an electrosurgical generator.
In some embodiments, the active electrode(s) have an active portion or surface with surface geometries shaped to promote the electric field intensity and associated current density along the leading edges of the electrodes. Suitable surface geometries may be obtained by creating electrode shapes that include preferential sharp edges, or by creating asperities or other surface roughness on the active surface(s) of the electrodes. Electrode shapes according to the present invention can include the use of formed wire (e.g., by drawing round wire through a shaping die) to form electrodes with a variety of cross-sectional shapes, such as square, rectangular, L or V shaped, or the like. Electrode edges may also be created by removing a portion of the elongate metal electrode to reshape the cross-section. For example, material can be ground along the length of a round or hollow wire electrode to form D or C shaped wires, respectively, with edges facing in the cutting direction. Alternatively, material can be removed at closely spaced intervals along the electrode length to form transverse grooves, slots, threads or the like along the electrodes. In other embodiments, the probe can be sectored so that a given circumference comprises an electrode region and an inactive region. In some embodiments, the inactive region is masked.
The return electrode is typically spaced proximally from the active electrode(s) a suitable. In most of the embodiments described herein, the distal edge of the exposed surface of the return electrode is spaced about 5 to 25 mm from the proximal edge of the exposed surface of the active electrode(s), in dual needle insertions. Of course, this distance may vary with different voltage ranges, the electrode geometry and depend on the proximity of tissue structures to active and return electrodes. The return electrode will typically have an exposed length in the range of about 1 to 20 mm.
The application of a high frequency voltage between the return electrode(s) and the electrode terminal(s) for appropriate time intervals effects modifying the target tissue.
The present invention may use a single active electrode terminal or an array of electrode terminals spaced around the distal surface of a catheter or probe. In the latter embodiment, the electrode array usually includes a plurality of independently current-limited and/or power-controlled electrode terminals to apply electrical energy selectively to the target tissue while limiting the unwanted application of electrical energy to the surrounding tissue and environment resulting from power dissipation into surrounding electrically conductive fluids, such as blood, normal saline, and the like. The electrode terminals may be independently current-limited by isolating the terminals from each other and connecting each terminal to a separate power source that is isolated from the other electrode terminals. Alternatively, the electrode terminals may be connected to each other at either the proximal or distal ends of the catheter to form a single wire that couples to a power source.
In one configuration, each individual electrode terminal in the electrode array is electrically insulated from all other electrode terminals in the array within said instrument and is connected to a power source which is isolated from each of the other electrode terminals in the array or to circuitry which limits or interrupts current flow to the electrode terminal when low resistivity material (e.g., blood) causes a lower impedance path between the return electrode and the individual electrode terminal. The isolated power sources for each individual electrode terminal may be separate power supply circuits having internal impedance characteristics which limit power to the associated electrode terminal when a low impedance return path is encountered. By way of example, the isolated power source may be a user selectable constant current source. In this embodiment, lower impedance paths will automatically result in lower resistive heating levels since the heating is proportional to the square of the operating current times the impedance. Alternatively, a single power source may be connected to each of the electrode terminals through independently actuatable switches, or by independent current limiting elements, such as inductors, capacitors, resistors and/or combinations thereof. The current limiting elements may be provided in the instrument, connectors, cable, controller or along the conductive path from the controller to the distal tip of the instrument. Alternatively, the resistance and/or capacitance may occur on the surface of the active electrode terminal(s) due to oxide layers which form selected electrode terminals (e.g., titanium or a resistive coating on the surface of metal, such as platinum).
In a preferred aspect of the invention, the active electrode comprises an electrode array having a plurality of electrically isolated electrode terminals disposed over a contact surface, which may be a planar or non-planar surface and which may be located at the distal tip or over a lateral surface of the shaft, or over both the tip and lateral surface(s). The electrode array will include at least two and preferably more electrode terminals, and may further comprise a temperature sensor. In a preferred aspect, each electrode terminal will be connected to the proximal connector by an electrically isolated conductor disposed within the shaft. The conductors permit independent electrical coupling of the electrode terminals to a high frequency power supply and control system with optional temperature monitor for operation of the probe. The control system preferably incorporate active and/or passive current limiting structures, which are designed to limit current flow when the associated electrode terminal is in contact with a low resistance return path back to the return electrode.
The use of such electrode arrays in electrosurgical procedures is particularly advantageous as it has been found to limit the depth of tissue necrosis without substantially reducing power delivery. The voltage applied to each electrode terminal causes electrical energy to be imparted to any body structure which is contacted by, or comes into close proximity with, the electrode terminal, where a current flow through all low electrical impedance paths is preferably but not necessarily limited. Since some of the needles are hollow, a conductive fluid could be added through the needle and into the bone structure for the purposes of lowering the electrical impedance and fill the spaces in the cancellous bone to make them better conductors to the needle.
It should be clearly understood that the invention is not limited to electrically isolated electrode terminals, or even to a plurality of electrode terminals. For example, the array of active electrode terminals may be connected to a single lead that extends through the catheter shaft to a power source of high frequency current. Alternatively, the instrument may incorporate a single electrode that extends directly through the catheter shaft or is connected to a single lead that extends to the power source. The active electrode(s) may have ball shapes, twizzle shapes, spring shapes, twisted metal shapes, cone shapes, annular or solid tube shapes or the like. Alternatively, the electrode(s) may comprise a plurality of filaments, rigid or flexible brush electrode(s), side-effect brush electrode(s) on a lateral surface of the shaft, coiled electrode(s) or the like.
The voltage difference applied between the return electrode(s) and the electrode terminal(s) will be at high or radio frequency, typically between about 50 kHz and 20 MHz, usually being between about 100 kHz and 2.5 MHz, preferably being between about 400 kHz and 1000 kHz, often less than 600 kHz, and often between about 500 kHz and 600 kHz. The RMS (root mean square) voltage applied will usually be in the range from about 5 volts to 1000 volts, preferably being in the range from about 10 volts to 200 volts, often between about 20 to 100 volts depending on the electrode terminal size, the operating frequency and the operation mode of the particular procedure. Lower peak-to-peak voltages will be used for tissue coagulation, thermal heating of tissue, or collagen contraction and will typically be in the range from 50 to 1500, preferably 100 to 1000 and more preferably 120 to 400 volts peak-to-peak. As discussed above, the voltage is usually delivered continuously with a sufficiently high frequency (e.g., on the order of 50 kHz to 20 MHz) (as compared with e.g., lasers claiming small depths of necrosis, which are generally pulsed about 10 to 20 Hz). In addition, the sine wave duty cycle (i.e., cumulative time in any one-second interval that energy is applied) is preferably on the order of about 100% for the present invention, as compared with pulsed lasers which typically have a duty cycle of about 0.0001%.
The preferred power source of the present invention delivers a high frequency current selectable to generate average power levels ranging from several milliwatts to tens of watts per electrode, depending on the volume of target tissue being heated, and/or the maximum allowed temperature selected for the instrument tip. The power source allows the user to select the power level according to the specific requirements of a particular procedure.
The power source may be current limited or otherwise controlled so that undesired heating of the target tissue or surrounding (non-target) tissue does not occur. In a presently preferred embodiment of the present invention, current limiting inductors are placed in series with each independent electrode terminal, where the inductance of the inductor is in the range of 10 uH to 50,000 uH, depending on the electrical properties of the target tissue, the desired tissue heating rate and the operating frequency. Alternatively, capacitor-inductor (LC) circuit structures may be employed, as described previously in U.S. Pat. No. 5,697,909. Additionally, current limiting resistors may be selected. Preferably, microprocessors are employed to monitor the measured current and control the output to limit the current.
The area of the tissue treatment surface can vary widely, and the tissue treatment surface can assume a variety of geometries, with particular areas and geometries being selected for specific applications. The geometries can be planar, concave, convex, hemispherical, conical, linear “in-line” array or virtually any other regular or irregular shape. Most commonly, the active electrode(s) or electrode terminal(s) will be formed at the distal tip of the electrosurgical instrument shaft, frequently being planar, disk-shaped, or hemispherical surfaces for use in reshaping procedures or being linear arrays for use in cutting. Alternatively or additionally, the active electrode(s) may be formed on lateral surfaces of the electrosurgical instrument shaft (e.g., in the manner of a spatula), facilitating access to certain body structures in endoscopic procedures.
The devices of the present invention may be suitably used for insertion into any hard tissue in the human body. In some embodiments, the hard tissue is bone. In other embodiments, the hard tissue is cartilage. In preferred embodiments when bone is selected as the tissue of choice, the bone is a vertebral body. Preferably, the present invention is adapted to puncture the hard cortical shell of the bone and penetrate at least a portion of the underlying cancellous bone. In some embodiments, the probe advances into the bone to a distance of at least ⅓ of the cross-section of the bone defined by the advance of the probe. In some embodiments, the present invention is practiced in vertebral bodies substantially free of tumors. In others, the present invention is practiced in vertebral bodies having tumors.
Therefore, in accordance with the present invention, there is provided a method of therapeutically treating a healthy vertebral body having a BVN, comprising the steps of:
applying a sufficiently high frequency voltage difference between the active and return electrodes to generate a current therebetween to produce a total heating zone to therapeutically heat the BVN.
In some embodiments using two separate probes, the device of the present invention enters the hard tissue (preferably bone, more preferably the vertebral body) through two access points. In preferred embodiments, the pair of separate probes is adapted to denervate the BVN and enter through separate pedicles transpedicularly. In other embodiments, the pair of separate probes each enters the vertebral body extrapedicularly. In other embodiments, a first of the pair of separate probes enters the vertebral body extrapedicularly and the second enters the vertebral body transpedicularly. In embodiments using a single articulated device, the device enters via a single pedicle.
Now referring to
Therefore, in accordance with the present invention, there is provided a method of therapeutically treating a vertebral body having an outer cortical bone region and an inner cancellous bone region, and a BVN having a trunk extending from the outer cortical bone region into the inner cancellous region and a branches extending from the trunk to define a BVN junction, comprising the steps of:
Typically, treatment in accordance with this embodiment can be effectuated by placing the electrodes in the region of the vertebral body located between 60% (point A) and 90% (point B) of the distance between the anterior and posterior ends of the vertebral body, as shown in
This prophetic example describes a preferred dual probe embodiment of the present invention.
First, after induction of an appropriate amount of a local anesthesia, the human patient is placed in a prone position on the table. The C-arm of an X-ray apparatus is positioned so that the X-rays are perpendicular to the axis of the spine. This positioning provides a lateral view of the vertebral body, thereby allowing the surgeon to view the access of the apparatus into the vertebral body.
Next, a cannulated stylet comprising an inner stylet and an outer cannula are inserted into the skin above each of the respective pedicles so that the distal tip of each stylet is in close proximity to the respective pedicle.
Next, the probe is advanced interiorly into the body so that the stylet tips bores through the skin, into and through the pedicle, and then into the vertebral body. The stylet is advanced until the tips reach the anterior-posterior midline of the vertebral body.
Next, the stylet is withdrawn and probe is inserted into the cannula and advanced until the first and second electrodes thereof each reach the midline of the vertebral body. The location of the two probes is shown from various perspectives in
Next, the power supply is activated to provide a voltage between the first and second electrodes. The amount of voltage across the electrodes is sufficient to produce an electric current between the first and second electrodes. This current provides resistive heating of the tissue disposed between the electrodes in an amount sufficient to raise the temperature of the local portion of the BVN to at least 45° C., thereby denervating the BVN.
This example describes the efficacy of heating a large zone of a vertebral body with a bipolar energy device.
A pair of probes were inserted into a vertebral body of a porcine cadaver so that the tips of the electrodes were located substantially at the midline and separated by about 4 mm. Each electrode had a cylindrical shape, a length of about 20 mm, and a diameter of about 1.65 mm2 (16 gauge) to produce a surface area of about 100 mm2.
Next, and now referring to
Next, about 57 volts of energy was applied across the electrodes, and the temperature rise in the tissue was recorded at the thermocouple sites. These temperatures are provided in
The positive results provided by this example has great significance to the problem of therapeutically heating IONs, and the BVN in particular. In particular, the results of thermocouples T5-9 indicates that if an ION were located along the z-axis within 2 mm of the presumed center of the IRZ, then the ION could be sufficiently treated to at least 80° C. Similarly, the results of thermocouples T0-4 indicates that as much as a 16 mm length of ION could be sufficiently treated to at least 80° C. Lastly, the results of thermocouples. T 10-14 indicate that the ION could be off-center laterally in the IRZ by as much as 2 mm and at least about 10 mm of its length could be sufficiently treated to at least 80 C.
This embodiment describes a preferred articulated probe embodiment of the present invention.
The initial steps described above in Example I are carried out so that the articulated probe is poised on the patient's skin and held in place by a ratchet type gun. See
Next, the distal end of the articulated probe is inserted into the skin above a pedicle so that the distal end of the fixed probe is in close proximity, to the pedicle.
Now referring to
Now referring to
Now referring to
Next, the power supply is activated to provide a voltage between the first and second electrodes. The amount of voltage across the electrodes is sufficient to produce an electric current between the first and second electrodes. This current provides resistive heating of the tissue disposed between the electrodes in an amount sufficient to raise the temperature of the local portion of the BVN to at least 45° C., thereby denervating the BVN.
Next, the fixed probe is pushed forward to bring the pivotable probe back into the recess.
Now referring to
Now referring to
This application is a reissue of U.S. Pat. No. 7,749,218, which issued Jul. 6, 2010 from U.S. patent application Ser. No. 11/123,766, is which is a divisional of U.S. patent application Ser. No. 10/260,879, filed Sep. 30, 2002, entitled “Method of straddling an intraosseous nerve”, now issued as U.S. Pat. No. 6,907,884, the specification of which is incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3845771 | Vise | Nov 1974 | A |
3920021 | Hiltebrandt | Nov 1975 | A |
4044774 | Corgin et al. | Aug 1977 | A |
4116198 | Roos | Sep 1978 | A |
4312364 | Convert et al. | Jan 1982 | A |
4448198 | Turner | May 1984 | A |
4573448 | Kambin | Mar 1986 | A |
4657017 | Sorochenko | Apr 1987 | A |
4679561 | Doss | Jul 1987 | A |
4754757 | Feucht | Jul 1988 | A |
4907589 | Cosman | Mar 1990 | A |
4950267 | Ishihara et al. | Aug 1990 | A |
4959063 | Kojima | Sep 1990 | A |
4963142 | Loertscher | Oct 1990 | A |
4966144 | Rochkind et al. | Oct 1990 | A |
5061266 | Hakky | Oct 1991 | A |
5080660 | Buelna | Jan 1992 | A |
5084043 | Hertzmann et al. | Jan 1992 | A |
5098431 | Rydell | Mar 1992 | A |
5106376 | Mononen et al. | Apr 1992 | A |
5108404 | Scholten et al. | Apr 1992 | A |
5161533 | Press et al. | Nov 1992 | A |
5190546 | Jervis | Mar 1993 | A |
5201729 | Hertzmann et al. | Apr 1993 | A |
5209748 | Daikuzono | May 1993 | A |
5222953 | Dowlatshahi | Jun 1993 | A |
5242439 | Larsen et al. | Sep 1993 | A |
5273026 | Wilk | Dec 1993 | A |
5281213 | Milder et al. | Jan 1994 | A |
5295484 | Marcus et al. | Mar 1994 | A |
5320617 | Leach | Jun 1994 | A |
5350377 | Winston et al. | Sep 1994 | A |
5366443 | Eggers et al. | Nov 1994 | A |
5368031 | Cline et al. | Nov 1994 | A |
5374265 | Sand | Dec 1994 | A |
5391197 | Burdette et al. | Feb 1995 | A |
5419767 | Eggers et al. | May 1995 | A |
5433739 | Cosman et al. | Jul 1995 | A |
5437661 | Rieser | Aug 1995 | A |
5441499 | Fritzsch | Aug 1995 | A |
5443463 | Stern | Aug 1995 | A |
5458596 | Lax et al. | Oct 1995 | A |
5458597 | Edwards et al. | Oct 1995 | A |
5472441 | Edwards et al. | Dec 1995 | A |
5484432 | Sand | Jan 1996 | A |
5486170 | Winston et al. | Jan 1996 | A |
5514130 | Baker | May 1996 | A |
5540684 | Hassler, Jr. | Jul 1996 | A |
5569242 | Lax et al. | Oct 1996 | A |
5571147 | Sluijter et al. | Nov 1996 | A |
5596988 | Markle et al. | Jan 1997 | A |
5620479 | Diederich | Apr 1997 | A |
5630426 | Shmulewitz et al. | May 1997 | A |
5630837 | Crowley | May 1997 | A |
5643319 | Green et al. | Jul 1997 | A |
5647871 | Levine et al. | Jul 1997 | A |
5672173 | Gough et al. | Sep 1997 | A |
5681282 | Eggers et al. | Oct 1997 | A |
5683366 | Eggers et al. | Nov 1997 | A |
5693052 | Weaver | Dec 1997 | A |
5697281 | Eggers et al. | Dec 1997 | A |
5697536 | Eggers et al. | Dec 1997 | A |
5697882 | Eggers et al. | Dec 1997 | A |
5697909 | Eggers et al. | Dec 1997 | A |
5697927 | Imran et al. | Dec 1997 | A |
5700262 | Acosta et al. | Dec 1997 | A |
5720287 | Chapelon et al. | Feb 1998 | A |
5725494 | Brisken | Mar 1998 | A |
5728062 | Brisken | Mar 1998 | A |
5733280 | Sherman et al. | Mar 1998 | A |
5733315 | Burdette et al. | Mar 1998 | A |
5735811 | Brisken | Apr 1998 | A |
5735847 | Gough et al. | Apr 1998 | A |
5738680 | Mueller et al. | Apr 1998 | A |
5743904 | Edwards | Apr 1998 | A |
5746737 | Saadat | May 1998 | A |
5752969 | Cunci et al. | May 1998 | A |
5762066 | Law et al. | Jun 1998 | A |
5762616 | Talish | Jun 1998 | A |
5766153 | Eggers et al. | Jun 1998 | A |
5776092 | Farin et al. | Jul 1998 | A |
5785705 | Baker | Jul 1998 | A |
5800378 | Edwards et al. | Sep 1998 | A |
5807237 | Tindel | Sep 1998 | A |
5807392 | Eggers | Sep 1998 | A |
5810764 | Eggers et al. | Sep 1998 | A |
5817021 | Reichenberger | Oct 1998 | A |
5843019 | Eggers et al. | Dec 1998 | A |
5843021 | Edwards et al. | Dec 1998 | A |
5846218 | Brisken et al. | Dec 1998 | A |
5849011 | Jones et al. | Dec 1998 | A |
5855576 | LeVeen et al. | Jan 1999 | A |
5860951 | Eggers et al. | Jan 1999 | A |
5865788 | Edwards et al. | Feb 1999 | A |
5868740 | LeVeen et al. | Feb 1999 | A |
5871469 | Eggers et al. | Feb 1999 | A |
5871470 | McWha | Feb 1999 | A |
5871481 | Kannenberg et al. | Feb 1999 | A |
5873855 | Eggers et al. | Feb 1999 | A |
5873877 | McGaffigan et al. | Feb 1999 | A |
5888198 | Eggers et al. | Mar 1999 | A |
5891095 | Eggers et al. | Apr 1999 | A |
5895370 | Edwards et al. | Apr 1999 | A |
5902272 | Eggers et al. | May 1999 | A |
5904681 | West, Jr. | May 1999 | A |
5931805 | Brisken | Aug 1999 | A |
5935123 | Edwards et al. | Aug 1999 | A |
5941722 | Chen | Aug 1999 | A |
5941876 | Nardella et al. | Aug 1999 | A |
5944715 | Goble et al. | Aug 1999 | A |
5948007 | Starkebaum et al. | Sep 1999 | A |
5948008 | Daikuzono | Sep 1999 | A |
5954716 | Sharkey et al. | Sep 1999 | A |
5964727 | Edwards et al. | Oct 1999 | A |
5983141 | Sluijter et al. | Nov 1999 | A |
5997497 | Nita et al. | Dec 1999 | A |
6001095 | de la Rama et al. | Dec 1999 | A |
6007533 | Casscells et al. | Dec 1999 | A |
6007570 | Sharkey et al. | Dec 1999 | A |
6012457 | Lesh | Jan 2000 | A |
6016452 | Kasevich | Jan 2000 | A |
6017356 | Frederick et al. | Jan 2000 | A |
6019776 | Preissman et al. | Feb 2000 | A |
6022334 | Edwards et al. | Feb 2000 | A |
6024733 | Eggers et al. | Feb 2000 | A |
6024740 | Lesh et al. | Feb 2000 | A |
6030402 | Thompson et al. | Feb 2000 | A |
6032674 | Eggers et al. | Mar 2000 | A |
6033411 | Preissman et al. | Mar 2000 | A |
6035238 | Ingle et al. | Mar 2000 | A |
6045532 | Eggers et al. | Apr 2000 | A |
6050995 | Durgin | Apr 2000 | A |
6053172 | Hovda et al. | Apr 2000 | A |
6053909 | Shadduck | Apr 2000 | A |
6063079 | Hovda et al. | May 2000 | A |
6066134 | Eggers et al. | May 2000 | A |
6068642 | Johnson et al. | May 2000 | A |
6073051 | Sharkey et al. | Jun 2000 | A |
6086585 | Hovda et al. | Jul 2000 | A |
6090105 | Zepeda et al. | Jul 2000 | A |
6095149 | Sharkey et al. | Aug 2000 | A |
6099514 | Sharkey et al. | Aug 2000 | A |
6102046 | Weinstein et al. | Aug 2000 | A |
6104957 | Alo et al. | Aug 2000 | A |
6105581 | Eggers et al. | Aug 2000 | A |
6109268 | Thaliyal et al. | Aug 2000 | A |
6113597 | Eggers et al. | Sep 2000 | A |
6117101 | Diederich et al. | Sep 2000 | A |
6117109 | Eggers et al. | Sep 2000 | A |
6117128 | Gregory | Sep 2000 | A |
6120467 | Schallhorn | Sep 2000 | A |
6122549 | Sharkey et al. | Sep 2000 | A |
6139545 | Utley et al. | Oct 2000 | A |
6142992 | Cheng et al. | Nov 2000 | A |
6143019 | Motamedi et al. | Nov 2000 | A |
6146380 | Racz et al. | Nov 2000 | A |
6149620 | Baker et al. | Nov 2000 | A |
6159194 | Eggers et al. | Dec 2000 | A |
6159208 | Hovda et al. | Dec 2000 | A |
6161048 | Sluijter et al. | Dec 2000 | A |
6164283 | Lesh | Dec 2000 | A |
6165172 | Farley et al. | Dec 2000 | A |
6168593 | Sharkey et al. | Jan 2001 | B1 |
6176857 | Ashley | Jan 2001 | B1 |
6179824 | Eggers et al. | Jan 2001 | B1 |
6179836 | Eggers et al. | Jan 2001 | B1 |
6183469 | Thaliyal et al. | Feb 2001 | B1 |
6190381 | Olsen et al. | Feb 2001 | B1 |
6190383 | Schmaltz et al. | Feb 2001 | B1 |
6193715 | Wrublewski et al. | Feb 2001 | B1 |
6203542 | Ellsberry et al. | Mar 2001 | B1 |
6206842 | Tu et al. | Mar 2001 | B1 |
6210393 | Brisken | Apr 2001 | B1 |
6210402 | Olsen et al. | Apr 2001 | B1 |
6210415 | Bester | Apr 2001 | B1 |
6221038 | Brisken | Apr 2001 | B1 |
6224592 | Eggers et al. | May 2001 | B1 |
6228046 | Brisken | May 2001 | B1 |
6228078 | Eggers et al. | May 2001 | B1 |
6228082 | Baker et al. | May 2001 | B1 |
6231571 | Ellman et al. | May 2001 | B1 |
6231615 | Preissman | May 2001 | B1 |
6235020 | Cheng et al. | May 2001 | B1 |
6235024 | Tu | May 2001 | B1 |
6238391 | Olsen et al. | May 2001 | B1 |
6241665 | Negus et al. | Jun 2001 | B1 |
6241725 | Cosman | Jun 2001 | B1 |
6245064 | Lesh et al. | Jun 2001 | B1 |
6246912 | Sluijter et al. | Jun 2001 | B1 |
6254553 | Lidgren et al. | Jul 2001 | B1 |
6254599 | Lesh et al. | Jul 2001 | B1 |
6254600 | Willink et al. | Jul 2001 | B1 |
6258086 | Ashley et al. | Jul 2001 | B1 |
6259952 | Sluijter | Jul 2001 | B1 |
6261311 | Sharkey et al. | Jul 2001 | B1 |
6264650 | Hovda et al. | Jul 2001 | B1 |
6264651 | Underwood et al. | Jul 2001 | B1 |
6264652 | Eggers et al. | Jul 2001 | B1 |
6264659 | Ross et al. | Jul 2001 | B1 |
6267770 | Truwit | Jul 2001 | B1 |
6277112 | Underwood et al. | Aug 2001 | B1 |
6277122 | McGahan et al. | Aug 2001 | B1 |
6280441 | Ryan | Aug 2001 | B1 |
6283961 | Underwood et al. | Sep 2001 | B1 |
6287114 | Meller et al. | Sep 2001 | B1 |
6287272 | Brisken et al. | Sep 2001 | B1 |
6287304 | Eggers et al. | Sep 2001 | B1 |
6290715 | Sharkey et al. | Sep 2001 | B1 |
6296619 | Brisken et al. | Oct 2001 | B1 |
6296636 | Cheng et al. | Oct 2001 | B1 |
6296638 | Davison et al. | Oct 2001 | B1 |
6305378 | Lesh et al. | Oct 2001 | B1 |
6309387 | Eggers et al. | Oct 2001 | B1 |
6309420 | Preissman | Oct 2001 | B1 |
6312408 | Eggers et al. | Nov 2001 | B1 |
6312426 | Goldberg et al. | Nov 2001 | B1 |
6322549 | Eggers et al. | Nov 2001 | B1 |
6348055 | Preissman | Feb 2002 | B1 |
6355032 | Hovda et al. | Mar 2002 | B1 |
6363937 | Hovda et al. | Apr 2002 | B1 |
6379351 | Thaliyal et al. | Apr 2002 | B1 |
6383190 | Preissman | May 2002 | B1 |
6391025 | Weinstein et al. | May 2002 | B1 |
6416507 | Eggers et al. | Jul 2002 | B1 |
6416508 | Eggers et al. | Jul 2002 | B1 |
6423059 | Hanson et al. | Jul 2002 | B1 |
6432103 | Ellsberry et al. | Aug 2002 | B1 |
6436060 | Talish | Aug 2002 | B1 |
6451013 | Bays et al. | Sep 2002 | B1 |
6454727 | Burbank et al. | Sep 2002 | B1 |
6461350 | Underwood et al. | Oct 2002 | B1 |
6461354 | Olsen et al. | Oct 2002 | B1 |
6464695 | Hovda et al. | Oct 2002 | B2 |
6468270 | Hovda et al. | Oct 2002 | B1 |
6468274 | Alleyne et al. | Oct 2002 | B1 |
6478793 | Cosman et al. | Nov 2002 | B1 |
6482201 | Olsen et al. | Nov 2002 | B1 |
6500173 | Underwood et al. | Dec 2002 | B2 |
6527759 | Tachibana et al. | Mar 2003 | B1 |
6540741 | Underwood et al. | Apr 2003 | B1 |
6544261 | Ellsberry et al. | Apr 2003 | B2 |
6557559 | Eggers et al. | May 2003 | B1 |
6558385 | McClurken et al. | May 2003 | B1 |
6560486 | Osorio et al. | May 2003 | B1 |
6575968 | Eggers et al. | Jun 2003 | B1 |
6582423 | Thaliyal et al. | Jun 2003 | B1 |
6585656 | Masters | Jul 2003 | B2 |
6589237 | Woloszko et al. | Jul 2003 | B2 |
6595990 | Weinstein et al. | Jul 2003 | B1 |
6602248 | Sharps et al. | Aug 2003 | B1 |
6622731 | Daniel et al. | Sep 2003 | B2 |
6632193 | Davison et al. | Oct 2003 | B1 |
6632220 | Eggers et al. | Oct 2003 | B1 |
6659106 | Hovda et al. | Dec 2003 | B1 |
6699242 | Heggeness | Mar 2004 | B2 |
6726684 | Woloszko et al. | Apr 2004 | B1 |
6736835 | Pellegrino et al. | May 2004 | B2 |
6746447 | Davison et al. | Jun 2004 | B2 |
6749604 | Eggers et al. | Jun 2004 | B1 |
6758846 | Goble et al. | Jul 2004 | B2 |
6770071 | Woloszko et al. | Aug 2004 | B2 |
6772012 | Ricart et al. | Aug 2004 | B2 |
6773431 | Eggers et al. | Aug 2004 | B2 |
6827716 | Ryan et al. | Dec 2004 | B2 |
6832996 | Woloszko et al. | Dec 2004 | B2 |
6837887 | Woloszko et al. | Jan 2005 | B2 |
6837888 | Ciarrocca et al. | Jan 2005 | B2 |
6863672 | Reiley et al. | Mar 2005 | B2 |
6875219 | Arramon et al. | Apr 2005 | B2 |
6881214 | Cosman et al. | Apr 2005 | B2 |
6896674 | Woloszko et al. | May 2005 | B1 |
6907884 | Pellegrino et al. | Jun 2005 | B2 |
6915806 | Pacek et al. | Jul 2005 | B2 |
6922579 | Taimisto et al. | Jul 2005 | B2 |
6923813 | Phillips et al. | Aug 2005 | B2 |
6960204 | Eggers et al. | Nov 2005 | B2 |
6974453 | Woloszko et al. | Dec 2005 | B2 |
7048743 | Miller et al. | May 2006 | B2 |
7090672 | Underwood et al. | Aug 2006 | B2 |
7131969 | Hovda et al. | Nov 2006 | B1 |
7177678 | Osorio et al. | Feb 2007 | B1 |
7179255 | Lettice et al. | Feb 2007 | B2 |
7186234 | Dahla et al. | Mar 2007 | B2 |
7192428 | Eggers et al. | Mar 2007 | B2 |
7201731 | Lundquist et al. | Apr 2007 | B1 |
7201750 | Eggers et al. | Apr 2007 | B1 |
7211055 | Diederich | May 2007 | B2 |
7217268 | Eggers et al. | May 2007 | B2 |
7258690 | Sutton et al. | Aug 2007 | B2 |
7270659 | Ricart et al. | Sep 2007 | B2 |
7270661 | Dahla et al. | Sep 2007 | B2 |
7276063 | Davison et al. | Oct 2007 | B2 |
7294127 | Leung et al. | Nov 2007 | B2 |
7318823 | Sharps et al. | Jan 2008 | B2 |
7326203 | Papineau et al. | Feb 2008 | B2 |
7331957 | Woloszko et al. | Feb 2008 | B2 |
RE40156 | Sharps et al. | Mar 2008 | E |
7346391 | Osorio et al. | Mar 2008 | B1 |
7386350 | Vilims | Jun 2008 | B2 |
7387625 | Hovda et al. | Jun 2008 | B2 |
7393351 | Woloszko et al. | Jul 2008 | B2 |
7422585 | Eggers et al. | Sep 2008 | B1 |
7429262 | Woloszko et al. | Sep 2008 | B2 |
7435247 | Woloszko et al. | Oct 2008 | B2 |
7442191 | Hovda et al. | Oct 2008 | B2 |
7468059 | Eggers et al. | Dec 2008 | B2 |
7480533 | Cosman et al. | Jan 2009 | B2 |
7502652 | Gaunt et al. | Mar 2009 | B2 |
7507236 | Eggers et al. | Mar 2009 | B2 |
7553307 | Bleich et al. | Jun 2009 | B2 |
7555343 | Bleich | Jun 2009 | B2 |
7645277 | McClurken et al. | Jan 2010 | B2 |
7738968 | Bleich | Jun 2010 | B2 |
7740631 | Bleich et al. | Jun 2010 | B2 |
7749218 | Pellegrino et al. | Jul 2010 | B2 |
7819826 | Diederich et al. | Oct 2010 | B2 |
7819869 | Godara et al. | Oct 2010 | B2 |
7824398 | Woloszko et al. | Nov 2010 | B2 |
7824404 | Godara et al. | Nov 2010 | B2 |
7857813 | Schmitz et al. | Dec 2010 | B2 |
7901403 | Woloszko et al. | Mar 2011 | B2 |
7909827 | Reiley et al. | Mar 2011 | B2 |
7917222 | Osorio et al. | Mar 2011 | B1 |
7918849 | Bleich et al. | Apr 2011 | B2 |
7945331 | Vilims | May 2011 | B2 |
7963915 | Bleich | Jun 2011 | B2 |
8066702 | Rittman, III et al. | Nov 2011 | B2 |
8083736 | McClurken et al. | Dec 2011 | B2 |
8100896 | Podhajsky | Jan 2012 | B2 |
8192424 | Woloszko | Jun 2012 | B2 |
8192435 | Bleich et al. | Jun 2012 | B2 |
8265747 | Rittman, III et al. | Sep 2012 | B2 |
8282628 | Paul et al. | Oct 2012 | B2 |
8292887 | Woloszko et al. | Oct 2012 | B2 |
8323279 | Dahla et al. | Dec 2012 | B2 |
8355799 | Marion et al. | Jan 2013 | B2 |
8361067 | Pellegrino et al. | Jan 2013 | B2 |
8414509 | Diederich et al. | Apr 2013 | B2 |
8414571 | Pellegrino et al. | Apr 2013 | B2 |
8419730 | Pellegrino et al. | Apr 2013 | B2 |
8419731 | Pellegrino et al. | Apr 2013 | B2 |
8425507 | Pellegrino et al. | Apr 2013 | B2 |
8535309 | Pellegrino et al. | Sep 2013 | B2 |
8597301 | Mitchell | Dec 2013 | B2 |
8613744 | Pellegrino et al. | Dec 2013 | B2 |
8623014 | Pellegrino et al. | Jan 2014 | B2 |
8628528 | Pellegrino et al. | Jan 2014 | B2 |
8808284 | Pellegrino et al. | Aug 2014 | B2 |
8882764 | Pellegrino et al. | Nov 2014 | B2 |
8992522 | Pellegrino et al. | Mar 2015 | B2 |
8992523 | Pellegrino et al. | Mar 2015 | B2 |
9017325 | Pellegrino et al. | Apr 2015 | B2 |
9023038 | Pellegrino et al. | May 2015 | B2 |
9039701 | Pellegrino et al. | May 2015 | B2 |
9173676 | Pellegrino et al. | Nov 2015 | B2 |
9259241 | Pellegrino et al. | Feb 2016 | B2 |
9265522 | Pellegrino et al. | Feb 2016 | B2 |
9421064 | Pellegrino et al. | Aug 2016 | B2 |
20010001314 | Davison et al. | May 2001 | A1 |
20010001811 | Burney et al. | May 2001 | A1 |
20010020167 | Woloszko et al. | Sep 2001 | A1 |
20010023348 | Ashley et al. | Sep 2001 | A1 |
20010025176 | Ellsberry et al. | Sep 2001 | A1 |
20010025177 | Woloszko et al. | Sep 2001 | A1 |
20010029370 | Hodva et al. | Oct 2001 | A1 |
20010029373 | Baker et al. | Oct 2001 | A1 |
20010032001 | Ricart et al. | Oct 2001 | A1 |
20010047167 | Heggeness | Nov 2001 | A1 |
20010049522 | Eggers et al. | Dec 2001 | A1 |
20010051802 | Woloszko et al. | Dec 2001 | A1 |
20010056280 | Underwood et al. | Dec 2001 | A1 |
20020016600 | Cosman | Feb 2002 | A1 |
20020019626 | Sharkey et al. | Feb 2002 | A1 |
20020026186 | Woloszko et al. | Feb 2002 | A1 |
20020052600 | Davison et al. | May 2002 | A1 |
20020068930 | Tasto et al. | Jun 2002 | A1 |
20020095144 | Carl | Jul 2002 | A1 |
20020095151 | Dahla et al. | Jul 2002 | A1 |
20020095152 | Ciarrocca et al. | Jul 2002 | A1 |
20020099366 | Dahla et al. | Jul 2002 | A1 |
20020120259 | Lettice et al. | Aug 2002 | A1 |
20020147444 | Shah et al. | Oct 2002 | A1 |
20020151885 | Underwood et al. | Oct 2002 | A1 |
20020188284 | To et al. | Dec 2002 | A1 |
20020188290 | Sharkey et al. | Dec 2002 | A1 |
20020193789 | Underwood et al. | Dec 2002 | A1 |
20030009164 | Woloszko et al. | Jan 2003 | A1 |
20030014047 | Woloszko et al. | Jan 2003 | A1 |
20030028189 | Woloszko et al. | Feb 2003 | A1 |
20030040742 | Underwood et al. | Feb 2003 | A1 |
20030055418 | Tasto et al. | Mar 2003 | A1 |
20030083592 | Faciszewski | May 2003 | A1 |
20030084907 | Pacek et al. | May 2003 | A1 |
20030097126 | Woloszko et al. | May 2003 | A1 |
20030097129 | Davison et al. | May 2003 | A1 |
20030130655 | Woloszko et al. | Jul 2003 | A1 |
20030158545 | Hovda et al. | Aug 2003 | A1 |
20030181963 | Pellegrino et al. | Sep 2003 | A1 |
20030208194 | Hovda et al. | Nov 2003 | A1 |
20030216725 | Woloszko et al. | Nov 2003 | A1 |
20030216726 | Eggers et al. | Nov 2003 | A1 |
20030225364 | Kraft | Dec 2003 | A1 |
20040006339 | Underwood et al. | Jan 2004 | A1 |
20040024399 | Sharps et al. | Feb 2004 | A1 |
20040054366 | Davison et al. | Mar 2004 | A1 |
20040064137 | Pellegrino et al. | Apr 2004 | A1 |
20040087937 | Eggers et al. | May 2004 | A1 |
20040133124 | Bates et al. | Jul 2004 | A1 |
20040162559 | Arramon | Aug 2004 | A1 |
20040193151 | To et al. | Sep 2004 | A1 |
20040220577 | Cragg et al. | Nov 2004 | A1 |
20040225228 | Ferree | Nov 2004 | A1 |
20040230190 | Dahla et al. | Nov 2004 | A1 |
20050004634 | Ricart et al. | Jan 2005 | A1 |
20050010203 | Edwards et al. | Jan 2005 | A1 |
20050010205 | Hovda et al. | Jan 2005 | A1 |
20050182417 | Pagano | Aug 2005 | A1 |
20050192564 | Cosman et al. | Sep 2005 | A1 |
20050209659 | Pellegrino et al. | Sep 2005 | A1 |
20050283148 | Janssen et al. | Dec 2005 | A1 |
20060004369 | Patel et al. | Jan 2006 | A1 |
20060064101 | Arramon | Mar 2006 | A1 |
20060095026 | Ricart et al. | May 2006 | A1 |
20060095028 | Bleich | May 2006 | A1 |
20060122458 | Bleich | Jun 2006 | A1 |
20060129101 | McGuckin | Jun 2006 | A1 |
20060178670 | Woloszko et al. | Aug 2006 | A1 |
20060229625 | Truckai et al. | Oct 2006 | A1 |
20060253117 | Hovda et al. | Nov 2006 | A1 |
20060264957 | Cragg et al. | Nov 2006 | A1 |
20060265014 | Demarais et al. | Nov 2006 | A1 |
20060276749 | Selmon et al. | Dec 2006 | A1 |
20070118142 | Krueger et al. | May 2007 | A1 |
20070129715 | Eggers et al. | Jun 2007 | A1 |
20070149966 | Dahla et al. | Jun 2007 | A1 |
20070179497 | Eggers et al. | Aug 2007 | A1 |
20070260237 | Sutton et al. | Nov 2007 | A1 |
20080004621 | Dahla et al. | Jan 2008 | A1 |
20080004675 | King et al. | Jan 2008 | A1 |
20080009847 | Ricart et al. | Jan 2008 | A1 |
20080021447 | Davison et al. | Jan 2008 | A1 |
20080021463 | Georgy | Jan 2008 | A1 |
20080058707 | Ashley et al. | Mar 2008 | A1 |
20080114364 | Goldin et al. | May 2008 | A1 |
20080119844 | Woloszko et al. | May 2008 | A1 |
20080119846 | Rioux | May 2008 | A1 |
20080132890 | Woloszko et al. | Jun 2008 | A1 |
20080161804 | Rioux et al. | Jul 2008 | A1 |
20080275458 | Bleich et al. | Nov 2008 | A1 |
20080294166 | Goldin et al. | Nov 2008 | A1 |
20090030308 | Bradford et al. | Jan 2009 | A1 |
20090069807 | Eggers et al. | Mar 2009 | A1 |
20090105775 | Mitchell et al. | Apr 2009 | A1 |
20090118731 | Young et al. | May 2009 | A1 |
20090131867 | Liu et al. | May 2009 | A1 |
20090131886 | Liu et al. | May 2009 | A1 |
20090222053 | Gaunt et al. | Sep 2009 | A1 |
20090312764 | Marino | Dec 2009 | A1 |
20100016929 | Prochazka | Jan 2010 | A1 |
20100023006 | Ellman | Jan 2010 | A1 |
20100082033 | Germain | Apr 2010 | A1 |
20100094269 | Pellegrino et al. | Apr 2010 | A1 |
20100114098 | Carl | May 2010 | A1 |
20100145424 | Podhajsky et al. | Jun 2010 | A1 |
20100185161 | Pellegrino et al. | Jul 2010 | A1 |
20100211076 | Germain et al. | Aug 2010 | A1 |
20100222777 | Sutton et al. | Sep 2010 | A1 |
20100298832 | Lau et al. | Nov 2010 | A1 |
20100324506 | Pellegrino et al. | Dec 2010 | A1 |
20110022133 | Diederich et al. | Jan 2011 | A1 |
20110034884 | Pellegrino et al. | Feb 2011 | A9 |
20110040362 | Godara et al. | Feb 2011 | A1 |
20110077628 | Hoey et al. | Mar 2011 | A1 |
20110087314 | Diederich et al. | Apr 2011 | A1 |
20110196361 | Vilims | Aug 2011 | A1 |
20110264098 | Cobbs | Oct 2011 | A1 |
20110276001 | Schultz et al. | Nov 2011 | A1 |
20110319765 | Gertner et al. | Dec 2011 | A1 |
20120029420 | Rittman, III et al. | Feb 2012 | A1 |
20120123427 | McGuckin, Jr. | May 2012 | A1 |
20120196251 | Taft et al. | Aug 2012 | A1 |
20120197344 | Taft et al. | Aug 2012 | A1 |
20120203219 | Evans et al. | Aug 2012 | A1 |
20120226273 | Nguyen et al. | Sep 2012 | A1 |
20120239050 | Linderman | Sep 2012 | A1 |
20120330180 | Pellegrino et al. | Dec 2012 | A1 |
20120330300 | Pellegrino et al. | Dec 2012 | A1 |
20120330301 | Pellegrino et al. | Dec 2012 | A1 |
20130006232 | Pellegrino et al. | Jan 2013 | A1 |
20130006233 | Pellegrino et al. | Jan 2013 | A1 |
20130012933 | Pellegrino et al. | Jan 2013 | A1 |
20130012935 | Pellegrino et al. | Jan 2013 | A1 |
20130012936 | Pellegrino et al. | Jan 2013 | A1 |
20130103022 | Sutton et al. | Apr 2013 | A1 |
20130261507 | Diederich et al. | Oct 2013 | A1 |
20130324994 | Pellegrino et al. | Dec 2013 | A1 |
20130324996 | Pellegrino et al. | Dec 2013 | A1 |
20130324997 | Pellegrino et al. | Dec 2013 | A1 |
20140039500 | Pellegrino et al. | Feb 2014 | A1 |
20140288544 | Diederich et al. | Sep 2014 | A1 |
20140336630 | Woloszko et al. | Nov 2014 | A1 |
20150005614 | Heggeness et al. | Jan 2015 | A1 |
20150045783 | Edidin | Feb 2015 | A1 |
20150057658 | Sutton et al. | Feb 2015 | A1 |
20150164546 | Pellegrino et al. | Jun 2015 | A1 |
20150297246 | Patel et al. | Oct 2015 | A1 |
20150335349 | Pellegrino et al. | Nov 2015 | A1 |
20150335382 | Pellegrino et al. | Nov 2015 | A1 |
20150342670 | Pellegrino et al. | Dec 2015 | A1 |
20160278791 | Pellegrino et al. | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
43 23 585 | Jan 1995 | DE |
0 040 658 | Dec 1981 | EP |
0040658 | Dec 1981 | EP |
0584959 | Mar 1994 | EP |
0597463 | May 1994 | EP |
1 013 228 | Jun 2000 | EP |
1013228 | Jun 2000 | EP |
1 059 067 | Dec 2000 | EP |
1059067 | Dec 2000 | EP |
1059087 | Dec 2000 | EP |
6-47058 | Feb 1994 | JP |
6-47058 | Feb 1994 | JP |
10-290806 | Nov 1998 | JP |
2001-037760 | Feb 2001 | JP |
2005-169012 | Jun 2005 | JP |
9636289 | Nov 1996 | WO |
WO 9636289 | Nov 1996 | WO |
98-27876 | Jul 1998 | WO |
WO 9827876 | Jul 1998 | WO |
WO 9834550 | Aug 1998 | WO |
WO 9919025 | Apr 1999 | WO |
WO 9944519 | Sep 1999 | WO |
WO 9948621 | Sep 1999 | WO |
WO 0021448 | Apr 2000 | WO |
WO 0033909 | Jun 2000 | WO |
WO 0049978 | Aug 2000 | WO |
WO 0056237 | Sep 2000 | WO |
WO 0067648 | Nov 2000 | WO |
WO 0067656 | Nov 2000 | WO |
WO 0101877 | Jan 2001 | WO |
WO 0126570 | Apr 2001 | WO |
WO 0145579 | Jun 2001 | WO |
0157655 | Aug 2001 | WO |
WO 0157655 | Aug 2001 | WO |
WO 0205699 | Jan 2002 | WO |
WO0205897 | Jan 2002 | WO |
0228302 | Apr 2002 | WO |
WO 0228302 | Apr 2002 | WO |
02054941 | Jul 2002 | WO |
WO 02054941 | Jul 2002 | WO |
02-067797 | Sep 2002 | WO |
WO 02067797 | Sep 2002 | WO |
WO 02096304 | Dec 2002 | WO |
WO2007031264 | Mar 2007 | WO |
WO2008001385 | Jan 2008 | WO |
WO2008008522 | Jan 2008 | WO |
WO2008121259 | Oct 2008 | WO |
WO 2008140519 | Nov 2008 | WO |
WO2013101772 | Jul 2013 | WO |
Entry |
---|
Mary S. Sherman; The Nerves of Bone, The Journal of Bone and Joint Surgery, Apr. 1963, pp. 522-528, vol. 45-A, No. 3. |
Michael H. Heggeness, et al., The Trabecular Anatomy of Thoracolumbar Vertebrae: Implications for Burst Fractures, Journal of Anatomy, 1997, pp. 309-312, vol. 191, Great Britain. |
J.B. Martin, et al., Vertebroplasty: Clinical Experience and Follow-up Results, Bone, Aug. 1999, pp. 11S-15S, vol. 25, No. 2, Supplement. |
H. Deramond, et al., Temperature Elevation Caused by Bone Cement Polymerization During Vertebroplasty, Bone, Aug. 1999, pp. 17S-21S, vol. 25, No. 2, Supplement. |
Cosman, E.R. et al. Theoretical Aspects of Radiofrequency Lesions in the Dorsal Root Entry Zone. Neurosurgery, vol. 1, No. 6, 1984, pp. 945-950. |
Massad, Malek M.D. et al.; Endoscopic Thoracic Sympathectomy: Evaluation of Pulsatile Laser, Non-Pulsatile Laser, and Radiofrequency-Generated Thermocoagulation; Lasers in Surgery and Medicine; 1991; pp. 18-25. |
Kleinstueck, Frank S. et al.; Acute Biomechanical and Histological Effects of Intradiscal Electrothermal Therapy on Human Lumbar Discs; Spine vol. 26, No. 20, pp. 2198-2207; 2001, Lippincott Williams & Wilkins, Inc. |
Heggeness, Michael H. et al. Discography Causes End Plate Deflection; Spine vol. 18, No. 8, pp. 1050-1053, 1993, J.B. Lippincott Company. |
Letcher, Frank S. et al.; The Effect of Radiofrequency Current and Heat on Peripheral Nerve Action Potential in the Cat; U.S. Naval Hospital, Philadelphia, PA (1968). |
Houpt, Jonathan C. et al.; Experimental Study of Temperature Distributions and Thermal Transport During Radiofrequency Current Therapy of the Intervertebral Disc; Spine vol. 21, No. 15, pp. 1808-1813, 1996, Lippincott-Raven Publishers. |
Lundskog, Jan; Heat and Bone Tissue-/an experimental investigation of the thermal properties of bone tissue and threshold levels for thermal injury; Scandinavian Journal of Plastic and Reconstructive Surgery Supplemental 9, From the Laboratory of Experimental Biology, Department of anatomy, University of Gothenburg, Gothenburg, Sweden, Goteborg (1972). |
Antonacci, M. Darryl et al.; Innervation of the Human Vertebral Body: A Histologic Study; Journal of Spinal Disorder, vol. 11, No. 6, pp. 526-531, 1998 Lippincott Williams & Wilkins, Philadelphia. |
Arnoldi, Carl C.; Intraosseous Hypertension—A Possible Cause of Low Back Pain?; Clinical Orthopedics and Related Research, No. 115, Mar.-Apr. 1976. |
Esses, Stephen I. et al.; Intraosseous Vertebral Body Pressures; Spine vol. 17 No. 6 Supplement (1992). |
Troussier, B. et al.; Percutaneous Intradiscal Radio-Frequency Thermocoagulation A Cadaveric Study; Spine vol. 20, No. 15, pp. 1713-1718, 1995, Lippincott-Raven Publishers. |
Choy, Daniel SS.J. et al.; Percutaneous Laser Disc Decompression, A New Therapeutic Modality; Spine vol. 17, No. 8 (1992). |
Shealy, C. Norman; Percutaneous radiofrequency denervation of spinal facets: Treatment for chronic back pain and sciatica; Journal of Neurosurgery/vol. 43/Oct. 1975. |
Depuy, Damian E.; Radiofrequency Ablation: An Outpatient Percutaneous Treatment; Medicine and Health/Rhode Island vol. 82, No. 6, Jun. 1999. |
Rashbaum, Ralph F.; Radiofrequency Facet Denervation A Treatment alternative in Refractory Low Back Pain with or without Leg Pain; Orthopedic Clinics of North America—vol. 14, No. 3, Jul. 1983. |
Lehmann, Justus F. et al.; Selective Heating Effects of Ultrasound in Human Beings; Archives of Physical Medicine & Rehabilitation Jun. 1966. |
Hanai, Kenji et al.; Simultaneous Measurement of Intraosseous and Cerebrospinal Fluid Pressures in the Lumbar Region; Spine vol. 10, No. 1 (1985). |
Bogduk, Nikolai, et al.; Technical Limitations to the efficacy of Radiofrequency Neurotomy for Spinal Pain; Neurosurgery vol. 20, No. 4 (1987). |
Mehta, Mark et al.; The treatment of chronic back pain; Anaesthesia, 1979, vol. 34, pp. 768-775. |
Deardorff, Dana L. et al.; Ultrasound applicators with internal cooling for interstitial thermal therapy; SPIE vol. 3594 (1999). |
Diederich, Chris J. et al.; Ultrasound Catheters for Circumferential Cardiac Ablation; SPIE vol. 3594 (1999). |
Diederich C J, et al. “IDTT Therapy in Cadaveric Lumbar Spine: Temperature and thermal dose distributions, Thermal Treatment of Tissue: Energy Delivery and Assessment,” Thomas P. Ryan, Editor, Proceedings of SPIE vol. 4247:104-108 (2001). |
Nau, William H., Ultrasound interstitial thermal therapy (USITT) in the prostate; SPIE vol. 3594 (1999). |
The AVAmax System—Cardinal Health Special Procedures, Lit. No. 25P0459-01—www.cardinal.com (allegedly dated 2007). |
Kopecky, Kenyon K. et al. “Side-Exiting Coaxial Needle for Aspiration Biopsy”—AJR—1996; 167, pp. 661-662. |
A Novel Approach for Treating Chronic Lower Back Pain, Abstract for Presentation at North American Spine Society 26th Annual Meeting in Chicago, IL on Nov. 4, 2011. |
Stanton, Terry, “Can Nerve Ablation Reduce Chronic Back Pain ?” AAOS Now Jan. 2012. |
Ryan et al., “Three-Dimensional Finite Element Simulations of Vertebral Body Thermal Treatment,” Thermal Treatment of Tissue: Energy Delivery and Assessment III, edited by Thomas P. Ryan, Proceedings of SPIE, vol. 5698 (SPIE, Bellingham, WA, 2005) pp. 137-155. |
Bergeron et al., “Fluoroscopic-guided radiofrequency ablation of the basivertebral nerve: application and analysis with multiple imaging modalities in an ovine model,” Thermal Treatment of Tissue: Energy Delivery and Assessment III, edited by Thomas P. Ryan, Proceedings of SPIE, vol. 5698 (SPIE, Bellingham, WA, 2005) pp. 156-167. |
Hoopes et al., “Radiofrequency Ablation of The Basivertebral Nerve as a Potential Treatment of Back Pain: Pathologic Assessment in an Ovine Model,” Thermal Treatment of Tissue: Energy Delivery and Assessment III, edited by Thomas P. Ryan, Proceedings of SPIE, vol. 5698 (SPIE, Bellingham, WA, 2005) pp. 168-180. |
FDA Response to 510(k) Submission by Relievant Medsystems, Inc. submitted on Sep. 27, 2007 (date stamped on Oct. 5, 2007) and associated documents. |
Ullrich, Jr., Peter F., “Lumbar Spinal Fusion Surgery” Jan. 9, 2013, Spine-Health (available via wayback machine Internet archive at http://web.archive.org/web/20130109095419/http://www/spine-health .com/treatment/spinal-fusion/lumbar-spinal-fusion-surgery). |
E.R. Cosman et al. Theoretical aspects of radiofrequency lesions in the dorsal root entry zone. Neurosurgery, vol. 15, No. 6, pp. 945-950 (1984). |
D.E. Dupuy et al. Radiofrequency ablation of spinal tumors: Temperature distribution in the spinal canal AJR, vol. 175, pp. 1263-1266, Nov. 2000. |
S.N. Goldberg et al. Tissue ablation with radiofrequency: Effect of probe size, gauge, duration, and temperature on lesion volume, Acad. Radiol., vol. 2, pp. 399-404 (1995). |
M. Massad et al.; Endoscopic Thoracic Sympathectomy: Evaluation of pulsatile laser, non-pulsatile laser, and radiofrequency-generated thermocoagulation; lasers in surgery and medicine; pp. 18-25 (1991). |
D.I. Rosenthal. Seminars in Musculoskeletal Radiology, vol. 1, No. 2., pp. 265-272 (1997). |
L. Solbiati et al. Hepatic metastases: Percutaneous radio-frequency ablation with cooled-tip electrodes. Interventional Radiology, vol. 205, No. 2, pp. 367-373 (1997). |
C.L. Tillotson et al. Controlled thermal injury of bone: Report of a percutaneous technique using radiofrequency electrode and generator. Investigative Radiology, Nov. 1989, pp. 888-892. |
EP Search Report dated Jan. 14, 2004, for EPO Application No. EP 03 25 6168. |
Number | Date | Country | |
---|---|---|---|
Parent | 10260879 | Sep 2002 | US |
Child | 11123766 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11123766 | May 2005 | US |
Child | 13541591 | US |