This application represents a National Phase application of International Patent Application No. PCT/US2016/065594, filed Dec. 8, 2016, entitled “Method of Ultrasonically Bonding Paperboard”, pending. The entire contents of this application is incorporated herein by reference.
The present invention pertains to paperboard and, more particularly, to methods for producing paperboard.
Paperboard has a variety of uses. For example, paperboard can be used to make packaging for food products. Typically, the fabrication of paperboard packaging requires the use of adhesives. As is known in the art, both hot and cold adhesive systems can be used. The need for adhesives increases the cost of fabricating paperboard. Accordingly, it would be desirable to be able to fabricate paperboard without the use of added adhesives.
The present invention is directed to a method of ultrasonically bonding paperboard. First and second pieces of paperboard are supplied. At least one of the first and second pieces of paperboard is provided with a clay coating. The first and second pieces of paperboard are moistened and positioned in a gap between a sonotrode and an anvil of an ultrasonic welding unit. The ultrasonic welding unit is activated, and the first and second pieces of paperboard are compressed to bond the first and second pieces of paperboard. The first and second pieces of paperboard are allowed to cool. Preferably, the moistening, positioning and activating steps occur continuously.
Activating the ultrasonic welding unit causes the clay coating to mobilize, and allowing the first and second pieces of paperboard to cool causes the clay coating to resolidify. Upon mobilization of the clay coating, the clay coating is forced into fiber matrixes of the first and second pieces of paperboard. Moistening the first and second pieces of paperboard causes starch from the first and second pieces of paperboard to gelatinize, and allowing the first and second pieces of paperboard to cool causes retrogradation of the starch.
In a preferred embodiment, the first and second pieces of paperboard, each establishing a layer of paperboard in the order of 0.012 to 0.040 inches thick, are moistened with water. The water is applied to the first and second pieces of paperboard as a thin layer, thereby avoiding soaking of the first and second pieces of paperboard. Preferably, the method is performed without added starch or adhesive. The first and second pieces of paperboard are compressed between 30 and 70% during activation of the ultrasonic welding unit. More preferably, the first and second pieces of paperboard are compressed between 40 and 60% during activation of the ultrasonic welding unit. The first and second pieces can be formed from various paperboard products, such as being selected from the group consisting of Kraft board, natural board, bleach board and recycled board. At least one of the first and second pieces of paperboard can also have an area provided with an aqueous coating associated with printing of the packaging.
Additional objects, features and advantages of the invention will become more readily apparent from the following detailed description of preferred embodiments thereof when taken in conjunction with the drawings wherein like reference numerals refer to common parts in the several views.
Detailed embodiments of the present invention are disclosed herein. However, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which may be embodied in various and alternative forms. The figures are not necessarily to scale, and some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to employ the present invention. In addition, any specific numerical value listed herein includes a margin of error of +/−5%. By way of example, a length of 0.100 inches includes lengths between 0.095 and 0.105 inches. Similarly, a range of 0.080-0.120 inches includes lengths between 0.076 and 0.126 inches. For numerical values expressed as percentages, the margin of error refers to the base numerical value. In other words, 20% means 19-21% and not 15-25%.
With initial reference to
With reference now to
At step 205, the first and second pieces of paperboard are moistened. Specifically, the surfaces of the first and second pieces are dampened. In particular, the first and second pieces are not soaked through. To accomplish this, a liquid is applied to the surfaces as a thin layer. In certain embodiments, water is used to moisten the paperboard. However, other liquids can be used.
At step 210, the first and second pieces of paperboard are passed through a gap between a sonotrode and an anvil of an ultrasonic welding unit (e.g., sonotrode 105 and anvil 110 of ultrasonic welding unit 100). The ultrasonic welding unit is active while the first and second pieces pass through the gap. Accordingly, the first and second pieces are welded together. Unlike many prior art paperboard fabrication methods, no supplemental bonding adhesives are employed. Instead, the clay coating and the moistening of the paperboard serve to form the bond between the first and second pieces. In particular, the ultrasonic welding operation causes the clay coating present on one or both of the first and second pieces to mobilize, and the clay coating is forced into fiber matrixes of the paperboard. In addition, the liquid (e.g., water) used to moisten the first and second pieces of paperboard mixes with the starch present in the paperboard, which leads to gelatinization of the starch. Preferably, no extra starch is added. In other words, the only starch used is the starch present in the paperboard. As the paperboard exits the ultrasonic welding unit, the paperboard begins to cool. Accordingly, the melted or liquefied coating resolidifies. Also, as the gelatinized starch cools, retrogradation takes place. As a result, a strong bond is formed between the first and second pieces of paperboard.
Preferably, steps 205 and 210 take place continuously (i.e., non-intermittently). During step 210, the first and second pieces of paperboard are compressed between the sonotrode and the anvil of the ultrasonic welding machine. The amount of compression is important to establish a strong bond through the clay and starch in accordance with the invention. Preferably, the first and second pieces are compressed by 30 to 70%. More preferably, the first and second pieces are compressed by 40 to 60%. This compression percentage refers to the amount that the thickness of the paperboard is changed from before to after welding. For example, if two pieces of paperboard have a combined thickness of 2.0 mm before welding and 1.2 mm after welding, then the pieces have been compressed by 40%. The degree of compression is important since too much compression damages the paperboard and too little compression does not result in a reliable bond being formed. Therefore, the combination of this compression, the clay coating and the water provides synergistic results in accordance with the invention, resulting in a strong bond between the sheets of paperboard.
Based on the above, it should be readily apparent that the present invention provides a way to produce paperboard, which remains in a compressed state in a bonded region, without the use of added adhesives. Although described with reference to preferred embodiments, it should be readily understood that various changes or modifications could be made to the invention without departing from the spirit thereof. In general, the invention is only intended to be limited by the scope of the following claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/065594 | 12/8/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/106243 | 6/14/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3222235 | Buchner | Dec 1965 | A |
3505136 | Attwood | Apr 1970 | A |
3652354 | Su | Mar 1972 | A |
3886017 | Brugh, Jr. et al. | May 1975 | A |
4109353 | Mitchell et al. | Aug 1978 | A |
4605454 | Sayovitz et al. | Aug 1986 | A |
4747894 | Johnston et al. | May 1988 | A |
5114509 | Johnston et al. | May 1992 | A |
5514308 | Cohen et al. | May 1996 | A |
5620545 | Braun | Apr 1997 | A |
6450393 | Doumanidis et al. | Sep 2002 | B1 |
6740018 | Heide | May 2004 | B2 |
7220331 | Gmeiner | May 2007 | B2 |
8011559 | Cai et al. | Sep 2011 | B2 |
9399330 | Wieduwilt | Jul 2016 | B2 |
9399332 | Wieduwilt | Jul 2016 | B2 |
20040163754 | Nowicki et al. | Aug 2004 | A1 |
20070003725 | Yousif | Jan 2007 | A1 |
20160311189 | Wieduwilt et al. | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
WO 1999025547 | May 1999 | WO |
WO 2016087846 | Jun 2016 | WO |
Number | Date | Country | |
---|---|---|---|
20200070462 A1 | Mar 2020 | US |