Provided are a method of treating or preventing eye disease, using a Cas9 protein and a guide RNA targeting VEGF-A, and a ribonucleoprotein including a Cas9 protein and a guide RNA targeting VEGF-A.
RNA-guided genome surgery or RNA-guided genome editing using CRISPR-Cas9 nuclease is expected to be helpful for the therapy of various genetic diseases, but little is known about the therapeutic effects of CRISPR-Cas9 nuclease on non-genetic diseases.
One example representative of non-genetic diseases is macular degeneration (e.g., aged-related macular degeneration (AMD)). AMD is a major cause of blindness in the elderly population in advanced countries. Choroidal neovascularization (CNV) is a main pathological feature in neovascular AMD, and is principally caused by angiogenic cytokines such as vascular endothelial growth factor A (VEGF A). So far, development has mostly been made of monoclonal antibodies or aptamers targeting VEGF-A, as therapeutic agents for AMD. However, such anti-VEGF-A are problematic in that they must be administered seven times or more a year as VEGF-A is continually expressed and secreted in retinal cells.
Therefore, there is a need for the development of a more fundamental and long-lasting therapeutic technique for eye diseases.
Korean Patent No. 1 0-201 5-01 01 446 A (issued on Sep. 3, 2015)
The present specification proposes a technique that allows for the long-lasting or permanent therapy of eye diseases through the fundamental inactivation of VEGF-A or by lowering the level of VEGF-A to less than a pathologic threshold.
An aspect provides a therapeutic composition for prevention and/or treatment of an eye disease, including a VEGF-A gene-inactivating agent.
The VEGF-A gene-inactivating agent may be at least one selected from the group consisting of proteins, nucleic acid molecules (DNA and/or RNA), and chemical drugs, all capable of inactivating a VEGF-A gene. In one embodiment, the VEGF-A gene-inactivating agent may include a Cas9 protein and a guide RNA targeting a VEGF-A gene.
Another aspect provides a method of preventing and/or treating an eye disease, comprising a step of inactivating a VEGF-A gene. The step of inactivating a VEGF-A gene may be carried out by a step of administering a VEGF-A gene-inactivating agent to a subject in need of prevention and/or treatment of an eye disease. The VEGF-A gene inactivation may be performed by RNA-guided genome surgery or RNA-guided genome editing. In this regard, the step of inactivating a VEGF-A gene is carried out by a step of administering a Cas9 protein and a guide RNA targeting a VEGF-A gene to a subject in need of prevention and/or treatment of an eye disease.
Another aspect provides the use of a VEGF-A gene-inactivating agent in prevention and/or treatment of an eye diseases or in preparation of a therapeutic agent for an eye disease.
Another aspect provides a guide DNA for targeting a specific target site or target region of a VEGFA gene.
Another aspect provides a VEGFA gene-specific ribonucleoprotein (RNP) including a Cas9 protein and a guide RNA having a VEGFA gene-specific targeting sequence.
Another aspect provides a pharmaceutical composition including the guide RNA or the VEGFA gene-specific RNP.
Another aspect provides a method for treatment or prevention of an eye disease, including a step of administering the VEGFA gene-specific RNP to a subject in need of treatment and/or prevention of the eye disease.
The above and other aspects, features and advantages of the present invention will be more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which:
h is a graph showing indel frequencies induced by the delivery of either Vegfa-specific Cas9 RNPs containing four sgRNAs (Vegfa-1 sgRNA, Vegfa-2 sgRNA, Vegfa-3 sgRNA, and Vegfa-4 sgRNA) or plasmids carrying encoding sequences thereof;
The present invention provides a technique for treating an eye disease, for example, an eye disease associated with the overexpression of VEGF-A, using a gene editing method.
An aspect provides a composition for the prevention and/or treatment of an eye disease, including a VEGF-A gene-inactivating agent. The VEGF-A gene-inactivating agent may be at least one selected from the group consisting of proteins, nucleic acid molecules (DNA and/or RNA), and chemical drugs all of which can inactivate a VEGF-A gene. In one embodiment, the VEGF-A gene-inactivating agent may include a Cas9 protein and a guide RNA targeting a VEGF-A gene.
Another aspect provides a method of preventing and/or treating an eye disease, comprising a step of in activating a VEGF-A gene. The step of inactivating a VEGF-A gene may be carried out by a step of administering a VEGF-A gene-inactivating agent to a subject in need of prevention and/or treatment of an eye disease. The VEGF-A gene inactivation may be performed by RNA-guided genome surgery or RNA-guided genome editing. In this regard, the step of inactivating a VEGF-A gene may be carried out by administering a Cas9 protein and a guide RNA targeting a VEGF-A gene to a subject in need of prevention and/or treatment of an eye disease. The method may further include a step of identifying the subject in need of prevention and/or treatment of an eye disease, prior to the administering step. The VEGF-A gene-inactivating agent may be administered in a pharmaceutically effective amount. The VEGF-A gene-inactivating agent may be administered via various routes, for example, by local administration to ocular lesions or by subretinal injection.
Another aspect provides the use of a VEGF-A gene-inactivating agent in prevention and/or treatment of an eye disease or in preparation of a therapeutic agent for an eye disease.
The VEGF-A gene to be targeted for inactivation may be located in an eye, for example, an eye having a neovascular eye disease, particularly, in a lesion site of a neovascular eye disease.
The VEGF-A gene inactivation may be at least one selected from the group consisting of:
(1) deletion of an entire sequence or a 1-50 bp or 1-40 bp long consecutive or inconsecutive partial sequence of the VEGF-A gene;
(2) substitution of 1-20, 1-15, or 1-10 consecutive or inconsecutive nucleotides in the VEGF-A gene with nucleotides different from those in a wild-type VEGF-A gene;
(3) insertion (addition) of 1-20, 1-15, or 1-10 nucleotides into the VEGF-A gene, the nucleotides to be inserted each being independently selected from among A, T, C, and G; and (4) a combination thereof.
VEGF-A gene-inactivating agent may be at least one selected from the group consisting of proteins, nucleic acid molecules (DNA and/or RNA), and chemical drugs, all of which can inactivate a VEGF-A gene. In accordance with one embodiment, the VEGF-A gene-inactivating agent may include a Cas9 protein and a guide RNA targeting a VEGF-A gene. In this regard, the VEGF-A gene inactivation may be performed by RNA-guided genome surgery or RNA-guided genome editing.
When carried out using a Cas9 protein, the VEGF-A gene inactivation may be at least one selected from the group consisting of:
(1) deletion of at least one nucleotide positioned in a 1-50 bp- or 1-40 bp-long consecutive or inconsecutive region, adjacent to a proto-spacer-adjacent motif (PAM) sequence for a Cas9 protein, in the VEGF-A gene;
(2) substitution of 1-20, 1-15, or 1-10 consecutive or inconsecutive nucleotides positioned in 1-50 bp- or 1-40 bp-long consecutive or inconsecutive region, adjacent to a PAM sequence for a Cas9 protein, in the VEGF-A gene with nucleotides different from those in a wild-type VEGF-A gene;
(3) insertion (addition) of 1-20, 1-15, or 1-10 nucleotides into a 1-50 bp- or 1-40 bp-long consecutive or inconsecutive region, adjacent to a PAM sequence for a Cas9 protein, in the VEGF-A gene, the nucleotides to be inserted each being independently selected from among A, T, C, and G; and
(4) a combination thereof.
The VEGF-A gene-inactivating agent may include a Cas protein or a coding gene thereof (DNA or mRNA); and a VEGF-A gene-specific guide RNA comprising a targeting sequence that binds specifically to a target size of a VEGF-A gene, or a coding DNA thereof.
The Cas9 protein and the VEGF-A gene-specific guide RNA may be in the form of:
(a) a complex in which the Cas9 protein is associated with the VEGF-A gene-specific guide RNA prior to administration to a body (or lesion) or cells (i.e., already assembled before administration), that is, in the form of ribonucleoprotein (RNP) (in this regard, transported in the form of RNP across cell membranes into cells or a body);
(b) a complex in which the Cas9 protein is associated with the VEGF-A gene-specific guide RNA following administration (delivery) into cells or a body by means of respective vectors carrying DNAs which respectively encode the Cas9 protein and the VEGF-A gene-specific guide RNA or one vector carrying both of the DNAs;
(c) a RNA mixture including an RNA (mRNA) coding for the Cas9 protein, and the VEGF-A gene-specific guide RNA; or
(d) a mixture of a recombinant vector carrying a gene (DNA) coding for the Cas9 protein and the VEGF-A gene-specific guide RNA (e.g., obtained by in vitro transcription).
In one embodiment, the RNA mixture may be included in a typical RNA carrier for delivery into cells or a body.
Therefore, the VEGF-A gene-inactivating agent may include: (a) a complex in which the Cas9 protein is associated with the VEGF-A gene-specific guide RNA prior to administration to a body (or lesion) or cells (i.e., already assembled before administration), that is, ribonucleoprotein (RNP) (in this regard, transported in the form of RNP across cell membranes into cells or a body);
(b) a recombinant vector carrying together genes (DNA) coding respectively for a Cas protein and a VEGF-A gene-specific guide RNA, or separate recombinant vectors respectively carrying the genes (that is, a recombinant vector carrying a gene coding for a Cas protein and a recombinant vector carrying a DNA coding for a VEGF-A gene-specific guide RNA), or a recombinant cell anchoring the recombinant(s) thereat;
(c) an RNA mixture including an RNA (mRNA) coding for a Cas9 protein and a VEGF-A gene-specific guide RNA;
(d) a mixture of a recombinant vector carrying a gene (DNA) coding for a Cas9 protein, and a VEGF-A gene-specific guide RNA (i.e., obtained by in vitro transcription); or
(e) a combination thereof.
The administration of the VEGF-A gene-inactivating agent may be implemented by administering a recombinant vector carrying a gene (DNA) coding for a Cas9 protein and a recombinant vector carrying a DNA coding for a VEGF-A gene-specific guide RNA; an RNA (mRNA) coding for Cas9 protein, and a VEGF-A gene-specific guide RNA; or a recombinant carrying a gene (DNA) coding for a Cas9 protein, and a VEGF-A gene-specific guide RNA, simultaneously or sequentially irrespective of order.
Another aspect provides a guide RNA for targeting a predetermined target site or region. In one embodiment, the guide RNA may include a targeting sequence hybridizable with (i.e., a target sequence having a nucleic acid sequence complementary to) a nucleic acid sequence on one strand (e.g., a strand complementary to a strand on which a PAM sequence) of a predetermined target region in a VEGFA gene.
Another aspect provides a VEGFA gene-specific ribonucleoprotein (RNP) including a Cas9 protein and a guide RNA having a VEGFA gene-specific targeting sequence.
Another aspect provides a pharmaceutical composition including the guide RNA or the VEGFA gene-specific ribonucleoprotein (RNP). The pharmaceutical composition may be used for treating and/or preventing an eye disease such as macular degeneration (e.g., age-related macular degeneration (AMD)), retinopathy (e.g., diabetic retinopathy), etc.
Another aspect provides a method of treating or preventing an eye disease, including a step of administering the VEGFA gene-specific ribonucleoprotein (RNP) to a subject in need of treatment and/or prevention of the eye disease. The VEGFA gene-specific ribonucleoprotein (RNP) may be administered in a pharmaceutically effective amount, for example, via a topical route to an ocular lesion or by subretinal injection.
The eye disease may be an eye disease associated with the overexpression of a vascular endothelial growth factor (VEGF), for example, VEGF-A, as exemplified by a neovascular eye disease). The neovascular eye disease may be any eye disease that is caused by ocular neovascularization, for example, choroidal neovascularization (CNV) and may be selected from the group consisting of macular degeneration (e.g., age-related macular degeneration (AMD), myopic choroidal neovascularization, retinopathy (e.g., diabetic retinopathy), ischemic retinopathy, branch retinal vein occlusion, central retinal vein occlusion, and retinopathy of prematurity.
VEGF-A (vascular endothelial growth factor A) may be derived from mammals including primates such as humans, apes, and the like, and rodents such as rats, mice, etc. For example, it may be human VEGF-A (e.g., NCBI Accession No. NP_001020537, NP_001020538, NP_001020539, NP_001020540, NP_001020541, NP_001028928, NP_001165093, NP_001165094, NP_001165095, NP_001165096, NP_001165097, NP_001165098, NP_001165099, NP_001165100, NP_001165101, NP_001191313, NP_001191314, NP_001273973, NP_001303939, NP_003367, etc.), Mouse VEGF-A (NCBI Accession No. NP_001020421, NP_001020428, NP 001103736, NP 001103737, NP_001103738, NP_001273985, NP_001273986, NP_001273987, NP_001303970, NP_033531, etc.) .
The Cas9 protein may be derived (isolated) from, for example, Streptococcus pyogenes.
As used herein,
the term “target gene” refers to a gene to be targeted for gene editing (VEGF-A gene);
the term “target site” or “target region” refers to a gene site in a target gene (VEGF-A gene) in which Cas9 performs gene editing (cleavage, and deletion, addition and/or substitution of nucleotides), specifying a gene site with a maximum length of about 50 bp or 40 bp, adjacent to the 5′ and/or 3′ terminus of a PAM sequence recognized by Cas9 protein within the target gene (VEGF-A gene);
the term “target sequence” refers to a gene site of the target gene (VEGF-A gene), which can hybridize with a guide RNA, specifying a 17-23 bp, for example 20 bp-long nucleic acid sequence adjacent to the 5′ or 3′ end of a PAM sequence recognizable by Cas9 protein in the target gene; and
the term “targeting sequence” is a guide RNA region hybridizable with the target sequence in the target gene and may be a guide RNA region including 17-23, for example, 20 nucleotides.
In the present specification, the target sequence is represented by a nucleic acid sequence on the PAM sequence-retaining strand of the two DNA strands in a relevant gene region of the target gene (VEGF-A gene). Indeed, because the DNA strand to which the guide RNA binds is a complementary strand to the strand on which the PAM sequence is positioned, the targeting sequence in the guide RNA has the same nucleic acid sequence as the target sequence in the target gene (VEGF-A gene) except that T is changed into U in consideration of the RNA characteristic. Therefore, herein, a sequencing sequence of the guide RNA and a target sequence of the target gene (VEGF-A gene) are represented by the same nucleic acid sequence with the exception that T and U are interchanged.
When the Cas9 protein is derived from Streptococcus pyogenes, the PAM sequence is 5′-NGG-3′ (wherein N is A, T, G, or C), and the target region is a gene region adjacent to the 5′ terminus and/or 3′ terminus of the 5′-NGG-3′ sequence in the target gene (VEGF-A gene), and may be, for example, a gene region about 50 bp or about 40 bp long.
In this regard, the VEGF-A gene inactivation may be induced in a VEGF-A gene by:
a) deletion of at least one nucleotide from a nucleic acid sequence (target region) that is up to 50 bp or up to 40 bp in length and which is adjacent to the 5′ and/or 3′ terminus of a 5′-NGG-3′ sequence (wherein N is A, T, C, or G),
b) substitution of at least one nucleotide (e.g., 1-20, 1-5, or 1-10 nucleotides) in a nucleic acid sequence (target site) which is up to 50 bp or up to 40 bp long and adjacent to the 5′ and/or 3′ terminus of a 5′-NGG-3′ sequence, with a nucleotide different from a corresponding one in a wild-type gene,
c) insertion of at least one nucleotide (for example, 1-20, 1-5, or 1-10 nucleotides) into a nucleic acid sequence (target site) which is up to 50 bp or up to 40 bp long and adjacent to the 5′ and/or 3′ terminus of a 5′-NGG-3′ sequence (for this, nucleotides to be inserted are each independently selected from among A, T, C, and G), or
d) a combination of two or more of a) to c).
The guide RNA may be at least one selected from the group consisting of a CRISPR RNA (crRNA), a trans-activating crRNA (tracrRNA), and a single guide RNA (sgRNA). In detail, the guide DNA may be a dual crRNA:tracrRNA complex in which a crRNA and a tracrRNA are combined with each other, or a single guide RNA (sgRNA) in which a crRNA or a part thereof is connected to a tracrRNA or a part thereof via an oligonucleotide linker.
The concrete sequence of the guide RNA may be suitably selected depending on kinds of Cas9 protein (that is, microorganisms from which the guide RNA is derived), and is a matter that a person skilled in the art could easily establish.
When a Streptococcus pyogenes—derived Cas9 protein is used, the crRNA may be represented by the following general formula 1:
5′-(Ncas9)l-(GUUUUAGAGCUA)-(Xcas9)m-3′ (General Formula 1)
wherein,
Ncas9 is a targeting sequence which is determined depending on a target sequence in a target gene (VEGF-A gene), l represents a number of nucleotides contained in the targeting sequence and may be an integer of 17 to 23, or 18 to 22, for example, 20;
a region including the 12 consecutive nucleotides (GUUUUAGAGCUA) (SEQ ID NO: 359) adjacent to the 3′ terminus of the target sequence is an indispensable part of the crRNA,
Xcas9 is a region including m nucleotides positioned at the 3′ terminus of the crRNA (that is, adjacent to the 3′ terminal of the indispensable part of the crRNA), and m may be an integer of 8 to 12, for example 11, and the m nucleotides, which may be the same or different, may each be independently selected from the group consisting of A, U, C, and G.
In one embodiment, Xcas9 may include, but is not limited to, UGCUGUUUUG (SEQ ID NO: 360).
Further, the tracrRNA may be represented by the following general formula 2:
wherein,
a region consisting of 60 nucleotides (UAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCG AGUCGGUGC) (SEQ ID NO: 361) is an indispensable part of the tracrRNA,
Ycas9 is a region including p nucleotides adjacent to the 5′ terminus of the indispensable part of the tracrRNA, p may be an integer of 6 to 20, for example, 8 to 19, and the p nucleotides, which may be the same or different, may each be independently selected from the group consisting of A, U, C, and G.
The sgRNA may be in a form of a hairpin (stem-loop structure) in which a crRNA moiety including the targeting sequence and the indispensable part of the crRNA and a tracrRNA moiety including the indispensable part (60 nucleotides) of the tracrRNA is connected via an oligonucleotide linker (in this regard, the oligonucleotide linker accounts for the loop structure). In greater detail, the sgRNA has a hairpin structure in which a crRNA moiety including the targeting sequence and indispensable part of the crRNA and a tracrRNA moiety including the indispensable part of the tracrRNA are combined each other, with connection between the 3′ terminus of the crRNA moiety and the 5′ terminus of the tracrRNA moiety via an oligonucleotide linker.
In one embodiment, the sgRNA may be represented by the following general formula 3:
wherein (Ncas9)l is a target sequence as defined above in General Formula 1.
The oligonucleotide linker included in the sgRNA may be a sequence consisting of three to five, for example, four nucleotides which may be the same or different and each be independently selected from the group consisting of A, U, C, and G.
The crRNA or the sgRNA may further include one to three guanines (G) at the 5′ terminus (that is, the 5′ terminus of the targeting sequence in the crRNA).
The tracrRNA or the sgRNA may further include a terminal region including five to seven uracil residues at the 3′ terminus of the indispensable part (60 nt) of the tracrRNA.
In one embodiment, the target sequence in the target gene (VEGF-A gene) may be selected from the group consisting of:
These target sequences are well conserved among species and exist in, for example, both humans and rodents (e.g., mice). By way of example, the target sequence may include the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 2.
The target sequences are well conserved among mammals, for example, between human VEGF-A genes and mouse VEGF-A genes, and exhibit highly outstanding gene editing efficiency (e.g., indel frequency (%)) for on-target sites, and have 3 or less, 2 or less, 1, or no mismatching nucleotides in sites (off-target sites) other than the on-target sites. Thus, there is little or no probability of gene editing in sites other than the on-target sites, and the target sequences are of excellent safety (very low or almost no off-target effects)
On the basis of the outstanding editing efficiency and low off-target effect, an aspect of the present invention provides a composition for editing a VEGF-A gene, including the guide RNA or a DNA coding for the guide RNA, and a Cas9 protein or a gene (DNA or mRNA) coding for the Cas9 protein. The composition for editing a VEGF-A gene may include a ribonucleoprotein which contains the guide RNA and the Cas9 protein. In this regard, the ribonucleoprotein may be assembled prior to administration to a body or cells.
Herein, the targeting sequence of guide RNA hybridizable with the target region of the target gene means a nucleotide sequence having a sequence complementarity of 50% or higher, 60% or higher, 70% or higher, 80% or higher, 90% or higher, 95% or higher, 99% or higher, or 100% to a nucleotide sequence on a strand complementary to a DNA strand on which a target sequence is located (that is, a DNA strand on which a PAM sequence exists), and thus can complementarily bind to the nucleotide sequence on the complementary strand.
For example, the targeting sequence (Ncas9)l of crRNA or sgRNA may have the same sequence as one of the target sequences of SEQ ID NOS: 1 to 4 (provided that T is changed with U). This is, (Ncas9)l in crRNA or sgRNA may include a targeting sequence selected from among the sequences of SEQ ID NOS: 9 to 16:
For example, the crRNA or the sgRNA may include SEQ ID NO: 9 or 10 as a targeting sequence.
In one embodiment, a modified RNA may be employed in order to solve the problem of lowering cell viability upon RNA delivery to bodies or cells. By way of example, an RNA which is modified so as to retain no phosphate-phosphate bonds at the 5 terminus thereof (e.g., no 5′-terminal triphosphate or diphosphate) may be used as a guide RNA. Another example is an sgRNA (e.g., chemically synthesized sgRNA) which contains one or more (e.g., one to five, or two to four) modified ribonucleic acids at the 5′ and/or 3′ terminus thereof. In this regard, the modification may be expressed as phosphorothioate or may include a modification at the 2′ position of the ribose moiety (e.g., 2′-acetylation, 2′-methylation, etc.). In one embodiment, the modified sgRNA may include methylation (methyl group addition) at the 2′-O position of the ribose moiety on three nucleotides at each of the 5′-terminus and 3′-terminus and/or a phosphorothioate backbone modification.
Another aspect provides a guide RNA including a target sequence selected from among the sequences of SEQ ID NOS: 1 to 4.
In the method, the transduction of the guide RNA and the Cas9 protein into cells may be performed by directly introducing a pre-assembled complex (ribonucleoprotein) of the guide RNA and the Cas9 protein into cells with the aid of a conventional technique (e.g., electroporation, lipofection, etc.) into immune cells or one vector (e.g., plasmid, viral vector, etc.) carrying both a guide RNA-encoding DNA molecule and a Cas9 protein-encoding gene (DNA or mRNA) (or a gene having a sequence homology of 80% or greater, 85% or greater, 90% or greater, 96% or greater, 97% or greater, 98% or greater, or 99% or greater thereto) or respective vectors carrying the DNA molecule or the gene into cells or through mRNA delivery.
In one embodiment, the vector may be a viral vector. The viral vector may be selected from the group consisting of negative-sense single-stranded viruses (e.g., influenza virus) such as retrovirus, adenovirus, parvovirus (e.g., adeno-associated virus (AAV)), corona virus, and orthomyxovirus; positive-sense single-stranded RNA viruses such as rhabdovirus (e.g., rabies virus and vesicular stomatitis virus), paramyxovirus (e.g., measles virus and sendai virus), alphavirus, and picornavirus; and double-stranded DNA viruses such as herpes virus (e.g., herpes simplex virus type 1 and 2, Epstein-Barr virus, cytomegalovirus), and adenovirus; poxvirus (e.g., vaccinia); fowlpox; and canarypox.
A vector carrying the Cas9 protein, the guide RNA, a ribonucleoprotein containing both of them, or at least one thereof may be delivered into a body or cells, using a suitable one of well-known techniques such as electroporation, lipofection, viral vector, nanoparticles, and PTD (protein translocation domain) fusion protein.
The Cas9 protein and/or guide RNA may further include a typically useful nuclear localization signal (NLS) for the intranuclear translocation of the Cas9 protein, the guide RNA, or the ribonucleoprotein containing both of them.
In the VEGF-A gene-specific ribonucleoprotein, the Cas9 protein may be isolated from microorganisms, or non-naturally occurring in a recombinant or chemically synthetic manner while the guide RNA may be produced in a recombinant manner or chemically.
A VEGF-A gene-inactivating agent or VEGF-A gene-specific ribonucleoprotein including a Cas9 protein and a gene (DNA or mRNA) encoding the protein, and a gene-specific guide RNA containing a targeting sequence specifically binding to a target region of a VEGF-A gene or a DNA encoding the RNA may be administered into a body via various routes including, but not limited to, a topical route and a subretinal route to a lesion of an eye disease (associated with VEGF-A gene overexpression).
Examples of a subject to be administered with the VEGF-A gene-inactivating agent or the VEGF-A gene-specific ribonucleoprotein include all animals, selected from mammals, for example, primates such as humans, apes, etc., and rodents such as mice, rats, etc., which suffer from or are at the risk of a VEGF-A gene overexpression-associated eye disease, cells (e.g., retinal pigment epithelial cells (RPE), RPE/choroid/scleral complex, etc.,) and tissues (eye tissues) isolated from the animals, and a culture of the cells or tissues.
The VEGF-A gene-inactivating agent or the VEGF-A gene-specific ribonucleoprotein may be administered in a “pharmaceutically effective amount” or contained in a “pharmaceutically effective amount” in a pharmaceutical composition. As used herein, the term “pharmaceutically effective amount” refers to an amount that can elicit a desirable effect, that is, a VEGF-A gene editing effect in an application region, and may be determined depending on various factors including the age, body weight, sex, and health state of the patient, the time and route of administration, excretion rate, and sensitivity to a drug.
Ensuring not only high gene editing efficiency, but also very low off-target effects, the VEGF-A gene editing technology suggested herein can perform gene editing effectively and safely whereby a VEGF-A protein level can be reduced to less than a pathological threshold, with the consequent long or permanent therapy of a VEGF-A overexpression-associated eye disease.
Hereafter, the present invention will be described in detail by examples. The following examples are intended merely to illustrate the invention and are not construed to restrict the invention.
1. Preparation of Cas9 RNP
A purified Cas9 protein was purchased from ToolGen Inc., South Korea. sgRNAs were produced by in vitro transcription using a T7 polymerase (New England Biolabs) according to the manufacturer's protocol. In brief, templates for the sgRNAs were prepared by annealing and extending sets of two complementary oligonucleotides (see Table 1).
AGCTA
GAAATAGCAAG (SEQ ID NO: 17)
AGCTA
GAAATAGCAAG (SEQ ID NO: 18)
AGCTA
GAAATAGCAAG (SEQ ID NO: 19)
AGCTA
GAAATAGCAAG (SEQ ID NO: 20)
GAGCTA
GAAATAGCAAG (SEQ ID NO: 21)
Each of the prepared sgRNA templates was added, together with a T7 RNA polymerase, to a reaction buffer (40 mM Tris-HCl, 20 mM MgCl2, 2 mM spermidine, 1 mM DTT, pH7.9) including NTPs (Jena bioscience) and an RNase inhibitor (New England Biolabs), and incubated at 37° C. for 16 hours for transcription. The sgRNA transcripts were incubated at 37° C. for 30 min with DNase I (New England Biolabs). The sgRNAs were purified using RNeasy MinElute Cleanup Kit (Qiagen) and quantified using Nano drop (Thermo Fisher Scientific). The purified sgRNAs (65 μg) were incubated, together with CIP (Calf intestinal; 1000 units; Alkaline Phosphatase, New England Biolabs), at 37° C. for 1 hour to remove the 3-phosphoric acid group. The resulting sgRNAs were again purified using RNeasy MinElute Cleanup Kit (Qiagen) and quantified using Nano drop (Thermo Fisher Scientific).
All the Cas9 proteins and the sgRNA stocks were assayed for cell viability and gene editing (indel) efficiency. Based on the assay, selection was made of Cas9 proteins and sgRNA stocks that exhibited high efficiency for use in in vivo eye injection.
2. Cas9 Protein Purification
A pET28-NLS-Cas9 vector (
3. Cell Culture and Transfection
Mouse NIH3T3 (ATCC® CRL-1658™) and ARPE-19 (human retinal pigment endothelial cell; ATCC® CRL-2302™) cell lines were cultured in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% (v/v) BCS or FBS at 37° C. under a humidified 5% CO2 atmosphere (NIH3T3 and ARPE-19 cells had not been authenticated or tested for mycoplasma contamination). One day before transfection, NIH3T3 and ARPE-19 cells were seeded into 24-well plates at a cell density of 2×104 cells/well, with each well containing 250 μl of an antibiotic-free growth medium.
For plasmid delivery, the cells in the 24-well plates were transfected with a Cas9 (1 μg; Streptococcus pyogenes derived; coding sequence (4107 bp): SEQ ID NO: 358) expression plasmid (pET vector (Addgene) used) and an sgRNA (1 μg; Example 1) expression plasmid (pRG2 vector (see
For RNP delivery, Cas9 protein (4 μg; Example 2) was incubated with sgRNA (2.25 μg; Example 1) at room temperature for 5 min, followed by adding 50 μl of Opti-MEM (Thermo Fisher Scientific) and 1 μl of Lipofectamine 2000 (Thermo Fisher Scientific). After 10 minutes, the RNP mixture was added to the 24-well plates and transfected into the cells. The cells were harvested 48 hours after transfection and subjected to T7E1 assay, targeted deep sequencing, and qPCR.
For VEGF-A expression in confluent RPE (human retinal pigment epithelial) cells, the prepared ARPE-19 cells were grown to confluency and then maintained in a 1% (v/v) FBS-supplemented DMEM/F12 to allow the formation of a polarized epithelial layer for experiments. ARPE-19 cells were added to 12-well plates and transfected with 8 μg of Cas9 protein, 4.5 μg of sgRNA, and 3 μl of Lipofectamine 2000. Two days after transfection, the transfection growth medium (DMEM+1% (v/v) FBS) was replaced with 0. 5 ml of fresh serum-free medium. After 16 hours, cells and media were harvested and analyzed using targeted deep sequencing, qPCR, and ELISA.
4. Cy3-Labeled Cas9 RNP Imaging and Counting
One day after transfection, cells were fixed in 4% (w/v) PFA (paraformaldehyde) for 10 min at room temperature and then stained with 4′,6-diamidino-2-phenylindole (DAPI, 1 μg/ml, Sigma Aldrich) for 15 min at room temperature. The cells were visualized with a confocal microscope (LSM510, Carl Zeiss) at a magnification of ×630. The scanning parameters were as follows: scaling (x=0.14 μm/pixel, y=0.14 μm/pixel, z=1 μm/pixel), dimensions (x=1024, y=1024, z=6, channels: 3, 12-bit) (with objective C-Apochromat 63×/1.20 W Korr UV-VIS-IR). Cy3 positive nuclei were counted using ZEN 2 software (black edition, Ver 10.0, Carl Zeiss). In order to quantify the frequency of Cy3 positive nuclei, a total number of cells and a number of cells with Cy staining in the nucleus were counted in a field of view at a magnification of ×630 and an average percentage of Cy3 positive nuclei over four fields of view were calculated (n=3).
5. T7E1 Assay Genomic DNA was isolated from cells and tissues using a DNeasy Tissue Kit (Qiagen) according to the manufacturer's protocol. After target sites were amplified using PCR, the products were denatured and annealed using a thermal cycler. The primers used are summarized in Table 2, below.
Annealed PCR products were incubated with T7 endonuclease I (ToolGen, Inc.) at 37° C. for 25 min and analyzed by agarose gel electrophoresis.
6. Targeted Deep Sequencing
Using Phusion polymerase (Thermo Fisher Scientific), on-target and potential off-target regions were amplified from genomic DNA. The PCR amplicons were subjected to paired-end sequencing using Illumina MiSeq (LAS Inc. Korea). The primers used are listed in Tables 3 to 5:
Indels around a site 3 bp upstream of the PAM sequence were considered to be mutations resulting from Cas9 RNP activity.
7. RNA Extraction and qPCR Total RNA was isolated from NIH3T3 and ARPE-19 cells using an easy-spin™ Total RNA extraction Kit (iNtRON, Korea) according to the manufacturer's protocol. Then, 250 ng of RNA was reverse transcribed using SuperScript II (Enzynomics). Quantitative PCR (qPCR) was performed using SYBR Green (KAPA) with the following primers:
8. VEGFA ELISA Using Confluent ARPE-19 Cells
For human VEGFA ELISA, Vegfa-specific Cas9 RNP-treated confluent ARPE-19 cells were incubated in a serum-free medium for 16 hours after which serum-free supernatants were collected from the cell culture. Secreted VEGFA protein levels were measured using a human VEGF Quantikine ELISA Kit (DVE00, R & D systems) according to the manufacturer's instructions.
9. In Vitro Cleavage of Genomic DNA and Digenome Sequencing
Genomic DNA was isolated from ARPE-19 cells (ATCC) using a DNeasy Tissue Kit (Qiagen). In vitro cleavage of genomic DNA for Digenome sequencing was performed as described below. In brief, genomic DNA (20 μg) was incubated with Cas9 protein (16.7 μg) and sgRNA (12.5 μg) in reaction buffer (100 mM NaCl, 50 mM Tris-HCl, 10 mM MgCl2, 100 μg/mL BAS, pH 7.9) for 3 hours at 37° C. to induce the cleavage of genomic DNA by Cas9. Cleaved genomic DNA was treated with RNase A (50 μg/mL, Sigma Aldrich) for 30 min at 37° C. and purified with a DNeasy Tissue Kit (Qiagen). Whole-genome and Digenome sequencing were performed as described previously (Kim, D., Kim, S., Kim, S., Park, J. & Kim, J. S. Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq. Genome research 26, 406-415 (2016)).
10. Preparation of Animals Administered with RNP by Subretinal Injection
The care, use, and treatment of all animals in this study were in strict agreement with the guidelines established by the Seoul National University Institutional Animal Care and Use Committee and “the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research”. Adult (6 weeks old) male SPF C57BL/6J mice were used in the study. Mice were maintained under a 12 hours dark-light cycle.
Subretinal injection of RNP was performed on the prepared mice as follows. First, RNPs composed of Cas9 protein (8 μg), sgRNA (4.5 μg), and Lipofectamine 2000 (20% v/v) were mixed in 2 μL or 3 μL of injection volume. RNPs (2 or 3 μL) were injected into the subretinal space using a Nanofil syringe with a 33 G blunt needle (World Precision Instruments, Inc.) under an operating microscope (Leica Microsystems, Ltd.). Subjects with retinal hemorrhage were excluded from the study.
11. Construction of Laser-Induced Choroidal Neovascularization (CNV) Animal Models
Mice were anesthetized by intraperitoneally injecting at a dose of 2.25 mg/kg (body weight) a mixture containing tiletamine and zolazepam at a weight ratio of 1:1. Pupils were dilated with an eye drop containing phenylephrine (0.5% (w/v)) and tropicamide (0.5% (w/v)). Laser photocoagulation was performed using an indirect head set delivery system (Iridex) and laser system (Ilooda). The laser wavelength was 810 nm. Laser parameters were as follows: spot size: 200 μm; power: 1 W; and exposure time: 100 ms. Laser burn was induced at the 12 (right eye) or 6 (left eye) o'clock positions around the optic disc with a modification. Only burns that produced a bubble without vitreous hemorrhage were included in the experiments. Subretinal RNP injections were performed in the quadrant of laser burn. Cas9 RNPs (sgRosa26 (containing a Rosa26 targeting sgRNA) or sgVegfa (containing a Vegfa targeting sgRNA)) were randomly allocated to the left or right eye in each mouse. Subretinal injection of Cas9 RNPs produced a bleb. It was confirmed that the bleb overlapped with the laser-burn site. Subjects in which the bleb overlapped the laser-burn site were used in further studies. Seven days after laser treatment, the eyes were fixed in 4% PFA for 1 hour at room temperature. RPE (retinal pigment epithelium) complexes (RPE/choroid/sclera) were treated overnight at 4° C. with isolectin-B4 (Thermo Fisher Scientific, catalog no. 121413, 1:100) for immunostaining. The stained RPE complexes were flat-mounted and viewed with a fluorescence microscope (Eclipse 90i, Nikon) at a magnification of ×40. The CNV area was measured using ImageJ software (1.47 v, NIH) by blind observers.
12. Immunosfluorescent Staining and Imaging
The number of RPE cells in the RPE complex was calculated by counting DAPI-stained nuclei in paraffin embedded cross-section samples (4 μm) in a high power field area (100 μm×100 μm, n=8). Cross-section samples obtained at day 7 post-injection (n=4) were immunostained with an anti-opsin antibody (Millipore, AB5405, 1:1000) and an Alexa Fluor 488 antibody (Thermo Fisher Scientific, 1:500). The opsin positive area was measured using ImageJ software (1.47 v, NIH) by blind observers. The intracellular distribution of the Cy3-Cas9 protein in the RPE flat-mounts was imaged using a confocal microscope (LSM 710, Carl Zeiss). The scanning parameters were as follows: scaling (x=0.042 μm/pixel, y=0.042 μm/pixel, z=0.603 μm/pixel), dimensions (x=1024, y=1024, z=12, channels: 2, 8-bit), and zoom (5.0) with objective C-Apochromat 40×/1.20 W Korr M27. ZEN 2 software was used to process the images.
13. Genomic DNA Extraction from CNV Area and RPE Complex
Genomic DNA was isolated from RPE complexed at day 3 after RNP injection, and measured for CNV area. At day 7 after RNP injection, genomic DNA was isolated from CNV samples. Genomic DNA isolation was performed using a NucleoSpin Tissue Kit (Macherey-Nagel). In order to evaluate RNP efficacy, each RPE complex was divided into quadrants and the RNP-injected quadrant was treated to isolate genomic DNA. To assess indel frequencies in CNV areas of RPE complexes, RPE flat-mounts were imaged and washed with PBS. Genomic DNA was isolated from the following regions: (i) a quadrant including an RNP-injected area of CNV (representative of injected areas); and (ii) an opposite quadrant (representative of non-injected areas).
14. Mouse VEGF-A ELISA
For mouse VEGF-A ELISA, a total of 30 laser burns were induced in the eye, followed by injecting RNPs (3 μL) into the subretinal space. At day 3 post-injection, whole RPE complexes were isolated from the retina and frozen for further analysis. Cells were lysed with RIPA buffer (50 mM Tris-HCl(pH 8.0), 150 mM NaCl, 1% Igepal CA-630, 0.5% Na.deoxycholate, 0.1% SDS), and VEGFA levels were measured using a mouse VEGF Quantikine ELISA Kit (MMV00, R&D systems) according to the manufacturer's instructions.
15. Western Blotting
To analyze RNP levels over time after in vivo RNP delivery, Western blotting of RPE complexes, obtained at 1 and 3 days post-injection, was performed. Samples, each containing an equal amount of protein (20 μg), were analyzed; Cas9 and beta-actin were detected with an anti-HA high affinity antibody (Roche, 3F10, 1:1000) and an anti-beta-actin antibody (Sigma Aldrich, A2066, 1:1000), respectively. ImageQuant LAS4000 (GE healthcare) was used for digital imaging.
16. Statistics
Data were analyzed with SPSS software version 18.0 (SPSS, Inc.). P-values were determined by an unpaired, two-sided Student's t-tests or one-way ANOVA and Tukey post-hoc tests (for multiple groups). Data are expressed as mean with s.e.m (standard error of the mean).
A test was made of four single-chain guide RNAs (sgRNAs) (labeled as Vegfa-1, 2, 3, and 4) targeting target sites in exons 3 and 4 which encode binding sites for VEGF receptors 1 and 2, respectively, in the mouse NIH3T3 cell line and the human RPE cell line (ARPE-19). The four sgRNAs (Vegfa-1, 2, 3, and 4) were constructed with reference to Reference Example 1.
The targeting sequences of sgRNA for CRISPR-Cas9 target sequences in the VEGFA/Vefga gene and numbers of homologous sites in the human and mouse genomes are summarized in Table 6, below:
GG
GG
GG
GG
The sgRNA-containing Vegfa-specific Cas9 RNP prepared above were transfected into mouse NIH3T3 and human ARPE-19 cells and used in the following experiments. The delivery of RNP into cells, as described in Reference Example 3, was carried out with the aid of a plasmid that was introduced into cells and allowed nucleic acid molecules to express sgRNA and Cas9 protein in the cells (expressed as plasmid in figures) or in such a manner that a complex (or mixture) of the sgRNA and the recombinant Cas9 protein was delivered into cells using cationic lipid (Lipofectamine) (expressed as RNP in figures).
The target sequence in the Vegfa/VEGFA locus of mouse NIH3T3 and human ARPE-19 cells are depicted in
Mutation frequencies induced by the delivery of either Vegfa-specific Cas9 RNPs containing the four sgRNAs (Vegfa-1 sgRNA, Vegfa-2 sgRNA, Vegfa-3 sgRNA, and Vegfa-4 sgRNA) or plasmids carrying encoding sequences thereof were measured using deep sequencing (see Reference Example 2) at day 2 post-transfection. The results are shown in
In addition, mutations induced by the delivery of either Vegfa-specific Cas9 RNP containing Vegfa-1 sgRNA or a plasmid carrying an encoding sequence thereof in NIH3T3 and ARPE-19 cells were detected by the T7 endonuclease I (T7E1) assay and are shown in
Indel frequencies induced by the delivery of either Vegfa-specific Cas9 RNP containing Vegfa-1 sgRNA or a plasmid carrying an encoding sequence thereof in NIH3T3 and ARPE-19 cells were measured using targeted deep sequencing (see Reference Example 6) at day 2 post-transfection. The results are shown in
Representative mutant DNA sequences induced by Vegfa-specific Cas9 RNP (containing Vegfa-1 sgRNA) at the Vegfa/VEGFA locus in NIH3T3 and ARPE-19 cells are shown in
Mutation (indel) frequencies induced by the delivery of Vegfa-specific Cas9 RNP containing Vegfa-1 sgRNA in confluent ARPE-19 cells were detected by targeted deep sequencing at 64 hours post-transfection, and the results are given in
As shown in
As shown in
To monitor the localization of Cas9 RNPs in vitro and in vivo, Cy3-conjugated Cas9 protein (Reference Example 4). Thus, Cy3-Cas9 combined with or without the Vegfa-1 sgRNA was mixed with cationic lipids and delivered into NIH3T3 cells. Alternatively, the Vegfa-specific, Cy3-labeled or -unlabeled Cas9 RNP was delivered into an adult mouse eye via subretinal injection for the following experiments.
NIH3T3 cells were transfected with Cy3-labeled Cas9 RNP (a complex of Cy3-labeled Cas9 and Vegfa-1 sgRNA) or Cy3-labeled Cas9 alone (as a control) and observed under a confocal microscope at 24 hours post-transfection to visualize Cy3 signals in the cells (see Reference Example 4). The images thus obtained are given
In addition, measurement was made of the proportion of Cy3 positive nuclei in total DAPI positive nuclei (100*[number of Cy3-positive nuclei]/[total number of DAPI-positive nuclei]) at 24 hours post-transfection, and the results are depicted in
Mutations mediated by Vegfa-specific Cas9 RNP containing the Vegfa-1 sgRNA in NIH3T3 cells were detected by the T7 endonuclease 1 (T7E1) assay (see Reference Example 5) and are shown in
Mutation frequencies driven by the Vegfa-specific Cas9 RNP containing the Vegfa-1 sgRNA in NIH3T3 cells were measured using targeted deep sequencing (see Reference Example 6) at 24 hours post-transfection and are shown in
Representative RPE flat-mount at day 3 after the injection of Cy3-labeled Cas9 RNP into mouse eye was observed under a fluorescence microscope (see Reference Examples 11 and 12) and the results are given in
Distribution of retinal pigment epithelium (RPE) in the RPE/choroid/scleral complex was observed under a fluorescence microscope (see Reference Examples 11 and 12), and the results are shown in
Indel frequencies induced in vivo were determined using genomic DNA isolated from the retinal pigment epithelium (RPE)/choroid/scleral complexes, with reference to Reference Example 13. Indels were analyzed by deep sequencing (see Reference Example 6) at day 3 post-injection. The results are depicted in
Mutant DNA sequences induced by Vegfa-specific Cas9 RNPs (containing Vegfa-1 sgRNA) in vivo are depicted in
Western blot analysis was performed to measure the level of Cas9 protein in the RPE/choroid/scleral complex 24 and 72 hours after injection (n=4), and the results are shown in
The proportion of Cy3 positive nuclei (42±6%) (
Notably, the subretinal injection of the Cy3-unlabeled Cas9 RNP gave rise to indels with a frequency of 16±2% at day 3 post-injection, with the consequent editing in most target sites of the Vegfa gene in RPE in vivo (n=6,
In order to investigate whether the Cas9 RNP could be used for the treatment of CNV in AMD mouse models, mice with laser-induced CNV were treated by subretinal injection of the Vegfa-specific Cas9 RNP (containing Vegfa-1 sgRNA) or Rosa26-specific Cas9 RNP (Rosa26-RNP; containing Rosa26 sgRNA). Since retinal injection itself increases the size of CNV, the Rosa26-RNP was used as a negative control.
Mice with laser-induced CNV were administered with the preassembled Vegfa-specific Cas9 RNP by retinal injection. After the retinal pigment epithelium (RPE) complex in the eye was flat-mounted, the CNV area was analyzed at day 7 post-injection. Genomic DNA isolated from the Cas9 RNP-injected area or from the opposite non-injected area (RNP-free area) was analyzed by deep sequencing. Vegfa ELISA was performed at day 3 post-injection. This procedure is schematically shown in
Laser-induced CNV stained with isolectin B4 (1B4) in C57BL/6J mice injected with the Rosa26-specific Cas9 RNP (as a control) or the Vegfa-RNP at day 7 post-injection was visualized (see Reference Example 11). Representative images are shown in
At day 3 post-injection, a therapeutic effect was evaluated by assessing the CNV area. CNV areas were measured in C57BL/6J mice injected with the Vegfa-specific Cas9 RNP with reference to Reference Example 11 and are depicted as relative values (%) to the CNV area (100%) of the control injected with the Rosa26-specific Cas9 RNP in
Vegfa levels (pg/ml) in CNV areas were measured by ELISA (see Reference Example 14), and the results are shown in
Indel frequencies (%) at the Vegfa target site in the RPE complex are shown in
Indel frequencies (%) at the Rosa26 target site in the RPE complex are shown in
The laser-induced CNV structure in a cross-section sample was visualized by hematoxylin & eosin staining and is shown in
A representative CNV sample for use in mutation analysis through targeted deep sequencing is shown in
Laser-induced CNV at day 7 after laser treatment is depicted in
As shown in
In addition, as shown in
As understood from
A critical issue in therapeutic genome therapy is the target specificity of CRISPR-Cas9. It was examined whether the Vegfa-specific Cas9 RNP used in this experiment caused any off-target mutations in the mouse eye or in human cells. First, 20 potential off-target sites in the mouse genome that are the most homologous to the target sequence of Vegfa-sgRNA of the Cas9 RNP were identified using Cas-OFFinder and are summarized in Table 7, below.
CTGG (SEQ ID NO: 302)
TTGG (SEQ ID NO: 309)
GTCCTGGAAGCTGTCCAC
AAAGG (SEQ ID NO: 315)
Genomic DNA isolated from the CNV-free RPC complex of the Cas9 RNP-treated mouse eye was subjected to targeted deep sequencing to indel frequencies (%) in the 20 potential off-target sites. The results are depicted in
Genome-wide target specificity of the Vegfa-specific Cas9 RNP in the human genome was revealed by Digenome-seq (see Reference Examples 6 and 9).
Sequence logos obtained using 42 sequences including 41 Digenome-capture sites and one On-target sequence are given in
Off-target sites and indel frequencies validated in human ARPE-19 cells by targeted deep sequencing are shown in
The particular target sequence of the Vegfa-specific Cas9 RNP shown in
The human genome-wide specificity was assessed using Digenome-seq (Kim et al., Nature Methods 12, 237-243 (2015)) in which cell-free human genomic DNA was treated in vitro using the Vegfa-specific Cas9 RNP and then subjected to whole-genome sequencing. Uniform, rather than random, alignments of sequence reads at in vitro cleavage sites are computationally identified to provide a list of potential off-target sites. Digenome-seq using the Vegfa-specific Cas9 RNP revealed 42 in vitro cleavage sites including the on-target site and the sites are summarized in Table 8, below.
ATCCTGTAAGACATCCACCC
TTGCTGGAAGATGTCCCCCT
TACCTGGAAGAATTCCACCA
GCCTGGGAAGATGTCCACC
TTCCAGGAAGAAATCCACCA
ACAATAGAAGAAGTCCACC
AATTAATAAGATGTCCACCT
GTCCTGGAAGATGAGCACC
GTGATGGAAGATGTCCACTT
GTCCTGGAGGATTTCCACCA
GTCCAGAAAGATATCCACCT
CTGG (SEQ ID NO: 331)
TTGG (SEQ ID NO: 332)
CTGG (SEQ ID NO: 334)
ACTCCTGAAGATGTACACCC
GAACTGGATGATGTCCACCT
GCCTTGGAAGATGTCCCTCA
GGCCTGGAAAATGTCCACC
GTGG (SEQ ID NO: 340)
TCATGGAAGATATTCCACCA
AAGATGGAAGACATCCACC
TACTCCTGGGATCTCCACCC
GGTCTGGAAGATGTCAACCA
TGCCTGAAAGACATCCACCA
TGACAGGAAGATGTCCACC
CATG (SEQ ID NO: 352)
GCTCCTGGAAGAATCCACC
TTGGGGGAAGAAGTCCACC
To examine the validity of the sites listed in Table 8, targeted deep sequencing was performed using genomic DNA isolated from Vegfa-specific RNP-transfected ARPE-19 cells (see
Modified gRNAs with improved specificity (Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M. & Joung, J. K. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nature biotechnology 32, 279-284 (2014); Cho, S. W. et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome research 24, 132-141 (2014)) or Cas9 variants (Kleinstiver, B. P. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490-495 (2016); Slaymaker, I. M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84-88 (2016)) may be used, if necessary, to further reduce or avoid the off-target effect that exists although slight.
Taken together, these results show that the Vegfa-specific RNP containing the sgRNA that has the Vegfa targeting sequence provided in the present disclosure is highly specific in both mouse and human cells (in vivo and in vitro).
Another major concern for mutating the Vegfa gene for the treatment of AMD or diabetic retinopathy is the trophic role of Vegfa in the eye. Cone dysfunction is the most significant change upon Vegfa mutating, and is observed 3 days after conditional deletion of the Vegfa gene in mouse RPE.
To examine whether the Vegfa-specific Cas9 RNP provided by the present disclosure caused cone dysfunction, such as ??, opsin-positive areas were observed using a fluorescence microscope and calculated. The results are depicted in
As understood from
Herein, some exemplary embodiments of the present invention have been described herein. However, it should be understood by those skilled in the art that these embodiment are provided for illustrative purpose only and should not be construed in any way as limiting the present invention. Rather, it should be understood that various modifications, changes, alterations, and equivalent embodiments can be made without departing from the spirit and scope of the present invention, as defined only by the following claims and equivalents thereof.
This application claims the benefit of U.S. Provisional Application No. 62/367,674 filed on Jul. 28, 2016 with the United States Patent and Trademark Office, the entire disclosure of which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
62367674 | Jul 2016 | US |