The present invention relates to the treatment of a hernia such as a uterovaginal prolapse and, in particular, to a surgical implant for use in such treatment and to a related surgical procedure and device.
A hernia is basically a defect resulting in the protrusion of part of an organ through the wall of a bodily cavity within which it is normally contained. For example, a fairly common and well known type of hernia is a defect in the lower abdominal wall resulting in a sac which may contain a portion of the intestine protruding through the abdominal wall. This is referred to as an inguinal hernia. Similarly, a defect in the abdominal wall after surgery is referred to as an incisional hernia. Another type of hernia is a defect in the pelvic floor or other supporting structures resulting in a portion of the uterus, bladder, bowel or other surrounding tissue protruding through, e.g., the vaginal wall. This is usually referred to as uterovaginal prolapse.
A common way of treating hernias is to repair the defect by sutures, whether or not the hernial sac is also sutured or repaired, in order that the protruding organ is contained in its normal position. As the defect generally comprises a weakening and attenuation leading to parting of tissues in a fascial wall, it is usually necessary to apply tension to the sutures in order to close the parted tissues. Thus, the fascial wall is generally pinched or tensioned around the area of the defect in order to close the parted tissues.
This treatment is generally effective, but does have some inherent problems. In particular, the pinching or tensioning of tissue around the defect can lead to discomfort and/or recurrence of the hernia. Additionally, in the case of uterovaginal prolapse, such pinching or tensioning of the vaginal wall almost inevitably results in anatomical distortion (such as narrowing of the vaginal cavity) with consequential pain and quality of life implications for the patient and relatively high recurrence and/or complication rates.
In order to address these problems, in the case of inguinal hernia repair, it has been suggested to make use of a surgical implant to overlay or close the weakened and parted tissues without the need to pinch or tension the surrounding tissue of the fascia. Such surgical implants generally comprise meshes and are now widely used in inguinal hernia repair. Meshes may be applied subcutaneously (i.e. under the skin), internally or externally of the abdominal wall and may be either absorbable or non-absorbable depending on the nature and severity of the particular defect being treated. Meshes may be applied in combination with sutures to hold the mesh in place or, alternatively, with sutures that close the parted tissues as in a “non-mesh” technique. Meshes are usually applied in open surgical procedures, although they may sometimes be applied in laparoscopic surgical procedures.
A typical mesh for an inguinal hernia repair comprises woven or knitted polypropylene such as Marlex® or Prolene®. Such meshes have a number of desirable properties that make them effective for use in hernia repair. For example, they are made of materials that are suitably inert so as to be less likely to cause adverse reactions when implanted in the body. Furthermore, they are mechanically strong, cheap, easily sterilisable and easy to work with.
However, conventional meshes have a number of inherent problems. For example, fistula or sinus (i.e. abnormal passages between internal organs or between an internal organ and the body surface) can develop as a result of a mesh being implanted and left inside the body. More generally, the placement of a foreign body subcutaneously can also lead to inflammation or infection. Similarly, edge extrusion (i.e. the erosion of body tissue around the edge of the mesh) can occur. Nevertheless, overall, the use of meshes is generally considered to be beneficial in the treatment of incisional and inguinal hernias.
It has also been suggested to use meshes in the treatment of uterovaginal prolapse. Meshes that have been proposed for use in the repair of uterovaginal prolapse are similar to those that are used for the repair of inguinal hernia and such like. However, there is concern that the above mentioned problems with the use of meshes are greater when a mesh is placed in the vaginal wall as this tissue is generally thin only just below the surface and therefore more prone to adverse reactions. Furthermore, the placement of a foreign body close to the rectum and urinary tract may increase the risk of infection, inflammation, erosion, fistula or translocation. Thus, it is a relatively widespread view that the use of meshes in the treatment of vaginal prolapse is less desirable than in the treatment of other hernias.
Nevertheless, as the use of meshes to treat uterovaginal prolapse can avoid anatomical distortion and the above mentioned problems related to this, the Applicant considers there are significant benefits in the use of meshes in the treatment of uterovaginal prolapse should it be possible to mitigate the problems associated with mesh treatment.
The applicant has recognised that there are a number of specific features of conventional meshes that exacerbate the problems of fistula, sinus, edge extrusion, infection etc., particularly when these meshes are implanted in the vaginal wall. The Applicant has therefore realised that it is possible to provide a surgical implant that has the benefits of mesh treatment, i.e. the avoidance of anatomical distortion and its related problems, and also minimises the above mentioned problems.
One specific problem with conventional meshes that the Applicant has recognised is that they have jagged or rough edges. The rough edges arise as conventional meshes are generally formed from sheets of multiple woven or intersecting fibres or strands. When the meshes are cut to size in manufacture or prior to fitting, the stray ends of the fibres or strands are left extending from the edge of the mesh, particularly where the edge is curved. In other words, the perimeter of the mesh comprises the spaced ends of the fibres or strands and is not smooth. It is thought that the jagged rough nature of the edges of the implant increases the likelihood of extrusion of the edge of the mesh in situ.
Conventional meshes are generally unnecessarily strong and substantial for use in the vaginal wall and of significant mass. This results in an unnecessary excess of foreign body material in the vaginal wall, increasing the risks associated with the placement of foreign bodies inside the human body, such as the risk of infection. Likewise, the bulk of such meshes can undesirably result in discomfort for the patient as the mesh can often be felt when in position. This is of particular concern when a mesh is placed in sensitive vaginal tissues or near to bowel or bladder.
A further disadvantage of the meshes presently used to treat hernias relates to pore size. The pore size of meshes in use is unphysiological and does not encourage acceptance of the implant in the body.
It is a aim of the present invention to overcome problems associated with existing meshes used to treat hernias.
According to the present invention there is provided a surgical implant suitable for treatment of hernias, the implant comprising a mesh having a residual maximum mass density of 50 g/m2.
Preferably the maximum mass density is less than 30 g/m2. More preferably the maximum mass density is less than 25 g/m2.
By minimising mass density of a mesh for use in treating hernias the advantages of using a mesh are still apparent whereas the disadvantages are lessened in that jagged and rough edges are minimised as is the risk of infection. The residual mass density is the mass density of the mesh after implantation.
Preferably the surgical implant mesh comprises strands and includes major spaces and pores.
The strands of the mesh may be formed by at least two filaments, the major spaces formed between the strands providing the surgical implant with the necessary strength, the filaments arranged such that pores are formed in the strands of the mesh.
Alternatively the strands may be formed by monofilaments which form loops which give rise to the pores.
Preferably strands are spaced by wider distance than the fibres or filaments of conventional meshes used in hernia repair.
Preferably the strands are spaced apart to form major spaces of between 1 to 10 mm.
More preferably the strands are spaced apart to form major spaces of between 2 to 8 mm.
The use of mesh having strands spaced between 1 to 10 mm apart has the advantage of reducing the foreign body mass that is implanted in the human body. Only sufficient tensile strength to securely support the defect and tissue being repaired is provided by the mesh.
It is desirable that the mesh of the present invention has a mass of between one tenth ( 1/10th) and one hundredth ( 1/100th) that of a conventional, e.g. Prolene®, mesh of the same surface area. The mesh of the invention therefore avoids the unnecessary bulk of conventional meshes.
More specifically it is preferred that the mass density is less than 50 g/m2, more preferably less than 30 g/m and most preferably less than 20 g/m2. It is also preferred that the strands of the mesh of the present invention are narrower than those of meshes of the prior art.
Preferably the strands have a diameter of less than 600 μm.
In one embodiment the strands are arranged to form a diamond net mesh.
In an alternative embodiment the strands are arranged to form a hexagonal net mesh.
The strands and filaments are preferably warp knit.
In an alternative embodiment the strands are arranged to form a net mesh with suitable tensile strength and elasticity.
Preferably the strands are arranged to form a net mesh which has isotropic or near isotropic tensile strength and elasticity.
Preferably the filaments have a diameter of between 0.02 to 0.15 mm.
More preferably the filament of the mesh is of a diameter 0.08 to 0.1 mm.
This likewise has the advantage of reducing the overall bulk of the implant, and hence the amount of material retained in the human body.
Particular meshes which are embodiments of the present invention include warp knit diamond or hexagon net diamond net meshes. Four particular. embodiments are set out below.
In two particular embodiments wherein the filaments are formed from polypropylene having a diameter of 0.07-0.08 mm wherein the strands are spaced to form spaces of either 2 mm or 5 mm.
Alternatively, filaments are formed from polyester having a diameter of 0.09 mm wherein the strands are spaced to form spaces of 5 mm.
Alternatively, filaments are formed from polyester having a diameter of 0.05-0.07 mm wherein the strands are spaced to form spaces of 2 mm.
As the surgical implant is comprised of narrow members arranged to be spaced by relatively wide gaps, major spaces, tissue may be slow to grow into the mesh. It is desirable for the mesh to have means for promoting tissue ingrowth. More specifically, it is desirable to provide pores in the strands of the mesh to aid tissue ingrowth and to which tissue may more easily adhere.
Preferably two filaments are interwoven/knitted to produce strands of the mesh comprising pores.
Alternatively at least three filaments are interwoven/knitted to produce strands of the mesh comprising pores.
For manufacturing reasons it is preferred that two filaments are used to form the pores in the strands of the mesh which aid tissue ingrowth, however if the one filament could be suitably knotted or twisted to form pores of suitable dimensions it is clear that this could be used to similar effect to form the strands of the mesh.
Preferably the pores in the strands are of between 50 to 200 nm in diameter.
More preferably the pores are of between 50 to 75 nm in diameter.
This is important in enabling efficient fibroblast through growth and ordered collagen laydown in order to provide optimal integration into the body. This is discussed in detail in copending Patent Application No PCT/GB01/04554.
Rings or loops of material comprising pores of between 50 to 200 nm may be adhered to or formed on the strands of the mesh to provide pores.
As mentioned above, reducing the mass of the mesh has distinct advantages in relation to the suitability of the mesh for implantation in the body, i.e. the reduction of foreign body mass and improving the comfort of the patient. However, the handling characteristics of such a mesh, e.g. the ease with which a surgeon can manipulate and place the surgical implant in its desired location in the body, can be poor in some circumstances. More specifically, a mesh having narrow members or strands that are widely spaced will inevitably be somewhat flimsy and lacking in rigidity compared to conventional meshes.
Ideally the implant should be formed from materials or uses technologies which provide the implant with Dual Phase Technology™, such that it has suitable surgical handling characteristics and is also of minimal mass and suited for implantation in the body. The implant may be formed from a range of materials to provide it with Dual Phase Technology™.
The term Dual Phase Technology™ refers to a means to provide temporary substance to the mesh. Depending on the type of Dual Phase Technology™ employed the benefits imported, in addition to allowing minimal residual mesh mass may include assisting the mesh to be handled and cut, minimizing the effect of rough edges, assisting placing the mesh in position and providing tackiness to assist in holding the mesh in position on implantation, thus minimising or negating the need for any additional fixation by suturing or adhesion.
In a preferred embodiment of the invention having improved handling characteristics, the implant therefore has an absorbable coating. Preferably this coating encapsulates the mesh of the surgical implant.
Alternatively this coating is applied to at least one face of the mesh.
The coating, covering or layer of absorbable material stiffens and adds bulk to the mesh such that it is easier to handle.
As the coating, covering or layer is absorbable, it is absorbed by the body after implantation and does not contribute to the foreign body mass retained in the body. Thus, the advantages of a surgical implant having minimal mass are retained.
Preferably the coating, covering a layer absorbs within 48 hours following implantation.
The coating, covering or layer may comprise any suitable soluble and biocompatible material.
Suitable hydrogel materials can be obtained from First Water in the UK. A typical hydrogel being developed for use in this application is known as FIRST PHASE™ or PHASE 1™.
The absorbable material may be a soluble hydrogel such as gelatin,
Alternatively the absorbable material is a starch or cellulose based hydrogel.
In a further alternative the absorbable material is an alginate.
In a further alternative the absorbable material may contain hyaluronic acid.
The coating, covering or layer may have any thickness or bulk that provides the surgical implant with suitable handling characteristics.
Preferably, the coating is a sheet with a thickness greater than that of the mesh.
Suitable handling characteristics may also be provided to the mesh by a range of other methods. The surgical implant may comprise a mesh and a backing strip the backing strip releasably attachable to the mesh.
The backing strip may be formed from a range of materials including plastics.
The surgical implant may be releasably attachable to the backing strip by adhesive.
The releasable attachment of a backing strip to the mesh provides a more substantial and less flexible surgical implant that is more easily handled by a surgeon. Following suitable placement of the surgical implant the backing strip can be removed from the surgical implant, the surgical implant being retained in the body and the backing material being removed by the surgeon. The surgical implant can therefore benefit from reduced mass while still providing characteristics required for surgical handling.
In a further alternative the strands of the mesh of the surgical implant are comprised of bicomponent microfibres.
Preferably the bicomponent microfibres comprise a core material and surface material.
The composite or biocomponent fibres preferably comprise a nonabsorbable or long lasting absorbable core and a shorter lasting absorbable surface material.
Whereas any licenced materials may be used, suitable materials presently available include polypropylene for the core and polylactic acid or polyglycolic acid for the surface materials.
Alternatively the bicomponent microfibres comprise an material which is rapidly absorbed by the body and a material which is not absorbed for a suitable longer period of time.
Preferably the surface material is capable of being absorbed by the body in a period of less than 48 hours.
Preferably the core material is capable of remaining in the body for a period of time sufficient to enable tissue ingrowth.
The surface material of the bicomponent microfibres or a portion of the composite polymers present during the insertion and placement of the surgical implant provides the surgical implant with characteristics required for surgical handling.
Following a period of insertion in the body, the surface material of the bicomponent microfiber is absorbed by the body leaving behind the reduced foreign mass of the core material of the strands of the mesh.
It is preferred that the surface material of the bicomponent microfiber is absorbed by the body within a number of hours such that only a core portion is left in the body for an extended length of time. Typically materials presently available which could be used to form the microfibres are absorbed by the body over a period of days or weeks.
The filaments of the mesh comprise a plastics or synthetic material.
Preferably the filaments of the mesh comprise of polypropylene or polyester.
Alternatively the filaments of the mesh comprise an absorbable material.
It can be appreciated that filaments which comprise in part of absorbable material would allow better surgical handling, but would enable the implant to also have minimal mass following implantation in the body.
Preferably the surgical implant comprises material that has memory.
Preferably the surgical implant has memory which urges the surgical implant to adopts a flat conformation.
Preferably the implant has a generally curved perimeter, i.e. to have few or no corners or apexes, as sharp corners increase the likelihood of edge erosion and infection. The specific shape will, however, vary according to the use to which the implant is to be put.
Due to the variety of sizes of such defects, and of the various fascia that may need repair by the implant, the implant may have any suitable size,
Preferably the surgical implant is of width between 1 cm to 10 cm and of length between 1 cm to 10 cm.
It may be desirable to provide a variety of implants having different sizes in order that a surgeon can select an implant of suitable size to treat a particular patient. This allows implants to be completely formed before delivery, ensuring, for example, that the smooth edge is properly formed under the control of the manufacturer. The surgeon would have a variety of differently sized (and/or shaped) implants to hand and select the appropriate implant to use after assessment of the patient.
Typically an anterior uterovaginal prolapse is ellipse shaped or a truncated ellipse whereas a posterior prolapse is circular or ovoid in shape.
Accordingly the implant shape may be any one of elliptical or tuncated ellipse, round, circular, oval, ovoid or some similar shape to be used depending on the hernia or polapse to be treated.
Different shapes are suitable for repairing different defects in fascial tissue and thus by providing a surgical implant which can be cut to a range of shapes a wide range of defects in fascial tissue can be treated.
Preferably the mesh can be cut to any desired size. The cutting may be carried out by a surgeon or nurse under sterile conditions such that the surgeon need not have many differently sized implants to hand, but can simply cut a mesh to the desired size of the implant after assessment of the patient. In other words, the implant may be supplied in a large size and be capable of being cut to a smaller size, as desired.
In this regard, whilst the surgical implant of the invention is particularly useful for the repair of uterovaginal prolapse, it may be used in a variety of surgical procedures including the repair of hernias.
Preferably the surgical implant is suitable for use in the treatment of hernias including incisional and inguinal hernias and/or for the treatment of uterovaginal prolapse.
More broadly, the Applicant has therefore recognised that the implant can have any shape that conforms with an anatomical surface of the human or animal body that may be subject to a defect to be repaired by the implant.
As discussed a disadvantage of the meshes used in hernia repair is that they have jagged or rough edges. Due to the wide spacing between strands of the mesh described above and the small diameter of the filaments, the edge problems are mitigated to an extent by the present invention.
To further reduce edge problems it would be preferable if a mesh had a circumferential member which extends, in use, along at least part of the perimeter of the implant to provide a substantially smooth edge.
In other words, the mesh has at least one circumferential member (i.e. fibre, strand or such like) that extends around at least part of its circumference.
Preferably at least part of the perimeter of the implant is defined by the circumferential member,
Alternatively at least part of the perimeter of the implant is defined by more than one circumferential member, at the edge of the mesh.
The edge of the mesh, and hence the perimeter of the implant, can therefore be generally smooth and this has significant advantages over conventional surgical meshes. Specifically, the Applicant has recognised that an implant having a smooth edge is less likely to cause edge extrusion or erosion.
Any amount of the perimeter of the implant may be defined by the circumferential member(s).
However, in order to maximise the benefits of the implant of the invention, it is preferable that at least 50% of the perimeter of the implant is defined by the circumferential member(s).
More preferably at least 80% of the perimeter of the implant is defined by the circumferential member(s).
Most preferably 100% of the perimeter of the implant is defined by the circumferential member(s).
The majority or the whole of the perimeter of the mesh being smooth minimises the risk of a rough edge causing edge erosion or infection.
The circumferential member(s) may be arranged in one of a variety of ways to provide the smooth edge or perimeter.
Preferably the circumferential members are arranged such that they each follow the edge of a desired shape of the surgical implant, the perimeter of the implant formed from as few members as possible.
This simplifies the construction of the mesh, which is desirable not only for manufacture, but also because simpler structures are less likely to have defects which might be problematic after implantation.
Preferably the perimeter of the mesh is defined, in use, by one circumferential member.
Preferably the mesh has a plurality of circumferential members arranged at different radial locations.
In order to provide an implant of given dimensions, the periphery of the mesh outward of the desired circumferential member is cut away such that one or more selected circumferential members form the perimeter of the implant as desired.
More preferably, the circumferential members are arranged concentrically.
A concentric arrangement of a plurality of circumferential members conveniently allows maintenance of the shape of the implant for different sizes of implant and provides the mesh with an even structure.
The remainder of the structure of the mesh may take a variety of forms.
The circumferential members can be arranged to join with one another in order to form an integral mesh.
Alternatively the mesh may additionally comprise transverse members which extend across the circumferential members joining the circumferential members.
The transverse members may extend radially from a central point to the perimeter of the implant.
Alternatively, the transverse members may extend toward the perimeter of the implant.
Preferably the transverse members are arranged to provide substantially even structural strength and rigidity to the implant.
It may be desirable to secure the mesh in place once it has been suitably located in the patient.
Preferably the mesh can be sutured to strong lateral tissue.
Alternatively, the mesh may be glued in place using a biocompatible glue.
This is advantageous, as it is fairly quick to apply glue to the area around the surgical implant.
Preferably the mesh comprises at least one capsule containing biocompatible glue for securing the implant in place.
Preferably 4 capsules containing glue are provided around the perimeter of the surgical implant.
Preferably the capsules comprise hollow thin walled spheres of around 3 to 5 mm diameter including gelatin.
Preferably the glue is a cyanoacrylate glue.
Conventionally, open procedures have been preferred for the treatment of hernias with meshes, as relatively broad access is required to the site of the defect to suitably implant and secure a mesh by sutures or such like.
However, it is desirable to treat hernias, as when carrying out any surgery, with as little trauma to the patient as possible. Thus, the use of minimally invasive techniques has been suggested for the treatment of hernias. However, such surgical techniques have not been considered to be useful in the treatment of uterovaginal prolapse with a mesh, as it has not been considered practical to position a mesh subcutaneously in the vaginal wall due to the difficulty in gaining direct access to this area.
According to another aspect of the present invention, there is provided a minimally invasive method of treating uterovaginal prolapse, the method comprising the steps;
Thus, a mesh or the surgical implant such as that according to the invention can be inserted through a small incision (e.g. around 1 cm to 2 cm in length) at or in the region of the periphery or opening of the vaginal cavity. An incision in this position is easier for a surgeon to access than an incision deeper in the vaginal cavity, yet the Applicant has realised that it is also convenient to treat vaginal prolapse by implanting a mesh in a surgical procedure carried out entirely through such an incision.
Preferably, the incision is at the anterior or posterior extremity of the prolapse sac of the vaginal cavity.
This is desirable as prolapse most often occurs in the anterior or posterior vaginal wall, so positioning the incision in such a location allows the most convenient access to these parts of the vaginal wall.
The provision of suitable handling characteristics for the mesh is particularly advantageous when the mesh is intended to be used in a conventional open surgical procedure, as the surgeon needs to handle the implant directly in order to place it in its desired location.
However, the suitable placement particularly in the treatment of uterovaginal prolapse, by minimally invasive techniques require the mesh to be as flexible as possible and therefore to have no absorbable coating or encasement.
A flexible, less bulky mesh may be more easily handled by tools that may be used to carry out the procedure.
Tools that may be used to carry out this procedure have a number of specific needs that need to be met that are not presently met by conventional minimally invasive surgical tools.
These specific needs can best be understood by considering the steps of the surgical procedure of the invention in turn.
The incision is made in the vaginal wall at the opening of the vaginal cavity. This can be carried out using a conventional implement such as a scalpel. It is preferable that the incision is as small as possible as this reduces trauma to the patient.
A cut is then made in the vaginal wall over the defect causing the prolapse or hernia. For example, scissors or another specialised cutting tool can be inserted through the incision and manipulated to provide a cut over the defect. The cut is below the surface of the skin and may provide a space between an upper (or outer) layer and a lower (or inner) layer of the vaginal wall, or between the skin and the vaginal wall, in the region of the defect, into which cavity the mesh can be inserted.
Next, the mesh is placed in the space defined by the cut. It is preferred that the mesh of the invention is supplied rolled up in order that it can be inserted through a small incision and unfurled in situ, i.e. in its intended position. Thus, it may be possible for the surgeon to insert the mesh through the incision by hand. However, this is likely to result in the incision needing to be large enough for the surgeon to insert a finger to manipulate the mesh in the space. This may cause unnecessary trauma to the patient and can be difficult for a surgeon to carry out.
According to another aspect of the present invention, there is provided a surgical tool for delivering a mesh subcutaneously through an incision, the tool being adapted to radially confine the mesh during delivery and being operable to release the mesh in its intended position.
Such a tool for placement of a mesh or the surgical implant of the present invention can insert and position the mesh or surgical implant in a convenient and controlled manner through a small incision. Furthermore, the incision through which the mesh is inserted need only be as large as the diameter of the tool, or the tool when carrying the mesh, which can be significantly smaller than where a surgeon's finger must be able to fit through the incision.
Preferably the tool comprises a housing and unfurling means the housing and unfurling means insertable through an incision in the patient, the housing and unfurling means adapted to accommodate a rolled up mesh and separable to release the mesh the unfurling means capable of unfurling the rolled up mesh without any significant movement around the area of the incision
Preferably, the tool comprises two or more parts, the parts movable such that in a first position they house the mesh or surgical implant and, in a second position the mesh or surgical implant is released. More preferably the tool comprises two semi-circular channels, an inner channel having an external diameter suitable for fitting inside an outer channel.
The channels may be rotatable about a common axis such that in a first position the open faces of the channels face one another to form a closed housing and in a second position the inner channel sits inside the other channel to release the mesh.
Alternative the tool comprises a shaft and releasable securing means, the shaft adapted such that the mesh can be rolled around the shaft and releasable securing means to secure the rolled mesh in place.
In use, the tool is inserted through the incision with the mesh rolled around the outside of the shaft. Once the tool has been inserted, the mesh is released by turning the shaft to unroll the mesh at the same time as moving the shaft across the space in which the mesh is being placed.
A needle may be used to secure the free, outer end of the mesh whilst it is unfurled. The needle may be inserted through the vaginal wall to pin the mesh in place. Similarly, where the mesh is released from within a housing, needles may be used to ease the mesh out of the open housing.
In an alternate embodiment, the tool comprises two or more arms, each of which is releasably attached at one end to an edge of the surgical implant. The arms may be movable from a first position in which they radially confine the mesh to a second position to unfurl the mesh in its intended position.
In one example, the arms are pivotally interconnected such that they can be manipulated to move the ends of the arms from the first position to the second position.
In another example the arms may be arranged to extend radially outward from a housing to move from the first position to the second position. The extendable arms may comprise wires arranged to be extendable and retractable from and into the housing by operation at an end of the housing.
In another example, the arms may be resilient or sprung elements that can be released from the first position and move into the second position to which they are biased, i.e. to unfurl the mesh.
As can be appreciated, all of the above, embodiments of the tool are able to unfurl the mesh without any significant movement around area of the incision. For example, the pivot can be arranged to coincide with the incision, the tool rolled around an arc centred at the incision or the arms operated or housing opened forward of the incision. Thus, the incision can be small as no lateral movement is required at the area of the incision.
Embodiments of the present invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
Referring to
Whilst the organ 3 that may protrude through the defect 2 is usually still contained by some other membrane 4, the hernia, prolapse or such like is inevitably painful and liable to infection or other complications. An effective and desirable treatment is therefore to close the defect 2 and contain the organ 3 in its normal position.
Referring to
Referring to
Referring to
Area A is the lower one third of the anterior vaginal wall 12 (i.e. the one third nearest the entrance to the vaginal cavity) adjacent the bladder 13 and urethra 14. Prolapse in this area is referred to as anterior or, more specifically, urethracoele prolapse. Area B is the upper two thirds of the anterior vaginal wall 12. Prolapse in this area is referred to as anterior or, more specifically; cystocoele prolapse. The central area of the vaginal wall 12 in which the cervix 10 is located is adjacent the uterus 15 and prolapse in this area is referred to as central, uterine or vault prolapse. Area C is the upper one third of the posterior vaginal wall 12. This area of the vaginal wall 12 is adjacent the small bowel 16 and prolapse in this area is referred to as posterior or entreocoele prolapse. Finally, area D is the lower two thirds of the posterior vaginal wall and is adjacent the rectum 17. Prolapse in this area is generally referred to as posterior or rectocoele prolapse.
Conventionally, any of the above types of hernia have been treated by providing sutures in the area of the prolapse. For example, the extent of the defect causing the prolapse is first identified by the surgeon. Lateral sutures, i.e. sutures from one side to the other of the vaginal wall 12 as seen in
A surgical implant for use in the repair of vaginal prolapse in accordance with an embodiment of the present invention comprises a mesh 20. The mesh is comprised of strands 22. The strands being less than 600 μm and approximately 150 to 600 μm in diameter. The strands are arranged such that they form a regular network and are spaced apart from each other such that for a diamond net a space of between 2 mm to 5 mm exists between the points where the strands of the mesh interact with each other (a). In a hexagonal net arrangement the space is between 2 mm to 5 mm between opposite diagonal points where the strands of the mesh interact (b).
It is preferable to space the strands as far as part as possible to allow blood to pass through the implant and reduce the mass of the implant, while providing the mesh with sufficient tensile strength and elasticity to be effective. It can therefore be appreciated that considerable variability in the maximum spacing between the strands can be achieved depending of the material from with the strands are comprised and the net pattern in which the strands are arranged.
In the embodiment shown in
For example a hexagonal net pattern may be used as shown in
Ideally in order to reduce the overall mass of the implant the strands 22 should have as narrow a diameter as possible while still providing the mesh 20 with suitable tensile strength and elasticity.
The strands 22 of the mesh 20 are comprised of at least two filaments 26 arranged to interact such that pores 28 are formed between the filaments 26.
The pores 28 formed between the filaments 26 are around 50 to 200 μm, such a spacing allowing fibroblast through growth to occur. This fibroblast through growth secures the implant 20 in place within the body. Additionally and importantly the suitably sized pores allow the implant 20 to act as a scaffold to encourage the lay down of new tissue. The lay down of new tissue promotes the healing of the hernia.
The filaments 26 may be formed from any biocompatible material. In this embodiment the filaments 26 are formed from polyester, wherein each polyester filament 26 is around 0.09 mm in diameter.
In the embodiment shown the filaments 26 of the strands 24 are knitted together using warp knit to reduce the possibility of fraying of the filaments 26 and strands 24.
Alternative suitable materials of which the filaments may be formed include polypropylene.
Suitable materials from which the mesh can be made: provide sufficient tensile strength to support a fascial wall during repair of a defect in the fascial wall causing a hernia; are sufficiently inert to avoid foreign body reactions when retained in the human body for long periods of time; can be easily sterilised to prevent the introduction of infection when the mesh is implanted in the human body; and have suitably easy handling characteristics for placement in the desired location in the body.
The fine warp knit of the filaments 26 provides a surgical implant which is flexible in handing, which can be easily cut into different shapes and dimensions. As the strands 24 are formed using warp knit the possibility of fraying of the edge of the surgical implant 20 following production or cutting of the surgical implant 20 is reduced.
Other methods of reducing fraying of the filaments 24, not arranged to form the strands using warp knit, following cutting or production of the implant are heat treatment, laser treatment or the like to seal the edges of the surgical implant.
The mesh 20 may be supplied in any shape or size and cut to the appropriate dimensions as required by the surgeon.
It can be appreciated that cutting of the mesh will produce an unfinished edge 30. Due to the sparse nature of the strands that form the mesh and their narrow diameter this unfinished edge does not suffer from the same problems as edges of meshes of the prior art.
In other words the edge produced is not rough and jagged such that it increases the likelihood of extrusion of the edge of the mesh in situ or the chance of infection.
As discussed an advantage of the mesh of the present invention is that it allows the production of a mesh suitable for use in hernia repair which allows substantially less foreign material to be left into the body.
However, the mesh being flexible and insubstantial is less suitable for allowing easy handling of the mesh directly by a surgeon. Referring to
The absorbable coating 32 comprises a layer of absorbable material having a thickness greater than that of the strands 22 of the mesh 20. For example, the thickness of the layer of absorbable material may be around 1 to 2 mm. The strands 22 of the mesh 20 may be entirely embedded in the absorbable coating 32 such that the outer surface of the mesh 20 is covered entirely of the absorbable coating 32.
In effect the entire surgical implant is encased in the absorbable coating as shown in
Thus, the surgical implant has no gaps or holes on its surface. This has the advantage of reducing the likelihood of bacteria becoming lodged on the strands 22 of the mesh 20 before implantation of the mesh 20. Furthermore, the absorbable coating 32 makes the mesh 20 more substantial and less flexible such that it is more easily handled by a surgeon. This is particularly useful when it is desired to place the mesh in a desired location in a conventional, open surgical procedure.
In an alternative embodiment shown in
It can also be envisaged that the surgical implant is provided with improved surgical handling qualities by a range of other methods. Such methods including, the releasable attachment of the mesh 20 to a backing strip 40. This embodiment is shown in
The backing strip may be formed from plastics material and is adhered to the surgical implant using releasable adhesive.
In a similar fashion to the absorbable coating the backing strip 40 causes the mesh 20 to be more substantial and less flexible such that it is more easily handled by a surgeon. Following the suitable placement of the mesh 20 the backing strip 40 can be removed from the mesh 20, the mesh 20 being retained in the body and the backing material 40 being removed by the surgeon. Application of the backing strip 40 to the mesh 20 means the mesh 20 benefits from reduced mass but that the mesh 20 and backing strip 40 together give characteristics required for surgical handling.
In a further embodiment the filaments of the mesh may be comprised from bicomponent microfibres 50 or composite polymers 60. These technologies provide the implant with dual phase technology.
As shown in
Suitable bicomponent microfibres 50 include a polypropelene non absorable portion and a polylactic acid absorbable portion.
The surface material 54 is present during the surgical procedure when the mesh 20 is being inserted and located in the patient, and provides the mesh with characteristics desirable for surgical handling. Following a period of insertion in the body, typically a few hours, the surface material 54 is absorbed into the body leaving only the core material 52 of the filaments 26 in the body. The core material of the filament having reduced foreign mass in comparison to meshes of the prior art or the mesh 20 when it also includes the surface material 54.
As shown in
Referring to 9a, a further embodiment of the mesh may comprise strands as discussed and more specifically, perimeter strands. Typically the mesh is circular or the like in shape and thus this perimeter strand can be generally referred to as a circumferential strand 70.
In the example shown in
As shown in
An outer circumferential strand 70 extending around the perimeter of the mesh 20, and further circumferential strands 72 and 74 are arranged inwardly of the outer circumferential strand forming a perimeter spaced by a distance (a). The distance a between adjacent circumferential members 70, 72 and 74, can vary and in this example is 20 mm.
Transverse strands 76 extend from the centre of the oval mesh 20 to points on the perimeter of the mesh 78. In this example, four transverse strands 76 are provided across the diameter of the mesh 20, dividing the mesh 18 into eight angularly equal portions.
The mesh 20 of this embodiment may be formed from materials as previously described. Depending on the material chosen the mesh may be woven, knitted or extruded as one piece, or individual or groups of strands can be extruded separately and joined to one another.
Such a construction as described above provides a mesh 20 with sufficient tensile strength to repair defects causing vaginal prolapse whilst having minimal bulk. Similarly, such a construction provides a suitably flexible yet resilient mesh for handling using the surgical tools described below. Referring to
These meshes have a similar structure to that described with reference to
In addition to the pores provided by the combination of filaments 26 which form the strands 22, pores can be provided by rings of polypropylene positioned at the intersection of the circumferential and transverse members.
Alternatively the pores may be formed by the spacing of the transverse members, such that pores of a size 50-200 μm suitable for enabling tissue ingrowth exist between the transverse members.
To secure the mesh to a suitable location in the body a number of methods can be used. The tackiness of the absorbable coating may hold the mesh suitably until it is secured by tissue ingrowth.
Alternatively the surgical implant can have capsules 100 (not shown) of biocompatible glue for securing the mesh 20 in place. In this example, six capsules 100 comprising spheres having a diameter of 4 mm and made from a rapidly absorbable material are provided around the perimeter of the mesh 20. On placement in the body, the capsules 100 dissolve and release a biocompatible glue contained within to secure the mesh 20 in place.
Referring to
Referring to
Referring to
Referring to
In use, the wires 236 are attached to the mesh 20 and retracted by pulling them back through the housing 30 such that the mesh 20 is radially confined close to the housing 232. Once the tool 230 has been inserted into the intended position, the wires 236 are pushed into the housing 232 and consequently out through the holes 234 to urge the mesh 20 away from the housing 232. Thus, the mesh 20 can be unfurled in its desired location in the body.
Referring once again to
The meshes described above are, in this example, supplied in a single size. After examination of the patient and estimation of the desired dimensions of the preferred mesh, the surgeon cuts the mesh to the preferred size.
Where the mesh comprises a circumferential member 70 the cut made in the mesh is through the transverse members 76 just outward of the circumferential member 70 corresponding most closely with the preferred size of mesh. Thus, regardless of the size to which the mesh is to be cut, a circumferential member 70 defines the perimeter of the mesh, and the perimeter of the mesh is substantially smooth. This desirably reduces the likelihood of infection or edge erosion once the mesh is inserted in the body.
The surgeon then attaches the mesh to or inserts the mesh with one of the insertion tools described herein. For example, the mesh is rolled up and placed within the insertion tool 200 illustrated in
An incision 9 is then made in the vaginal wall 12 at the forward most portion of the vaginal wall 12 adjacent the opening of the vaginal cavity. A cutting implement (not illustrated), such as scissors or a specialised cutting tool, is/are then inserted through the incision 9 into the area A, i.e. the lower portion of the anterior vaginal wall 12. Using the cutting implement, a cut is made in the area A parallel with the surface of the vaginal wall 12. In other words, a space is opened up in the vaginal wall 12 over the area of the defect in the vaginal wall 12. The cutting implement is then withdrawn and the mesh 20 is inserted in the space defined by the cut.
Where the insertion tool 200 illustrated in
Where the insertion tool 210 illustrated in
Where the insertion tool 220 illustrated in
Finally, where the insertion tool 250 illustrated in
Once the mesh 20 is in place, the incision may be closed.
However, it can be desirable to secure the 20 in place, rather than rely on the mesh 20 remaining in its desired location of its own accord. In one example, sutures are therefore be placed either laproscopically through the incision 9 or directly through the vaginal wall 12 to hold the mesh 20 in place. In another example, glue capsules provided on the mesh 20 dissolve to secure the mesh 20 to the tissue surrounding the space defined by the cut, or such capsules may be punctured by needles inserted directly through the vaginal wall 12.
The surgical implant described herein is advantageous over the meshes of the prior art in several ways.
In particular the mesh of the present invention includes smoother edges, the polyester material of the present invention being softer than polypropylene. Further, the filaments of the present invention are narrower in diameter enabling them to be more pliable than the strands of the meshes of the prior art. This causes the edge or edges of the mesh of the present invention to have fewer jagged edges and thus be smoother that the edges of meshes or the prior art.
In addition encasement of the mesh in an absorbable coating further protects the tissue both during placement and for a period of time after placement of the surgical implant.
Dual Phase Technology™ such as encasement in an absorbable coating or as otherwise discussed herein provides the implant with good handling characteristics, further it enables the implant to be more easily cut. As described above an absorbable coating may protect the tissues around where the implant is to be located both during placement and for a period of time following placement of the implant in the tissue.
Dual Phase Technology™ may also provide the implant with memory. This memory may allow the implant to be more easily placed flat on the tissue. Further the dual phase technology such as an absorbable coating may provide the implant with mild adhesive properties or tackiness which would aid both the locating and securing of the implant in the tissue.
The surgical implant described herein thus allows tension free repair of hernias, particular vaginal prolopse, with minimum pain. This allows the procedure to be performed under local anaesthetic in an out patient or office setting.
Whilst the above embodiments of the invention have been described with reference to vaginal prolapse, the mesh and surgical tools may equally be used to repair any bodily hernia. Furthermore, whilst the above procedure has been described in relation to a urethrocoele prolapse, prolapse in other parts of the vaginal wall 12 can be treated through incisions elsewhere in the vaginal wall, or other bodily hernias through suitable incisions in the appropriate tissue.
Number | Date | Country | Kind |
---|---|---|---|
0108088.6 | Mar 2001 | GB | national |
This application is a continuation of U.S. patent application Ser. No. 13/316,507, filed on Dec. 11, 2011, which is a continuation of U.S. patent application Ser. No. 12/551,676 filed on Sep. 1, 2009 that has issued as U.S. Pat. No. 8,100,924, which is a continuation of U.S. patent application Ser. No. 10/473,825 filed on Apr. 26, 2004 in the U.S. that has issued as U.S. Pat. No. 7,594,921, and which is the U.S. national phase of International Patent Application No. PCT/GB02/01234, filed Apr. 2, 2002, which claims priority to and the benefit of Great Britain patent Application No. 0108088.6, filed Mar. 30, 2001, the contents of each application being incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2738790 | Todt, Sr. et al. | Mar 1956 | A |
3054406 | Usher | Sep 1962 | A |
3124136 | Usher | Mar 1964 | A |
3182662 | Shirodkar | May 1965 | A |
3311110 | Singerman et al. | Mar 1967 | A |
3384073 | Van Winkle, Jr. | May 1968 | A |
3472232 | Pendleton | Oct 1969 | A |
3580313 | McKnight | May 1971 | A |
3763860 | Clarke | Oct 1973 | A |
3789828 | Schulte | Feb 1974 | A |
3858783 | Kapitanov et al. | Jan 1975 | A |
3888975 | Ramwell | Jun 1975 | A |
3911911 | Scommegna | Oct 1975 | A |
3913573 | Gutnick | Oct 1975 | A |
3916899 | Theeuwes et al. | Nov 1975 | A |
3924633 | Cook et al. | Dec 1975 | A |
3993058 | Hoff | Nov 1976 | A |
3995619 | Glatzer | Dec 1976 | A |
4019499 | Fitzgerald | Apr 1977 | A |
4037603 | Wendorff | Jul 1977 | A |
4128100 | Wendorff | Dec 1978 | A |
4172458 | Pereyra | Oct 1979 | A |
4233968 | Shaw, Jr. | Nov 1980 | A |
4235238 | Ogiu et al. | Nov 1980 | A |
4246660 | Wevers | Jan 1981 | A |
4441497 | Paudler | Apr 1984 | A |
4444933 | Columbus et al. | Apr 1984 | A |
4452245 | Usher | Jun 1984 | A |
4509516 | Richmond | Apr 1985 | A |
4632100 | Somers et al. | Dec 1986 | A |
4633873 | Dumican et al. | Jan 1987 | A |
4646731 | Brower | Mar 1987 | A |
4655221 | Devereux | Apr 1987 | A |
4769038 | Bendavid et al. | Sep 1988 | A |
4775380 | Seedhom et al. | Oct 1988 | A |
4857041 | Annis et al. | Aug 1989 | A |
4865031 | O'Keeffe | Sep 1989 | A |
4873976 | Schreiber | Oct 1989 | A |
4920986 | Biswas | May 1990 | A |
4938760 | Burton et al. | Jul 1990 | A |
5013292 | Lemay | May 1991 | A |
5053043 | Gottesman et al. | Oct 1991 | A |
5085661 | Moss | Feb 1992 | A |
5112344 | Petros | May 1992 | A |
5123428 | Schwarz | Jun 1992 | A |
5149329 | Richardson | Sep 1992 | A |
5188636 | Fedotov | Feb 1993 | A |
5207694 | Broome | May 1993 | A |
5209756 | Seedhom et al. | May 1993 | A |
5250033 | Evans et al. | Oct 1993 | A |
5256133 | Spitz | Oct 1993 | A |
5259835 | Clark et al. | Nov 1993 | A |
5281237 | Gimpelson | Jan 1994 | A |
5328077 | Lou | Jul 1994 | A |
5336239 | Gimpelson | Aug 1994 | A |
5337736 | Reddy | Aug 1994 | A |
5342376 | Ruff | Aug 1994 | A |
5362294 | Seitzinger | Nov 1994 | A |
5368595 | Lewis | Nov 1994 | A |
5383904 | Totakura et al. | Jan 1995 | A |
5386836 | Biswas | Feb 1995 | A |
5403328 | Shallman | Apr 1995 | A |
5405360 | Tovey | Apr 1995 | A |
5413598 | Moreland | May 1995 | A |
5434146 | Labrie et al. | Jul 1995 | A |
5439467 | Benderev et al. | Aug 1995 | A |
5456711 | Hudson | Oct 1995 | A |
5486197 | Le et al. | Jan 1996 | A |
5507754 | Green et al. | Apr 1996 | A |
5507796 | Hasson | Apr 1996 | A |
5520700 | Beyar et al. | May 1996 | A |
5522896 | Prescott | Jun 1996 | A |
5544664 | Benderev et al. | Aug 1996 | A |
5549619 | Peters et al. | Aug 1996 | A |
5562685 | Mollenauer et al. | Oct 1996 | A |
5562689 | Green et al. | Oct 1996 | A |
5569273 | Titone et al. | Oct 1996 | A |
5571139 | Jenkins, Jr. | Nov 1996 | A |
5591163 | Thompson | Jan 1997 | A |
5611515 | Benderev et al. | Mar 1997 | A |
5628756 | Barker, Jr. et al. | May 1997 | A |
5633286 | Chen | May 1997 | A |
5645568 | Chervitz et al. | Jul 1997 | A |
5647836 | Blake, III et al. | Jul 1997 | A |
5669935 | Rosenman et al. | Sep 1997 | A |
5683349 | Makower et al. | Nov 1997 | A |
5695525 | Mulhauser et al. | Dec 1997 | A |
5697931 | Thompson | Dec 1997 | A |
5697978 | Sgro | Dec 1997 | A |
5720766 | Zang et al. | Feb 1998 | A |
5749884 | Benderev et al. | May 1998 | A |
5766221 | Benderev et al. | Jun 1998 | A |
5807403 | Beyar et al. | Sep 1998 | A |
5816258 | Jervis | Oct 1998 | A |
5836314 | Benderev et al. | Nov 1998 | A |
5836315 | Benderev et al. | Nov 1998 | A |
5840011 | Landgrebe et al. | Nov 1998 | A |
5842478 | Benderev et al. | Dec 1998 | A |
5851229 | Lentz et al. | Dec 1998 | A |
5860425 | Benderev et al. | Jan 1999 | A |
5899909 | Claren et al. | May 1999 | A |
5904692 | Steckel et al. | May 1999 | A |
5919232 | Chaffringeon et al. | Jul 1999 | A |
5922026 | Chin | Jul 1999 | A |
5934283 | Willem et al. | Aug 1999 | A |
5935122 | Fourkas et al. | Aug 1999 | A |
5944732 | Raulerson et al. | Aug 1999 | A |
5954057 | Li | Sep 1999 | A |
5972000 | Beyar et al. | Oct 1999 | A |
5988171 | Sohn et al. | Nov 1999 | A |
5990378 | Ellis | Nov 1999 | A |
5997554 | Thompson | Dec 1999 | A |
6010447 | Kardjian | Jan 2000 | A |
6030393 | Corlew | Feb 2000 | A |
6031148 | Hayes et al. | Feb 2000 | A |
6039686 | Kovac | Mar 2000 | A |
6042534 | Gellman et al. | Mar 2000 | A |
6042536 | Tihon et al. | Mar 2000 | A |
6042583 | Thompson et al. | Mar 2000 | A |
6048306 | Spielberg | Apr 2000 | A |
6048351 | Gordon et al. | Apr 2000 | A |
6050937 | Benderev | Apr 2000 | A |
6053935 | Brenneman et al. | Apr 2000 | A |
6056688 | Benderev et al. | May 2000 | A |
6068591 | Bruckner et al. | May 2000 | A |
6071290 | Compton | Jun 2000 | A |
6074341 | Anderson et al. | Jun 2000 | A |
6077216 | Benderev et al. | Jun 2000 | A |
6090116 | D'Aversa et al. | Jul 2000 | A |
6106545 | Egan | Aug 2000 | A |
6110101 | Tihon et al. | Aug 2000 | A |
6117067 | Gil Vernet | Sep 2000 | A |
6159207 | Yoon | Dec 2000 | A |
6162962 | Hinsch et al. | Dec 2000 | A |
6168611 | Rizvi | Jan 2001 | B1 |
6190401 | Green et al. | Feb 2001 | B1 |
6197036 | Tripp et al. | Mar 2001 | B1 |
6200330 | Benderev et al. | Mar 2001 | B1 |
6221005 | Bruckner et al. | Apr 2001 | B1 |
6231496 | Wilk et al. | May 2001 | B1 |
6245082 | Gellman et al. | Jun 2001 | B1 |
6264676 | Gellman et al. | Jul 2001 | B1 |
6267772 | Mulhauser et al. | Jul 2001 | B1 |
6273852 | Lehe et al. | Aug 2001 | B1 |
6287316 | Agarwal et al. | Sep 2001 | B1 |
6292700 | Morrison et al. | Sep 2001 | B1 |
6302840 | Benderev | Oct 2001 | B1 |
6306079 | Trabucco | Oct 2001 | B1 |
6328686 | Kovac | Dec 2001 | B1 |
6328744 | Harari et al. | Dec 2001 | B1 |
6334446 | Beyar | Jan 2002 | B1 |
6352553 | van der Burg et al. | Mar 2002 | B1 |
6355065 | Gabbay | Mar 2002 | B1 |
6382214 | Raz et al. | May 2002 | B1 |
6387041 | Harari et al. | May 2002 | B1 |
6406423 | Scetbon | Jun 2002 | B1 |
6406480 | Beyar et al. | Jun 2002 | B1 |
6408656 | Ory et al. | Jun 2002 | B1 |
6418930 | Fowler | Jul 2002 | B1 |
6443964 | Ory et al. | Sep 2002 | B1 |
6475139 | Miller | Nov 2002 | B1 |
6478727 | Scetbon | Nov 2002 | B2 |
6478791 | Carter et al. | Nov 2002 | B1 |
6482214 | Sidor, Jr. et al. | Nov 2002 | B1 |
6491703 | Ulmsten | Dec 2002 | B1 |
6494887 | Kaladelfos | Dec 2002 | B1 |
6494906 | Owens | Dec 2002 | B1 |
6502578 | Raz et al. | Jan 2003 | B2 |
6506190 | Walshe | Jan 2003 | B1 |
6527802 | Mayer | Mar 2003 | B1 |
6530943 | Hoepffner et al. | Mar 2003 | B1 |
6544273 | Harari et al. | Apr 2003 | B1 |
6575897 | Ory et al. | Jun 2003 | B1 |
6575998 | Beyar | Jun 2003 | B2 |
6582443 | Cabak et al. | Jun 2003 | B2 |
6592515 | Thierfelder et al. | Jul 2003 | B2 |
6596001 | Stormby et al. | Jul 2003 | B2 |
6599235 | Kovac | Jul 2003 | B2 |
6599318 | Gabbay | Jul 2003 | B1 |
6599323 | Melican et al. | Jul 2003 | B2 |
6612977 | Staskin et al. | Sep 2003 | B2 |
6638210 | Berger | Oct 2003 | B2 |
6638211 | Suslian et al. | Oct 2003 | B2 |
6638284 | Rousseau et al. | Oct 2003 | B1 |
6641524 | Kovac | Nov 2003 | B2 |
6652450 | Neisz et al. | Nov 2003 | B2 |
6652595 | Nicolo | Nov 2003 | B1 |
6666817 | Li | Dec 2003 | B2 |
6669706 | Schmitt et al. | Dec 2003 | B2 |
6669735 | Pelissier | Dec 2003 | B1 |
6673010 | Skiba et al. | Jan 2004 | B2 |
6679896 | Gellman et al. | Jan 2004 | B2 |
6689047 | Gellman | Feb 2004 | B2 |
6691711 | Raz et al. | Feb 2004 | B2 |
6695855 | Gaston | Feb 2004 | B1 |
6702827 | Lund et al. | Mar 2004 | B1 |
6708056 | Duchon | Mar 2004 | B2 |
6737371 | Planck et al. | May 2004 | B1 |
6755781 | Gellman | Jun 2004 | B2 |
6783554 | Amara et al. | Aug 2004 | B2 |
6786861 | Pretorius | Sep 2004 | B1 |
6830052 | Carter et al. | Dec 2004 | B2 |
6884212 | Thierfelder et al. | Apr 2005 | B2 |
6911003 | Anderson et al. | Jun 2005 | B2 |
6932759 | Kammerer et al. | Aug 2005 | B2 |
6953428 | Gellman et al. | Oct 2005 | B2 |
6960160 | Browning | Nov 2005 | B2 |
6966918 | Schuldt-Hempe | Nov 2005 | B1 |
7025063 | Snitkin et al. | Apr 2006 | B2 |
7070556 | Anderson et al. | Jul 2006 | B2 |
7070558 | Gellman et al. | Jul 2006 | B2 |
7087065 | Ulmsten et al. | Aug 2006 | B2 |
7094199 | Petros et al. | Aug 2006 | B2 |
7112171 | Rocheleau et al. | Sep 2006 | B2 |
7112210 | Ulmsten et al. | Sep 2006 | B2 |
7131943 | Kammerer | Nov 2006 | B2 |
7131944 | Jacquetin | Nov 2006 | B2 |
7140956 | Korovin et al. | Nov 2006 | B1 |
7156858 | Schuldt Hempe et al. | Jan 2007 | B2 |
7204802 | De Leval | Apr 2007 | B2 |
7229404 | Bouffier | Jun 2007 | B2 |
7288063 | Petros et al. | Oct 2007 | B2 |
7290410 | Meneghin et al. | Nov 2007 | B2 |
7297102 | Smith et al. | Nov 2007 | B2 |
7326213 | Benderev et al. | Feb 2008 | B2 |
7347812 | Mellier | Mar 2008 | B2 |
7387634 | Benderev | Jun 2008 | B2 |
7404819 | Darios et al. | Jul 2008 | B1 |
7410460 | Benderev | Aug 2008 | B2 |
7500945 | Cox et al. | Mar 2009 | B2 |
7517313 | Thierfelder et al. | Apr 2009 | B2 |
7527633 | Rioux | May 2009 | B2 |
7559885 | Merade et al. | Jul 2009 | B2 |
7594921 | Browning | Sep 2009 | B2 |
7601118 | Smith et al. | Oct 2009 | B2 |
7611454 | De Leval | Nov 2009 | B2 |
7614258 | Cherok et al. | Nov 2009 | B2 |
7621864 | Suslian et al. | Nov 2009 | B2 |
7628156 | Astani et al. | Dec 2009 | B2 |
7673631 | Astani et al. | Mar 2010 | B2 |
7686760 | Anderson et al. | Mar 2010 | B2 |
7722528 | Arnal et al. | May 2010 | B2 |
7740576 | Hodroff et al. | Jun 2010 | B2 |
7789821 | Browning | Sep 2010 | B2 |
7815662 | Spivey et al. | Oct 2010 | B2 |
7927342 | Rioux | Apr 2011 | B2 |
7981022 | Gellman et al. | Jul 2011 | B2 |
8016741 | Weiser et al. | Sep 2011 | B2 |
8016743 | Romero Maroto | Sep 2011 | B2 |
8100924 | Browning | Jan 2012 | B2 |
8157821 | Browning | Apr 2012 | B2 |
8157822 | Browning | Apr 2012 | B2 |
8182545 | Cherok et al. | May 2012 | B2 |
8603119 | Browning | Dec 2013 | B2 |
8603120 | Browning | Dec 2013 | B2 |
8632554 | Browning | Jan 2014 | B2 |
20010000533 | Kovac | Apr 2001 | A1 |
20010018549 | Scetbon | Aug 2001 | A1 |
20010039423 | Skiba et al. | Nov 2001 | A1 |
20010049467 | Lehe et al. | Dec 2001 | A1 |
20010049538 | Trabucco | Dec 2001 | A1 |
20010051815 | Esplin | Dec 2001 | A1 |
20010053916 | Rioux | Dec 2001 | A1 |
20020005204 | Benderev et al. | Jan 2002 | A1 |
20020007222 | Desai | Jan 2002 | A1 |
20020022841 | Kovac | Feb 2002 | A1 |
20020028980 | Thierfelder et al. | Mar 2002 | A1 |
20020042658 | Tyagi | Apr 2002 | A1 |
20020049503 | Milbocker | Apr 2002 | A1 |
20020052612 | Schmitt et al. | May 2002 | A1 |
20020052654 | Darois et al. | May 2002 | A1 |
20020055748 | Gellman et al. | May 2002 | A1 |
20020058959 | Gellman | May 2002 | A1 |
20020058980 | Sass | May 2002 | A1 |
20020068948 | Stormby et al. | Jun 2002 | A1 |
20020072694 | Snitkin et al. | Jun 2002 | A1 |
20020077526 | Kammerer et al. | Jun 2002 | A1 |
20020078964 | Kovac et al. | Jun 2002 | A1 |
20020082619 | Cabak et al. | Jun 2002 | A1 |
20020083949 | James | Jul 2002 | A1 |
20020091298 | Landgrebe | Jul 2002 | A1 |
20020091373 | Berger | Jul 2002 | A1 |
20020099258 | Staskin et al. | Jul 2002 | A1 |
20020099259 | Anderson et al. | Jul 2002 | A1 |
20020099260 | Suslian et al. | Jul 2002 | A1 |
20020103542 | Bilbo | Aug 2002 | A1 |
20020107430 | Neisz et al. | Aug 2002 | A1 |
20020107525 | Harari et al. | Aug 2002 | A1 |
20020115906 | Miller | Aug 2002 | A1 |
20020119177 | Bowman et al. | Aug 2002 | A1 |
20020128670 | Ulmsten et al. | Sep 2002 | A1 |
20020138025 | Gellman et al. | Sep 2002 | A1 |
20020147382 | Neisz et al. | Oct 2002 | A1 |
20020151762 | Rocheleau et al. | Oct 2002 | A1 |
20020151909 | Gellman et al. | Oct 2002 | A1 |
20020151910 | Gellman et al. | Oct 2002 | A1 |
20020156487 | Gellman et al. | Oct 2002 | A1 |
20020156488 | Gellman et al. | Oct 2002 | A1 |
20020161382 | Neisz et al. | Oct 2002 | A1 |
20020183588 | Fierro | Dec 2002 | A1 |
20020188169 | Kammerer et al. | Dec 2002 | A1 |
20030004395 | Therin | Jan 2003 | A1 |
20030009181 | Gellman et al. | Jan 2003 | A1 |
20030023136 | Raz et al. | Jan 2003 | A1 |
20030023137 | Gellman | Jan 2003 | A1 |
20030023138 | Luscombe | Jan 2003 | A1 |
20030036676 | Scetbon | Feb 2003 | A1 |
20030050530 | Neisz et al. | Mar 2003 | A1 |
20030065246 | Inman et al. | Apr 2003 | A1 |
20030065402 | Anderson et al. | Apr 2003 | A1 |
20030078468 | Skiba et al. | Apr 2003 | A1 |
20030100954 | Schuldt Hempe et al. | May 2003 | A1 |
20030130670 | Anderson et al. | Jul 2003 | A1 |
20030149440 | Kammerer et al. | Aug 2003 | A1 |
20030171644 | Anderson et al. | Sep 2003 | A1 |
20030176875 | Anderson et al. | Sep 2003 | A1 |
20030191360 | Browning | Oct 2003 | A1 |
20030199732 | Suslian et al. | Oct 2003 | A1 |
20030212305 | Anderson et al. | Nov 2003 | A1 |
20030220538 | Jacquetin | Nov 2003 | A1 |
20040029478 | Planck et al. | Feb 2004 | A1 |
20040034373 | Schuldt Hempe et al. | Feb 2004 | A1 |
20040039453 | Anderson et al. | Feb 2004 | A1 |
20040097974 | De Leval | May 2004 | A1 |
20040144395 | Evans et al. | Jul 2004 | A1 |
20040172048 | Browning | Sep 2004 | A1 |
20040231678 | Fierro | Nov 2004 | A1 |
20040243166 | Odermatt et al. | Dec 2004 | A1 |
20040249240 | Goldmann et al. | Dec 2004 | A1 |
20040249373 | Gronemeyer et al. | Dec 2004 | A1 |
20040249397 | Delorme et al. | Dec 2004 | A1 |
20040249473 | Delorme et al. | Dec 2004 | A1 |
20050000524 | Cancel et al. | Jan 2005 | A1 |
20050004576 | Benderev | Jan 2005 | A1 |
20050080317 | Merade | Apr 2005 | A1 |
20050107805 | Bouffier et al. | May 2005 | A1 |
20050240076 | Neisz et al. | Oct 2005 | A1 |
20050277806 | Cristalli | Dec 2005 | A1 |
20050278037 | Delorme et al. | Dec 2005 | A1 |
20060025649 | Smith et al. | Feb 2006 | A1 |
20060025783 | Smith et al. | Feb 2006 | A1 |
20060041185 | Browning | Feb 2006 | A1 |
20060058578 | Browning | Mar 2006 | A1 |
20060089524 | Chu | Apr 2006 | A1 |
20060089525 | Mamo et al. | Apr 2006 | A1 |
20060130848 | Carey | Jun 2006 | A1 |
20060205995 | Browning | Sep 2006 | A1 |
20060264698 | Kondonis et al. | Nov 2006 | A1 |
20070015953 | MacLean | Jan 2007 | A1 |
20070020311 | Browning | Jan 2007 | A1 |
20070032695 | Weiser | Feb 2007 | A1 |
20070032881 | Browning | Feb 2007 | A1 |
20070059199 | Labuschagne | Mar 2007 | A1 |
20070149555 | Kase et al. | Jun 2007 | A1 |
20070219606 | Moreci et al. | Sep 2007 | A1 |
20080021263 | Escude et al. | Jan 2008 | A1 |
20080161837 | Toso et al. | Jul 2008 | A1 |
20080167518 | Burton et al. | Jul 2008 | A1 |
20080196729 | Browning | Aug 2008 | A1 |
20080200751 | Browning | Aug 2008 | A1 |
20090123522 | Browning | May 2009 | A1 |
20090137862 | Evans et al. | May 2009 | A1 |
20090171377 | Intoccia et al. | Jul 2009 | A1 |
20090221868 | Evans | Sep 2009 | A1 |
20090287229 | Ogdahl | Nov 2009 | A1 |
20100056856 | Suslian et al. | Mar 2010 | A1 |
20100113869 | Goldman | May 2010 | A1 |
20100130814 | Dubernard | May 2010 | A1 |
20100198002 | O'Donnell | Aug 2010 | A1 |
20100222794 | Browning | Sep 2010 | A1 |
20100222974 | Nakamura et al. | Sep 2010 | A1 |
20100256442 | Ogdahl et al. | Oct 2010 | A1 |
20100274074 | Khamis et al. | Oct 2010 | A1 |
20100280308 | Browning | Nov 2010 | A1 |
20100298630 | Wignall | Nov 2010 | A1 |
20110021868 | Browning | Jan 2011 | A1 |
20110034759 | Ogdahl et al. | Feb 2011 | A1 |
20110105833 | Gozzi et al. | May 2011 | A1 |
20110124954 | Ogdahl et al. | May 2011 | A1 |
20110124956 | Mujwid et al. | May 2011 | A1 |
20110237866 | Browning | Sep 2011 | A1 |
20110237867 | Browning | Sep 2011 | A1 |
20110237868 | Browning | Sep 2011 | A1 |
20110237869 | Browning | Sep 2011 | A1 |
20110237870 | Browning | Sep 2011 | A1 |
20110237879 | Browning | Sep 2011 | A1 |
20110319705 | Browning | Dec 2011 | A1 |
20110319706 | Browning | Dec 2011 | A1 |
20120083651 | Browning | Apr 2012 | A1 |
20130281775 | Browning | Oct 2013 | A1 |
20130289340 | Browning | Oct 2013 | A1 |
20130289341 | Browning | Oct 2013 | A1 |
Number | Date | Country |
---|---|---|
2305815 | Aug 1974 | DE |
4220283 | Dec 1993 | DE |
4304353 | Apr 1994 | DE |
10019604 | Jun 2002 | DE |
0009072 | Apr 1980 | EP |
0024781 | Aug 1984 | EP |
0024780 | Oct 1984 | EP |
0248544 | Apr 1991 | EP |
0139286 | Aug 1991 | EP |
0470308 | Feb 1992 | EP |
0557964 | Sep 1993 | EP |
0632999 | Jan 1995 | EP |
0650703 | May 1995 | EP |
0706778 | Apr 1996 | EP |
1093758 | Apr 2001 | EP |
0719527 | Aug 2001 | EP |
0643945 | Mar 2002 | EP |
1060714 | Aug 2006 | EP |
1274370 | Sep 2006 | EP |
1296614 | Sep 2006 | EP |
1353598 | Oct 2007 | EP |
0797962 | Sep 2009 | EP |
1274370 | Oct 1961 | FR |
2712177 | May 1995 | FR |
2732582 | Oct 1997 | FR |
2735015 | Feb 1998 | FR |
2811218 | Nov 2000 | FR |
2787990 | Apr 2001 | FR |
0378288 | Aug 1932 | GB |
378288 | Aug 1932 | GB |
2187251 | Aug 2002 | RU |
2196518 | Jan 2003 | RU |
1225547 | Apr 1986 | SU |
1342486 | Oct 1987 | SU |
1415607 | Apr 1989 | SU |
WO1991000714 | Jan 1991 | WO |
WO1993017635 | Sep 1993 | WO |
WO1993019678 | Oct 1993 | WO |
WO1995033454 | Dec 1995 | WO |
WO1996003091 | Feb 1996 | WO |
WO1996006567 | Mar 1996 | WO |
WO1997013465 | Apr 1997 | WO |
WO1997022310 | Jun 1997 | WO |
WO1997043982 | Nov 1997 | WO |
WO1998019606 | May 1998 | WO |
WO1998035606 | Aug 1998 | WO |
WO1998035616 | Aug 1998 | WO |
WO1998035632 | Aug 1998 | WO |
WO1998057590 | Dec 1998 | WO |
WO1999016381 | Apr 1999 | WO |
WO1999052450 | Oct 1999 | WO |
WO1999059477 | Nov 1999 | WO |
WO2000007520 | Feb 2000 | WO |
WO2000013601 | Mar 2000 | WO |
WO2000015141 | Mar 2000 | WO |
WO2000018319 | Apr 2000 | WO |
WO2000038784 | Jul 2000 | WO |
WO2000057812 | Oct 2000 | WO |
2000066030 | Nov 2000 | WO |
WO2000064370 | Nov 2000 | WO |
WO2000074594 | Dec 2000 | WO |
WO2000074613 | Dec 2000 | WO |
WO2000074633 | Dec 2000 | WO |
WO2001006951 | Feb 2001 | WO |
WO2001026581 | Apr 2001 | WO |
WO2001039670 | Jun 2001 | WO |
WO2001045589 | Jun 2001 | WO |
WO2001052729 | Jul 2001 | WO |
WO2001056499 | Aug 2001 | WO |
WO2001080773 | Nov 2001 | WO |
WO2002002031 | Jan 2002 | WO |
WO2002026108 | Apr 2002 | WO |
WO2002028312 | Apr 2002 | WO |
WO2002030293 | Apr 2002 | WO |
WO2002032284 | Apr 2002 | WO |
WO2002032346 | Apr 2002 | WO |
WO2002034124 | May 2002 | WO |
WO2002039890 | May 2002 | WO |
2002065922 | Aug 2002 | WO |
2002065923 | Aug 2002 | WO |
WO2002060371 | Aug 2002 | WO |
WO2002065921 | Aug 2002 | WO |
WO2002065944 | Aug 2002 | WO |
WO2002069781 | Sep 2002 | WO |
WO2002071953 | Sep 2002 | WO |
WO2002078552 | Oct 2002 | WO |
WO2002078568 | Oct 2002 | WO |
WO2002078571 | Oct 2002 | WO |
WO2002098340 | Dec 2002 | WO |
WO2003002027 | Jan 2003 | WO |
WO2003013392 | Feb 2003 | WO |
WO2003057074 | Jul 2003 | WO |
WO2003022260 | Oct 2003 | WO |
WO2003086205 | Oct 2003 | WO |
WO2003092546 | Nov 2003 | WO |
WO2003094781 | Nov 2003 | WO |
WO2004002370 | Jan 2004 | WO |
WO2004002379 | Jan 2004 | WO |
WO2004004600 | Jan 2004 | WO |
WO2004012626 | Feb 2004 | WO |
WO2004098461 | Nov 2004 | WO |
WO2005018494 | Mar 2005 | WO |
WO2005112842 | Dec 2005 | WO |
WO2006015031 | Feb 2006 | WO |
WO2006015042 | Feb 2006 | WO |
WO2006136625 | Dec 2006 | WO |
WO2007059199 | May 2007 | WO |
WO2007149555 | Dec 2007 | WO |
WO2008007086 | Jan 2008 | WO |
WO2008018494 | Feb 2008 | WO |
Entry |
---|
Schumpelick, V. et at., “Minimized polypropylene mesh for preperitoneal net plasty (PNP) of incisional hernias,” Chirurg 70:422-430 (1999). |
Shaw, W., “An Operation for the Treatment of Stress Incontinence,” Br. Med. J. 1949:1070-1071. |
Sheiner et al., “An unusual complication of obturator foramen arterial bypass,” J. Cardiovasc. Surg., 1969, 10 (4):324-328. |
Sirls and Leach, “Use of Fascia Lata for Pubovaginal Sling,” Female Urology, 1996, Raz (ed.). W.B. Saunders Company, Chapter 32, pp. 376-381. |
Sloan and Barwin, “Stress Incontinence of Urine: A Retrospective Study of the Complications and Late Results of Simple Suprapubic Suburethral Fascial Slings,” J. Urol., 1973, 110:533-536. |
Solyx™ SIS System, The Carrier Tip That Allows for Advanced Control, (Accessed: Feb. 28, 2011). |
Sottner et al. “New Single-Incision Sling System MiniArc™ in treatment of the female stress urinary incontinence” Gynekologicko-porodnicka klinika [Online] 2010, 75(2), pp. 101-104. |
Sottner et al. “New Single-Incision Sling System MiniArc™ in treatment of the female stress urinary incontinence” Gynekologicko-porodnicka klinika [Online] 2010, 75(2), pp. 101-104. Only the abstract is provided. A full copy of this document can be obtained upon request. |
Spencer et al., “A Comparison of Endoscopic Suspension of the Vesical Neck with Suprapubic Vesicourethropexy for Treatment of Stress Urinary Incontinence,” J. Urol., 1987, 137:411-415. |
Spinosa, JP et al., Transobturator surgery for female stress incontinence: a comparative anatomical study of outside-in vs. inside-out techniques, BJU Intl., 100(5), pp. 1097-1102 (Nov. 2007). |
Stamey, “Endoscopic Suspension of the Vesical Neck for Urinary Incontinence in Females,” Annals of Surgery, 1980, 192(4):465-471. |
Stanton, “Suprapubic Approaches for Stress Incontinence in Women,” J. Am. Geriatrics Soc., 1990, 38(3):348-351. |
Stanton, Stuart L. Suprapubic Approaches for Stress Incontinence in Women. The Journal of the American Geriatrics Society, 38(3):348-351, 1990. |
Staskin et al., “The Gore-tex sling procedure for female sphincteric incontinence: indications, technique, and results,” World J. Urol., 1997, 15:295-299. |
Stothers et al., “Anterior Vaginal Wall Sling,” Female Urology, 1996, Raz (ed.), W.B. Saunders Company, Chapter 35, pp. 395-398. |
Surgimesh Sling Treatment of Incontinence http://www.aspide.com Mar. 4, 2011. |
Ulmsten and Petros, “Intravaginal Slingplasty (IVS): An Ambulatory Surgical Procedure for Treatment of Female Urinary Incontinence,” Scand. J. Urol. Nephrol., 1995, 29:75-82. |
Ulmsten et al., “A three-year follow up of tension free vaginal tape for surgical treatment of female stress urinary incontinence,” Br. J. Obstet. Gynecol., 1999, 106:345-350. |
Ulmsten et al., “An Ambulatory Surgical Procedure Under Local Anesthesia for Treatment of Female Urinary Incontinence,” Int. Urogynecol. J., 1996, 7:81-86. |
Ulmsten et al., “Different Biochemical Composition of Connective Tissue in Continent and Stress Incontinent Women,” Acta Obstet. Gynecol. Scand., 1987, 66:455-457. |
Ulmsten et al., “The unstable female urethra,” Am. J. Obstet. Gynecol., 1982, 144:93-97. |
Ulmsten, “Female Urinary Incontinence—A Symptom, Not a Urodynamic Disease. Some Theoretical and Practical Aspects on the Diagnosis and Treatment of Female Urinary Incontinence,” Int. Urogynecol. J., 1995, 6:2-3. |
Ustem et al., “A Multicenter Study of Tension-Free Vaginal Tape (TVT) for Surgical Treatment of Stress Urinary Incontinence,” Int. Urogynecol. J., 1998, 9:210-213. |
U.S. Appl. No. 60/327,160, filed Oct. 4, 2001. |
U.S. Appl. No. 10/106,086, filed Mar. 25, 2002. |
U.S. Appl. No. 11/199,061, filed Aug. 8, 2005. |
U.S. Appl. No. 60/279,794, filed Mar. 29, 2001. |
U.S. Appl. No. 60/302,929, filed Jul. 3, 2001. |
U.S. Appl. No. 60/307,836, filed Jul. 25, 2001. |
U.S. Appl. No. 60/322,309, filed Sep. 14, 2001. |
U.S. Appl. No. 60/362,806, filed Mar. 7, 2002. |
U.S. Appl. No. 60/380,797, filed May 14, 2002. |
U.S. Appl. No. 60/393,969, filed Jul. 5, 2002. |
U.S. Appl. No. 60/402,007, filed Aug. 8, 2002. |
U.S. Appl. No. 60/414,865, filed Sep. 30, 2002. |
Webster and Kreder, “Voiding Dysfunction Following Cystourethropexy: Its Evaluation and Management,” J. Urol., 1990, 144:670-673. |
Weidemann, Small Intestinal Submucosa for Pubourethral Sling Suspension for the Treatment of Stress Incontinence: First Histopathological Results in Humans, Jul. 2004. |
Winter, “Peripubic Urethropexy for Urinary Stress Incontinence in Women,” Urology, 1982, 20(4):408-411. |
Woodside and Borden, “Suprapubic Endoscopic Vesical Neck Suspension for the Management of Urinary Incontinence in Myelodysplastic Girls,” J. Urol., 1986, 135:97-99. |
Written Opinion for PCT/GB2009/050174. |
Written Opinion for PCT/GB2009/050174, dated Jun. 24, 2009. |
Written Opionion issued in PCT/GB2007/002589, dated Jan. 22, 2008, 5 pages. |
Zacharin and Hamilton, “Pulsion Enterocele: Long-Term Results of an Abdominoperineal Technique,” Obstet. Gynecol., 1980, 55(2):141-148. |
Zacharin, “The suspensory mechanism of the female urethra,” J. Anat., 1963, 97(3):423-427. |
Marshall et al., “The Correction of Stress Incontinence by Simple Vesicourethral Suspension,” J. Urol., 2002, 168:1326-1331. |
McGuire and Gormley, “Abdominal Fascial Slings,” Female Urology, 1996, Raz (ed.), W.B. Saunders Company, Chapter 31, pp. 369-375. |
McGuire and Lytton, “Pubovaginal Sling Procedure for Stress Incontinence,” J. Urol., 1978, 119:82-84. |
McGuire et al., “Experience with Pubovaginal Slings for Urinary Incontinence at the University of Michigan,” J. Urol., 1987, 138:525-526. |
McGuire, “Abdominal Procedures for Stress Incontinence,” Urologic Clinics of North America, 1985, 12(2):285-290. |
McIndoe et al., “The Aldridge Sling Procedure in the Treatment of Urinary Stress Incontinence,” Aust. NZ J. Obstet. Gynaecol., 1987, 27:238-239. |
McKiel, Jr. et al., “Marshall-Marchetti Procedure: Modification,” J. Urol., 1966, 96:737-739. |
Migliari, R. et al., “Tension-Free Vaginal Mesh Repair for Anterior Vaginal Wall Prolapse,” European Urology (2000) 38 (2): 151-155. |
Miklos, Mini Sling Incontinence Treatment—Vagina Plastic Surgery, http://www.miklosandmoore.com, Feb. 28, 2011. |
Miklos, Mini Sling Incontinence Treatment—Vagina Plastic Surgery, http://www.miklosandmoore.com/mini_sling.php, Feb. 28, 2011. |
MiniArc Single-Incision Sling http://www.americanmedicalsystems.com Mar. 4, 2011. |
Moir, “The Gauze-Hammock Operation,” The Journal of Obstetrics and Gynaecology of the British Commonwealth, 1968, 75(1):1-9. |
Monseur, J., Anatomie Chirurgicale: Les Ligaments Du Perinee Feminin, Sep. 4, 2008. |
Moore et al. “Single-Center Retrospective Study of the Technique, Safety, and 12 Month Efficacy or the MiniArc™ Single Incision Sling: A New Minimally Invasive Procedure for Treatment of Female SUI” [Online] 2009, 18, pp. 175-181. |
Morgan et al., “The Marlex sling operation for the treatment of recurrent stress urinary incontinence: A 16-year review,” Am. J. Obstet. Gynecol., 1985, 151:224-226. |
Morgan, “A sling operation, using Marlex polypropylene mesh, for treatment of recurrent stress incontinence,” Am. J. Obstet. Gynecol., 1970, 106(3):369-376. |
Narik and Palmrich, “A simplified sling operation suitable for routine use,” Am. J. Obstet. Gynecol., 1962, 84:400-405. |
Nichols, “The Mersilene Mesh Gauze-Hammock for Severe Urinary Stress Incontinence,” Obstet. Gynecol., 1973, 41 (1):88-93. |
Nicita, Giulio, (1998), “A New Operation for Genitourinary Prolapse,” The Journal of Urology, 160:741-745. |
Nickel et al., “Evaluation of a Transpelvic Sling Procedure With and Without Colpolsuspension for Treatment of Female Dogs With Refractory Urethral Sphincter Mechanism Incompetence,” Veterinary Surgery, 1998, 27:94-104. |
Norris et al., “Use of Synthetic Material in Sling Surgery: A Minimally Invasive Approach,” J. Endocrinology, 1996, 10 (3):227-230. |
Novak, “Abdonomovaginal Techniques,” Gynecological Surgical Technique, 1977, Piccin Editore, Padua, 5 pages. |
O'Donnell, “Combined Raz Urethral Suspension and McGuire Pubovaginal Sling for Treatment of Complicated Stress Urinary Incontinence,” J. Arkansas Medical Society, 1992, 88(8):389. |
Parker, MC and Phillips, RK, “Repair of rectocoele using Marlex mesh,” Ann R Coll Surg Engl (May 1993) 75(3): 193-194. |
Parra and Shaker, “Experience with a Simplified Technique for the Treatment of Female Stress Urinary Incontinence,” British Journal of Urology, 1990, 66:615-617. |
Patent status information for GB Application No. 0025068.8, filed Oct. 12, 2000, 1 page. |
Patent status information for GB Application No. 0208359.0, filed Apr. 11, 2002, 1 page. |
Pelosi II and Pelosi III, “New transobturator sling reduces risk of injury,” OBG Management, 2003, pp. 17-37. |
Pelosi III and Pelosi, “Pubic Bone Suburethral Stabilization Sling: Laparoscopic Assessment of a Transvaginal Operation for the Treatment of Stress Urinary Incontinence,” Journal of Laparoendoscopic & Advanced Surgical Techniques, 1999, 9(1):45-50. |
Pelosi III and Pelosi. Pubic Bone Suburethral Stabilization Sling: Laparoscopic Assessment of a Transvaginal Operation for the Treatment of Stress Urinary Incontinence. Journal of Laparoendoscopic & Advanced Surgical Techniques: 9(1): 45-50, 1999. |
Penson and Raz, “Why Anti-incontinence Surgery Succeeds or Fails,” Female Urology, 1996, Raz (ed.), W.B. Saunders Company, Chapter 41, pp. 435-442. |
Pereyra et al., “Pubourethral Supports in Perspective: Modified Pereyra Procedure for Urinary Incontinence,” Obstet Gynecol., 1982, 59:643-648. |
Petros and Konsky, “Anchoring the midurethra restores bladder-neck anatomy and continence,” The Lancet, 1999, 354:997-998. |
Petros and Ulmsten, “An analysis of rapid pad testing and the history for the diagnosis of stress incontinence,” Acta Obstet. Gynecol. Scand., 1992, 71:529-536. |
Petros and Ulmsten, “An Anatomical Basis for Success and Failure of Female Incontinence Surgery,” Scand. J. Urol. Nephrol., 1993, (Suppl. 153):55-60. |
Petros and Ulmsten, “An Anatomical Basis for Success and Failure of Female Incontinence Surgery,” Scand. J. Urol. Nephrol., 1993, (Suppl. 3):55-60. |
Petros and Ulmsten, “An Integral Theory of Female Urinary Incontinence,” Acta Obstet. Gynecol. Scand., 1990, 69 (Suppl. 153):7-31. |
Petros and Ulmsten, “Bladder Instability in Women: A Premature Activation of the Micturition Reflex,” Neurourology and Urodynamics, 1993, 12:235-239. |
Petros and Ulmsten, “Cough Transmission Ratio: An Indicator of Suburethral Vaginal Wall Tension Rather than Urethral Closure?” Acta Obstet. Gynecol. Scand., 1990, 69(Suppl. 153):37-38. |
Petros and Ulmsten, “Cure of Stress Incontinence by Repair of External Anal Sphincter,” Acta. Obstet. Gynecol Scand., 1990, 69(Suppl. 153):75. |
Petros and Ulmsten, “Cure of Urge Incontinence by the Combined Intravaginal Sling and Tuck Operation,” Acta Obstet. Gynecol. Scand., 1990, 69(Suppl. 153)61-62. |
Petros and Ulmsten, “Further Development of the Intravaginal Slingplasty Procedure—IVS III—(with midline “tuck”),” Scand. J. Urol. Nephrol., 1993, Suppl. 153:69-71. |
Petros and Ulmsten, “Further Development of the Intravaginal Slingplasty Procedure—IVS III—(with midline “tuck”),” Scand. J. Urol. Nephrol., Suppl. 153 an Integral Theory and its Method for the Diagnosis and Management of Female Urinary Incontinence: 69-71 , 1993. |
Petros and Ulmsten, “Non Stress Non Urge Female Urinary Incontinence—Diagnosis and Cure: A Preliminary Report,” Acta Obstet. Gynecol. Scand., 1990, 69(Suppl. 153):69-70. |
Petros and Ulmsten, “Part 1: Theoretical, Morphological, Radiographical Correlations and Clinical Perspective,” Scand. J. Urol. Nephrol., 1993, Suppl. 153:5-28. |
Petros and Ulmsten, “Part I: Theoretical, Morphological, Radiographical Correlations and Clinical Perspective,” Scand. J. Urol. Nephrol., 1993, Suppl. 153:5-28. |
Petros and Ulmsten, “Part II:The Biomechanics of Vaginal Tissue and supporting Ligaments with Special Relevance to the Pathogenesis of Female Urinary Incontinence,” Scand. J. Urol. Nephrol., 1993, Suppl. 153:29-40. |
Petros and Ulmsten, “Part III: Surgical Principles Deriving from the Theory,” Scand. J. Urol. Nephrol., 1993, Suppl. 153:41-52. |
Petros and Ulmsten, “Part IV: Surgical Applications of the Theory—Development of the Intravaginal Sling Plasty (IVS) Procedure,” Scand. J. Urol. Nephrol., 1993, Suppl. 153:53-54. |
Petros and Ulmsten, “Pinch Test for Diagnosis of Stress Urinary Incontinence,” Acta Obstet. Gynecol. Scand., 1990, 69(Suppl.153):33-35. |
Petros and Ulmsten, “Pregnancy Effects on the Intravaginal Sling Operation,” Ada Obstet. Gynecol. Scand., 1990, 69 (Suppl. 153):77-78. |
Petros and Ulmsten, “The Combined Intravaginal Sling and Tuck Operation. An Ambulatory Procedure for Cure of Stress and Urge Incontinence,” Acta Obstet. Gynecol. Scand., 1990, 69(Suppl. 153):53-59. |
Petros and Ulmsten, “The Development of the Intravaginal Slingplasty Procedure: IVS II—(with bilateral “tucks”),” Scand. J. Urol. Nephrol., 1993, Suppl. 153:61-67. |
Petros and Ulmsten, “The Free Graft Procedure for Cure of the Tethered Vagina Syndrome,” Scand. J. Urol. Nephrol., 1993, Suppl. 153:85-87. |
Petros and Ulmsten, “The Further Development of the Intravaginal Slingplasty Procedure: IVS IV—(with “double-breasted” unattached vaginal flap repair and “free” vaginal tapes),” Scand. J. Urol. Nephrol., 1993, Suppl. 153:73-79. |
Petros and Ulmsten, “The Intravaginal Slingplasty Procedure: IVS VI—further development of the “double-breasted” vaginal flap repair—attached flap,” Scand. J. Urol. Nephrol., 1993, Suppl. 153:81-84. |
Petros and Ulmsten, “The Posterior Fomix Syndrome: A Multiple Symptom Complex of Pelvin Pain and Abnormal Urinary Symptoms Deriving from Laxity in the Posterior Fornix of Vagina,” Scand. J. Urol. Nephrol., 1993, Suppl. 153:89-91. |
Petros and Ulmsten, “The Role of a Lax Posterior Vaginal Fomix in the Causation of Stress and Urgency Symptoms: a Preliminary Report,” Acta Obstet. Gynecol. Scand, 1990, 69(Suppl. 153):71-73. |
Petros and Ulmsten, “The Tethered Vagina Syndrome, Post Surgical Incontinence and I-Plasty Operation for Cure,” Acta Obstet. Gynecol Scand., 1990, 69(Suppl.153):63-67. |
Petros and Ulmsten, “The Tuck Procedure: A Simplified Vaginal Repair for Treatment of Female Urinary Incontinence,” Acta Obstet. Gynecol. Scand, 1990, 69(Suppl.153):41-42. |
Petros and Ulmsten, “Urethral Pressure Increase on Effort Originates From Within the Urethra, and Continence From Musculovaginal Closure,” Neurourology and Urodynamics, 1995, 14:337-350. |
Petros and Ulmsten. Pregnancy Effects on the Intravaginal Sling Operation. Acta Obstet. Gynecol. Scand., 69(Suppl. 153 an Integral Theory of Female Urinary Incontinence) :77-78, 1990. |
Petros and Ulmsten. The Combined Intravaginal Sling and Tuck Operation. An Ambulatory Procedure for Cure of Stress and Urge Incontinence. Acta Obstet. Gynecol. Scand., 69(Suppl. 153 an Integral Theory of Female Urinary Incontinence): 53-59, 1990. |
Petros and Ulmsten. The Development of the Intravaginal Slingplasty Procedure: IVS II—(with bilateral “tucks”). Scand. J. Urol. Nephrol., Suppl. 153 an Integral Theory and its Method for the Diagnosis and Management of Female Urinary Incontinence: 61-67, 1993. |
Petros and Ulmsten. The Development of the Intravaginal Slingplasty Procedure: IVS II—(with bilateral “tucks”). Scand. J. Urol. Nephrol., Suppl. 153: 61-67, 1993. |
Petros and Ulmsten. The Free Graft Procedure for Cure of the Tethered Vagina Syndrome. Scand. J. Urol. Nephrol., Suppl. 153: 85-87, 1997. |
Petros and Ulmsten. The Further Development of the Intravaginal Slingplasty Procedure: IVS IV—(with “double-breasted” unattached vaginal flap repair and “free” vaginal tapes). Scand. J. Urol. Nephrol., Suppl. 153 an Integral Theory and its Method for the Diagnosis and Management of Female Urinary Incontinence: 73-79, 1993. |
Petros and Ulmsten. The Further Development of the Intravaginal Slingplasty Procedure: IVS IV—(with “double-breasted” unattached vaginal flap repair and “free” vaginal tapes). Scand. J. Urol. Nephrol., Suppl. 153: 73-79, 1993. |
Petros and Ulmsten. The Intravaginal Slingplasty Procedure: IVS VI—Further Development of the “Double-Breasted” Vaginal Flap Repair--Attached Flap. Scand. J. Urol. Nephrol., Suppl. 153 an Integral Theory and its Method for the Diagnosis and Management of Female Urinary Incontinence: 81-84, 1993. |
Petros and Ulmsten. The Posterior Fornix Syndrome: A Multiple Symptom Complex of Pelvic Pain and Abnormal Urinary Symptoms Deriving from Laxity in the Posterior Fornix of Vagina. Scand. J. Urol. Nephrol., Suppl. 153 an Integral Theory and its Method for the Diagnosis and Management of Female Urinary Incontinence: 89-93, 1993. |
Petros and Ulmsten. The Role of a Lax Posterior Vaginal Fornix in the Causation of Stress and Urgency Symptoms: A Preliminary Report. Acta Obstet. Gynecol. Scand., 69(Suppl. 153 an Integral Theory of Female Urinary Incontinence): 71-73, 1990. |
Petros and Ulmsten. The Tethered Vagina Syndrome, Post Surgical Incontinence and I-Plasty Operation for Cure. Acta Obstet. Gynecol. Scand., 69(Suppl.153 an Integral Theory of Female Urinary Incontinence): 63-67, 1990. |
Petros and Ulmsten. The Tuck Procedure: A Simplified Vaginal Repair for Treatment of Female Urinary Incontinence. Acta Obstet. Gynecol. Scand., 69(Suppl.153 an Integral Theory of Female Urinary Incontinence): 41-42, 1990. |
Petros and Ulmsten. Urethral Pressure Increase on Effort Originates From Within the Urethra, and Continence From Musculovaginal Closure. Neurourology and Urodynamics, 14:337-350, 1995. |
Petros et al., “The Autogenic Ligament Procedure: A Technique for Planned Formation of an Artificial Neo-Ligament,” Acta Obstet. Gynecol. Scand., 1990, 69(Suppl. 153):43-51. |
Petros, “Development of Generic Models for Ambulatory Vaginal Surgery—a Preliminary Report,” Int. Urogynecol. J., 1998, 9:19-27. |
Petros, Peter E., et al., The Autogenic Ligament Procedure: A Technique for Planned Formation of an Artificial Neo-Ligament. Acta Obstet. Gynecol. Scand., 69(Suppl. 153 an Integral Theory of Female Urinary Incontinence):43-51, 1990. |
Petros. Development of Generic Models for Ambulatory Vaginal Surgery—A Preliminary Report. Int. Urogynecol. J., 9:19-27, 1998. |
Product Monograph for Aris Transobturator Tape for the Treatment of Female Stress Urinary Incontinence. |
Product Monograph for Aris Transobturator Tape for the Treatment of Female Stress Urinary Incontinence, 2004, 40 pages. |
Rackley et al., “Tension-free Vaginal Tape and Percutaneous Vaginal Tape Sling Procedures,” Techniques in Urology, 2001, 7(2):90-100. |
Rackley, “Synthetic slings: Five steps for successful placement—Follow these steps to insert Transvaginal/Percutaneous slings using vaginal approach alone,” Urology Times, 2000, 28:46-49. |
Rackley, Raymond R., et al. Tension-free Vaginal Tape and Percutaneous Vaginal Tape Sling Procedures. Techniques in Urology, 7(2):90-100, 2001. |
Rackley, Raymond. Synthetic Slings: Five Steps for Successful Placement—Follow These Steps to Insert Transvaginal/Percutaneous Slings Using Vaginal Approach Alone. Urology Times, 28:46-49, 2000. |
Random House Webster's Unabridged Dictionary, 2001. |
Raz et al., “Urological Neurology and Urodynamics,” J. Urol., 1992, 148:845-850. |
Raz, “Modified Bladder Neck Suspension for Female Stress Incontinence,” Urology, 1981, 17(1):82-85. |
Raz, Shlomo, et al. The Raz Bladder Neck Suspension: Results in 206 Patients. The Journal of Urology: Urological Neurology and Urodynamics, 148:845-850, 1992. |
Raz, Shlomo. Modified Bladder Neck Suspension for Female Stress Incontinence. Urology, 17(1):82-85, 1981. |
Richardson et al., “Delayed Reaction to the Dacron Buttress Used in Urethropexy,” J. Reproductive Med., 1984, 29 (9):689-692. |
Richardson, David A., et al. Delayed Reaction to the Dacron Buttress Used in Urethropexy. The Journal of Reproductive Medicine, 29(9):689-692, 1984. |
Ridley, “Appraisal of the Goebell-Frangenheim-Stoeckel sling procedure,” Am. J. Obstet. Gynecol., 1966, 95 (5):714-721. |
Ridley, John H. Appraisal of the Goebell-Frangenheim-Stoeckel Sling Procedure. American Journal of Obstetrics and Gynecology, 95(5):714-721, 1966. |
Sand et al., “Prospective randomized trial of polyglactin 910 mesh to prevent recurrence of cystoceles and rectoceles,” American Journal of Obstetrics & Gynecology vol. 184, Issue 7, pp. 1357-1364, Jun. 2001. |
Schellini, M. et al., “Abdominal sacral colpopexy with prolene mesh,” Int Urogynecol J Pelvic Floor Dysfunct (1999) 10 (5): 259-299. |
Abdel-fattah, Mohamed et al. Evaluation of transobturator tapes (E-TOT) study: randomised prospective single-blinded study comparing inside-out vs. outside-in transobturator tapes in management of urodynamic stress incontinence: Short term outcomes, European Journal of Obstetrics & Gynecology and Reproductive Biology (2009). |
Adjustable Mini-Sling, Just-Swing SVS “Secured Vaginal Sling”, Polypropylene, Mar. 2010. |
Ajust Adjustable Single-Incision Sling, http://www.bardnordic.com, Mar. 1, 2011. |
Ajust(TM) Adjustable Single-Incision Sling, retrieved from www.bardnordic.com/main/product.asp?sectionTypeId=2§ion, accessed Mar. 1, 2011, 1 page. |
Aldridge, “Transplantation of Fascia for Relief of Urinary Stress Incontinence,” Am. J. Obstet. Gynecol., 1942, 44:398-411. |
American Heritage Dictionary, 2nd College Edition (1991). |
Araki et al., “The Loop-Loosening Procedure for Urination Difficulties After Stamey Suspension of the Vesical Neck,” J. Urol., 1990, 144:319-323. |
Asmussen and Ulmsten, “Simultaneous Urethra-Cystometry with a New Technique,” Scand. J. Urol. Nephrol., 1976, 10:7-11. |
Beck and McCormick, “Treatment of Urinary Stress Incontinence with Anterior Colporrhaphy,” Obstetrics and Gynecology, 1982, 59(3):271-274. |
Benderev, “A Modified Percutaneous Outpatient Bladder Neck Suspension System,” J. Urol., 1994, 152:2316-2320. |
Benderev, “Anchor Fixation and Other Modifications of Endoscopic Bladder Neck Suspension,” Urology, 1992, 40 (5):409-418. |
Bergman and Elia, “Three surgical procedures for genuine stress incontinence: Five-year follow-up of a prospective randomized study,” Am. J. Obstet. Gynecol., 1995, 173:66-71. |
BioArc SP Sling Kit, www.AmericanMedicalSystems.com, 2006. |
BioArc(R) SP Sling Kit: 12 Step Procedure, American Medical Systems Inc. Online Brochure 2006, 2 pages. |
Blaivas and Jacobs, “Pubovaginal Fascial Sling for the Treatment of Complicated Stress Urinary Incontinence,” J. Urol., 1991, 145:1214-1218. |
Blaivas and Salinas, “Type III Stress Urinary Incontinence: Importance of Proper Diagnosis and Treatment,” American College of Surgeons Surgical Forum, 1984, 70.sup.th Annual Clinical Congress, San Francisco, CA, vol. XXXV, pp. 473-474. |
Botros, Cystocele and Rectocele Repair: More Success With Mesh? Jun. 2006. |
Bryans, “Marlex gauze hammock sling operation with Cooper's ligament attachment in the management of recurrent urinary stress incontinence,” Am. J. Obstet. Gynecol., 1979, 133(3):292-294. |
Burch, “Urethrovaginal fixation to Cooper's ligament for correction of stress incontinence, cystocele, and prolapse,” Am. J. Obstet. Gynecol., 1961, 81(2):281-290. |
Canepa, G. et al., “Horseshoe-shaped Marlex mesh for the treatment of pelvic floor prolapse,” European Urology (Jan. 2001) 39 (Supl 2): 23-27. |
Certified copy of priority document for GB Application No. 0025068.8, filed Oct. 12, 2000, 1 page. |
Certified copy of priority document for GB Application No. 0025068.8, filed Oct. 12, 2000, 38 pages. |
Certified copy of priority document for GB Application No. 0208359.0, filed Apr. 11, 2002, 50 pages. |
Certified copy of priority document for GB Application No. 0411360.1, filed May 21, 2004, 31 pages. |
Chen, Biologic Grafts and Synthetic Meshes in Pelvic Reconstructive Surgery, Jun. 2007. |
Choe and Staskin, “Gore-Tex Patch Sling: 7 Years Later,” Urology, 1999, 54:641-646. |
Chopra et al., “Technique of Rectangular Fascial Sling,” Female Urology, 1996, Raz (ed.), W.B. Saunders Company, Chapter 34, pp. 392-394. |
Churchill's Medical Dictionary (1989). |
Dargent, D. et al., Insertion of a transobturator oblique suburethral sling in the treatment of female urinary incontinence, Gynecol. Obstet. Ferril. 30, pp. 576-582 (2002). |
Dargent, D. et al., Pose d'un ruban sous uretral oblique par vole obturatrice dans le traitement de L'incontinence urinary feminine [English “Insertion of a transobturator oblique suburethral sling in the treatment of female urinary incontinence”], Gynecol. Obstet. Ferril. 14, pp. 576-582 (2002) [including English translation at the beginning of document]. |
Das and Palmer, “Laparoscopic Colpo-Suspension,” J. Urol., 1995, 154:1119-1121. |
de Leval, J., “Novel Surgical Technique for the Treatment of Female Stress Urinary Continence: Transobturator Vaginal Tape Inside-Out,” European Urology, 2003, 44:724-730. |
DeBord, James R., (1998), “The Historical Development of Prosthetics in Hernia Surgery,” Surgical Clinics of North America, 78(6): 973-1006. |
Decter, “Use of the Fascial Sling for Neurogenic Incontinence: Lessons Learned,” J. Urol., 1993, 150:683-686. |
Delmore, E. et al., La bandelette trans-obturatrice: Un procede mini-invasif pour traiter l'incontinence urinaire d'effort de la femme, Progres en Urologie, vol. 11, pp. 1306-1313 (2001) [including English translation at the beginning of document]. |
deTayrac, et al. Prolapse repair by vaginal route using . . . Int. Urogynecol. J. (published online May 13, 2006). |
Dwyer, Transvaginal repair of anterior and posterior compartment prolapse with Atrium polypropylene mesh, BJOG: An International Journal of Obstetrics & Gynaecology, Aug. 2004. |
Enzelsberger et al., “Urodynamic and Radiologic Parameters Before and After Loop Surgery for Recurrent Urinary Stress Incontinence,” Acta Obstet. Gynecol. Scand., 1990, 69:51-54. |
Eriksen et al., “Long-Term Effectiveness of the Burch Colposuspension in Female Urinary Stress Incontinence,” Acta Obstet. Gynecol. Scand., 1990, 69:45-50. |
Falconer et al., “Clinical Outcome and Changes in Connective Tissue Metabolism After Intravaginal Slingplasty in Stress Incontinent Women,” Int. Urogynecol. J., 1996, 7:133-137. |
Falconer et al., “Influence of Different Sling Materials on Connective Tissue Metabolism in Stress Urinary Incontinent Women,” Int. Urogynecol. J., 2001, (Suppl. 2):S19-S23. |
Gilja et al., “A Modified Raz Bladder Neck Suspension Operation (Transvaginal Burch),” J. Urol., 1995, 153:1455-1457. |
Gittes and Loughlin, “No-Incision Pubovaginal Suspension for Stress Incontinence,” J. Urol., 1987, 138:568-570. |
Gruss, “The Obturator Bypass. Indications. Techniques. Outcomes,” Chirurgie, 1971, 97:220-226. |
Guida and Moore, “The Surgeon At Work. Obturator Bypass Technique,” Surgery, Gynecology & Obstetrics, 1969, pp. 1307-1315. |
Handa et al., “Banked Human Fascia Lata for the Suburethral Sling Procedure: A Preliminary Report,” Obstet. Gynecol., 1996, 88:1045-1049. |
Hardiman, et al. Cystocele repair using polypropylene mesh. Br. J. Obstet. Gynaecol. 107: 825-26 (2000). |
Henriksson and Ulmsten, “A urodynamic evaluation of the effects of abdominal urethrocystopexy and vaginal sling urethroplasty in women with stress incontinence,” Am. J. Obstet. Gynecol., 1978, 131:77-82. |
Hodgkinson and Kelly, “Urinary Stress Incontinence in the Female. III. Round-ligament technique for retropubic suspension of the urethra,” Obstet. Gynecol., 1957, 10:493-499. |
Hohenfellner and Petri, “Sling Procedures,” Surgery of Female Incontinence, 2nd edition, SpringerVeriag, pp. 105-113. |
Hohenfellner and Petri, “Sling Procedures,” Surgery of Female Incontinence, 2nd edition, SpringerVeriag, pp. 105-113, 1986. |
Holschneider et al., “The Modified Pereyra Procedure in Recurrent Stress Urinary Incontinence: A 15-Year Review,” Obstet. Gynecol., 1994, 83:573-578. |
Horbach et al., “A Suburethral Sling Procedure with Polytetrafluoroethylene for the Treatment of Genuine Stress Incontinence in Patients with Low Urethral Closure Pressure,” Obstet. Gynecol., 1988, 71:648-652. |
Horbach, “Suburethral Sling Procedures,” Urogynecology and Urodynamics—Theory and Practice, 1996, Williams & Wilkins, pp. 569-579. |
Ingelman-Sundberg and Ulmsten, “Surgical Treatment of Female Urinary Stress Incontinence,” Contr. Gynec. Obstet., 1983, 10:51-69. |
International Preliminary Examination Report issued in PCT/GB2002/001234, completed Jul. 1, 2003, 18 pages. |
International Search Report for PCT/GB2009/050174. |
International Search Report for PCT/GB2009/050174, dated Jun. 24, 2009. |
International Search Report issued in PCT/GB2002/01234 dated Jun. 5, 2002, 3 pages. |
International Search Report issued in PCT/GB2007/002589, dated Jan. 22, 2008, 5 pages. |
Jacquelin, Bernard, “2. Utilisation du “TVT” dans la chirurgie de l'incontinence urinaire feminine”, J. Gynecol. Obstet. Biol. Reprod. 29: 242-47 (2000). |
Jacquelin. Utilisation du “TVT” dans la chirurgie . . . J. Gynecol. Obstet. Biol. Reprod. 29: 242-47 (2000). |
Jeffcoate, “The Results of the Aldridge Sling Operation for Stress Incontinence,” The Journal of Obstetrics and Gynaecology of the British Empire, 1956, 63:36-39. |
Jeter, “The Social Impact of Urinary Incontinence,” Female Urology, Raz (ed.), W. B. Saunders Company, 1996, Chapter 7, pp. 80-86. |
Just-Swing(R) Adjustable mine-sling, Textile Hi-Tec Online Brochure 2010, 4 pages. |
Karram and Bhatia, “Patch Procedure: Modified Transvaginal Fascia Lata Sling for Recurrent or Severe Stress Urinary Incontinence,” Obstet Gynecol., 1990, 75:461-463. |
Kennelly et al. “Prospective Evaluation of a Single Incision Sling for Stress Urinary Incontinence” The Journal of Urology [Online] 2010, 184, pp. 604-609. |
Kerdiles et al., “Bypass via the Obturator Foramen in Reconstructive Arterial Surgery of the Lower Extremities,” Ann. Chir. Thorac. Cardio-Vasc., 1974, 13(4):335-341. |
Kerr and Staskin, “The Use of Artificial Material for Sling Surgery in the Treatment of Female Stress Urinary Incontinence,” Female Urology, 1996, Raz (ed.), W.B. Saunders Company, Chapter 33, pp. 382-391. |
Kersey, “The gauze hammock sling operation in the treatment of stress incontinence,” Br. J. Obstet. Gynecol., 1983, 90:945-949. |
Klinge et al., “Functional and Morphological Evaluation of a Low-Weight, Monofilament Polypropylene Mesh for Hernia Repair,” Journal of Biomedical Material Research, Jan. 24, 2002, pp. 129-137. |
Klinge, U. et al., “Influence of polyglactin-coating on functional and morphological parameters of polypropylene-mesh modifications for abnormal wall repair,” Biomaterials 20 (1999), pp. 613-623. |
Klinge, U. et al., “Modified Mesh for Hernia Repair that is Adapted to the Physiology of the Abdominal Wall,” Eur J Surg 164:951-960 (1998). |
Klinge, U. et al., “Pathophysiology of the abdominal wall,” Der Chirurg, (1996),67: 229-233. |
Klosterhalfen, B, et al., “Functional and morphological evaluation of different polypropylene-mesh modifications for abdominal wall repair,” Biomaterials 19:2235-2246 (1998). |
Klosterhalfen, B. et al., “Morphological correlation of the functional mechanics of the abdominal wall after mesh implantation,” Langenbecks Arch Chir 382:87-94 (1997). |
Klutke et al., “The Anatomy of Stress Incontinence: Magnetic Resonance Imaging of the Female Bladder Neck and Urethra,” J. Urol., 1990, 143:563-566. |
Klutke et al., “Transvaginal Bladder Neck Suspension to Cooper's Ligament: A Modified Pereyra Procedure,” Obstet. Gynecol., 1996, 88:294-297. |
Korda et al., “Experience with Silastic Slings for Female Urinary Incontinence,” Aust. NZ J. Obstet. Gynaecol., 1989, 29:150-154. |
Kovac and Cruikshank, “Pubic Bone Suburethral Stabilization Sling for Recurrent Urinary Incontinence,” Obstet. Gynecol., 1997, 89:624-627. |
Kovac and Cruikshank, “Pubic bone suburethral stabilization sling: a long-term cure for SUI?” Contemporary OB/GYN, 1998, 43(2):51-72. |
Kovac and Cruikshank, “Pubic bone suburethral stabilization sling: a long-term cure for SUI?” Contemporary OB/GYN, 1998, 43(2):52-76. |
Kovac and Cruikshank. Pubic bone suburethral stabilization sling: a long-term cure for SUI? Contemporary OB/GYN: Surgical Techniques, 43(2):52-76, 1998. |
Kovac, “Follow-up of the Pubic Bone Suburethral Stabilization Sling Operation for Recurrent Urinary Incontinence (Kovac Procedure),” J. Pelvic Surgery, 1999, 5(3):156-160. |
Kovac, R. S. Follow-Up of the Pubic Bone Suburethral Stabilization Sling for Recurrent Urinary Incontinence (Kovac Procedure). Journal of Pelvic Surgery, 5(3): 156-160, 1999. |
Kovac, R., et. al. Pubic Bone Suburethral Stablization Sling for Recurrent Urinary Incontinence. Obstetrics & Genecology: Instruments & Methods, 89(4): 624-627, Apr. 1997. |
Lazarevski, M.B., Suburethral Duplication of the Vaginal Wall—An Original Operation for Urinary Stress Incontinence in Women, 6 Int'l Urogynecol. J. 73-79 (1995). |
Leach et al., “Female Stress Urinary Incontinence Clinical Guidelines Panel Summary Report on Surgical Management of Female Stress Urinary Incontinence,” J. Urol., 1997, 158:875-880. |
Leach, “Bone Fixation Technique for Transvaginal Needle Suspension,” Urology, 1988, 31(5):388-390. |
Lichtenstein et al., “The Tension—Free Hernioplasty,” Am. J. Surgery, 1989, 157:188-193. |
Lipton, S. and Estrin, J., “A Biomechanical Study of the Aponeurotic Iguinal Hernia Repair,” Journal of the American College of Surgeons, Jun. 1994, vol. 178, pp. 595-599. |
Loughlin et al., “Review of an 8-Year Experience with Modifications of Endoscopic Suspension of the Bladder Neck for Female Stress Urinary Incontinence,” J. Urol., 1990, 143:44-45. |
Maher, Surgical Management of Anterior Vaginal Wall Prolapse: An Evidence Based Literature Review, 2006. |
Mahoney and Whelan, “Use of Obturator Foramen in Iliofemoral Artery Grafting: Case Reports,” Annals of Surgery, 1966, 163(2):215-220. |
Cobb, William S., et al., The Argument for Lightweight Polypropylene Mesh in Hernia Repair, Surgical Innovation, Mar. 2005, vol. 12, No. 1, pp. 63-69. |
Cosson et al., “Mechanical properties of synthetic implants used in the repair of prolapse and urinary incontinence in women: which is the ideal material?,” Int Urogynecol J (2003) 14: 169-178, Jul. 25, 2003. |
Culligan, Patrick J., Clinical Expert Series, “Nonsurgical Management of Pelvic Organ Prolapse”, American College of Obstetricians and Gynecologists, vol. 119, No. 4, Apr. 2012, 9 pages. |
Culligan, Patrick J., et al., Subjective and objective results 1 year after robotic sacrocolpopexy using a lightweight Y-mesh, International Urogynecological Journal, Published online Nov. 22, 2013, pp. 731-735, vol. 25. |
Exhibit—Caldera Brochure: Caldera Medical, “Vertessa® Lite, Polypropylene Mesh for Sacrocolpopexy,” (last accessed Jul. 11, 2017 at http://www.calderamedical.com/wp-content/uploads/VL-Brochure.pdf). |
Exhibit—Caldera Press Release: Caldera Medical, “Caldera Medical Announces FDA Clearance of Vertessa™ Lite Polypropylene Mesh for Sacrocopopexy,” Jun. 25, 2013 (last accessed Jul. 11, 2017 at http://www.calderamedical.com/wp-content/uploads/Vertessa-Lite_PR-FINAL.pdf). |
Exhibit—Smartmesh Materials 1: Mpathy Medical, Smartmesh Technology, product details page, printed from website http://www.mpathymedical.com/foundations/store/sotrepage.asp?page=smartmesh on Apr. 6, 2010, 1pg. |
Exhibit—Smartmesh Materials 3: Mpathy Medical, Physician Testimonials, printed from website http://www.mpathymedical.com/foundations/store/storepage.asp?page=Testimonia on Apr. 6, 2010, 2 pgs. |
Feola, Andrew et al., Characterizing the ex vivo textile and structural properties of synthetic prolapse mesh products, International Urogynecological Journal, Published online Aug. 11, 2012, pp. 559-564, vol. 24. |
Feola, Andrew et al., Deterioration in Biomechanical Properties of the Vagina Following Implantation of a High Stiffness Prolapse Mesh, BJOG (International Journal of Obstetrics and Gynaecology) Jan. 2013, pp. 224-232, vol. 120, No. 2. |
Greca et al., “The influence of porosity on the integration histology of two polypropylene meshes for the treatment of abdominal wall defects in dogs,” Sep. 7, 2007, Hernia (2008) 12:45-49. |
Iglesia, C.B. et al., The Use of Mesh in Gynecologic Surgery, International Urogynecology Journal, 8 (1997), pp. 105-115, Springer-Verlag London Ltd. |
Klinge et al., “Do Multifilament Alloplastic Meshes Increase the Infection Rate? Analysis of the Polymeric Surface, the Bacteria Adherence, and the In Vivo Consequences in a Rat Model,” Oct. 17, 2002, Wiley Periodicals, Inc., J Biomed Mater Res (Appl Biomater) 63: 765-771, 2002. |
Liang, R. et al., Vaginal degeneration following implantation of synthetic mesh with increased stiffness, BJOG (International Journal of Obstetrics and Gynaecology) 2012, pp. 233-243, vol. 120. |
Non-final Office Action issued in U.S. Appl. No. 90/013,843, dated May 17, 2017, 17 pages. |
Ostergard, Donald R., Polypropylene Vaginal Mesh Grafts in Gynecology, American College of Obstetricians and Gyneciologists, Oct. 2010, pp. 962-966, vol. 116, No. 4, Published by Lippincott Williams & Wilkins. |
P.K. Amid, “Classification of biomaterials and their related complications in abdominal wall hernia surgery,” Mar. 25, 1997, Hernia (1997) 1: 15-21. |
Pandit et al., “Design of surgical meshes—an engineering perspective,” Technology and Health Care 12 (2004) 51-65, Jan. 8, 2004. |
Response to Non-final Office Action filed in U.S. Appl. No. 90/013,843, filed Jul. 14, 2017, 95 pages. |
Salamon, Charbel G., et al., Prospective study of an ultra-lightweight polypropylene Y mesh for robotic sacrocolpopexy, International Urogynecological Journal, Published online Jan. 8, 2013, pp. 1371-1375, vol. 24. |
Number | Date | Country | |
---|---|---|---|
20160100925 A1 | Apr 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13316507 | Dec 2011 | US |
Child | 14972133 | US | |
Parent | 12551676 | Sep 2009 | US |
Child | 13316507 | US | |
Parent | 10473825 | US | |
Child | 12551676 | US |