Wet media mills, such as the ones described in U.S. Pat. No. 5,797,550 issued to Woodall, et al, and U.S. Pat. No. 4,848,676 issued to Stehr, are generally used to mill or grind relatively large quantities of materials. These rather large media mills are not generally suitable for grinding small or minute quantities. U.S. Pat. No. 5,593,097 issued to Corbin recognizes the need for milling small quantities, as small as 0.25 grams, to a size less than 0.5 micron to about 0.05 micron in terms of average diameter in about 60 minutes.
The media mill described in the Corbin patent comprises a vertically oriented open top vessel, a vertically extending agitator with pegs, a motor for rotating the agitator, and a controller for controlling the rotational speed. The vessel is a cylindrical centrifuge or test tube formed of a glass, plastic, stainless steel, or other suitable material having an inner diameter of between 10 to 20 mm. The media suitable is described as any non-contaminating, wear resistant material, sized between about 0.17 mm to 1 mm in diameter.
The particulates to be ground and the grinding media are suspended in a dispersion and poured into the vessel. The agitator, with the peg end inserted in the vessel, is spun. The Corbin patent also discloses that the pegs should extend to within between about 1–3 mm of the sides of the vessel to provide the milling desired in the shortest possible time without damaging the materials and producing excessive heat. To avoid splattering created by vortexing of the material during mixing, the top peg of the mixer is positioned even with the top of the dispersion. No seal or cover is deemed needed during mixing or agitation if this practice is followed.
The Corbin patent also discloses that its micro media can be useful for forming medicinal compounds, food additives, catalysts, pigments, and scents. Medicinal or pharmaceutical compounds can be expensive and require much experimentation, with different sizes and quantities. The Corbin patent discloses that the preferred media for medicinal compounds are zirconium oxide and glass. Moreover, pharmaceutical compounds are often heat sensitive, and thus must be maintained at certain temperatures. In this respect, the Corbin patent discloses using a temperature control bath around the vessel.
In the media mill of the type described in the Corbin patent, even if the vessel is filled to the top peg, however, the rotating agitator in the dispersion creates a vortex, which undesirably draws air into the dispersion and foams the dispersion. Moreover, the open top configuration draws in contamination, making the mill unsuitable for pharmaceutical products. The temperature-controlled bath could spill into the open top container and further contaminate the product.
There is a need for a micro or small-scale media mill that avoids these problems. The present invention is believed to meet this need.
The present invention relates to a small-scale or micro media-mill and a method of milling materials, such as pharmaceutical products. The present small-scale mill, which can be vertically or horizontally oriented, can use a dispersion containing attrition milling media and the product to be milled. The milling media can be polymeric type, such as formed of polystyrene or cross-linked polystyrene having a nominal diameter of no greater than 500 microns. Other sizes include 200 microns and 50 microns and a mixture of these sizes.
In one embodiment, the mill has a relatively small vessel having an opening, an agitator, and a coupling, and a rotatable shaft mounted for rotation about a shaft mount. The agitator is dimensioned to be inserted in the vessel through the opening. Specifically, the agitator can have a rotor and a rotor shaft extending from the rotor. The rotor shaft is connected to the rotatable shaft. The rotor is dimensioned to be inserted in the vessel with a small gap formed between an outer rotating surface of the rotor and an internal surface of the vessel. The coupling detachably connects the vessel to the shaft mount. The coupling has an opening through which a portion of the agitator, such as the rotor shaft, extends. The shaft mount seals the vessel opening to seal the dispersion in the vessel. A seal can be provided to seal the portion of the agitator or the rotor shaft while permitting the agitator to rotate. The rotatable shaft can be driven by a motor or can be a motor shaft of a motor, preferably a variable speed motor capable of 6000 RPM.
In one embodiment; the coupling can have a threaded portion for detachably mounting to the shaft mount and a flange portion for detachably coupling to the vessel. In another embodiment, the coupling is integrally formed with the vessel and has a threaded portion for detachably mounting to the shaft mount.
The mill can include a cooling system connected to the vessel. In one embodiment, the cooling system can comprise a water jacket. Specifically, the vessel comprises a cylindrical inner vessel and an outer vessel spaced from and surrounding the inner vessel. The inner and outer vessels form a chamber therebetween. The chamber can be vessel shaped or annular. A flange connects the upper ends of the inner and outer vessel. The outer vessel (jacket) has at least first and second passages that communicate with the chamber. The cooling system comprises the outer vessel with the first and second passages, which is adapted to circulate cooling fluid.
In an alternative embodiment, the vessel can comprise an inner cylindrical wall having a bottom and an open top and an outer cylindrical wall spaced from and surrounding the inner vessel. The inner and outer cylindrical walls are connected together so that an annular chamber is formed therebetween. At least the first and second passages are formed at the outer cylindrical wall and communicate with the chamber to pass coolant. The bottom extends radially and covers the bottom end of the outer cylindrical wall. The bottom can have an aperture that allows samples of the dispersion to be withdrawn. A valve can close the aperture. Alternatively, the bottom can have an observation window for observing the dispersion.
In another embodiment, the vessel can include at least one port through which the dispersion is filled. The vessel includes at least two ports through which the dispersion is circulated. In this respect, the cooling system comprises the ports on the vessel for circulating the dispersion. The vessel can be horizontally oriented.
The rotor can be cylindrical, and can have tapered end surfaces. In one embodiment, the rotor is dimensioned so that its outer periphery is spaced no larger than 3 mm away from an inner surface of the vessel, particularly when the dispersion contains attrition media having a nominal size of no larger than 500 microns. The spacing or the gap is preferably no larger than 1 mm, particularly when the dispersion contains attrition media having a nominal size of no larger than 200 microns.
In another embodiment, the cylindrical rotor can have a cavity and a plurality of slots that extend between an inner surface of the cavity and an outer surface of the cylindrical rotor. In another embodiment, the cylindrical rotor can have a plurality of channels extending to an outer surface of the cylindrical rotor. In another embodiment, the cylindrical rotor can have a plurality of passageways extending between the tapered end surfaces of the cylindrical rotor.
One method according to the present invention comprises providing a dispersion containing a non-soluble product to be milled and attrition milling media having a nominal size of no greater than 500 microns; inserting the dispersion into a cylindrical vessel; providing an agitator and a coupling that closes the vessel, the coupling having an opening through which a portion of the agitator extends, the agitator comprising a cylindrical rotor and a shaft extending therefrom, wherein the cylindrical rotor is dimensioned so that an outer periphery is no greater than 3 mm away from an inner surface of the cylindrical wall; inserting an agitator into cylindrical vessel and sealingly closing the coupling, wherein the amount of dispersion inserted into the vessel is so that the dispersion eliminates substantially all of the air in the vessel when the agitator is fully inserted into the vessel; and rotating the agitator for a predetermined period.
Another method according to the present invention comprises providing a dispersion containing a non-soluble product to be milled and attrition milling media having a nominal size of no greater than 500 microns; providing an agitator having a cylindrical rotor and shaft extending therefrom; inserting the agitator in a horizontally oriented cylindrical vessel and sealing the cylindrical vessel, the cylindrical rotor being dimensioned to provide a gap of no greater than 3 mm between an outer surface of the rotor and an inner surface of the vessel; providing at least one port through the cylindrical vessel and maintaining the port at a highest point of the horizontally oriented cylindrical vessel; filling the cylindrical vessel with the dispersion until the dispersion drives out substantially all of the air in the vessel; and rotating the agitator for a predetermined period.
The method further includes cooling the vessel by jacketing the vessel and flowing water between the jacket and the vessel. Another method comprises externally circulating the dispersion through a plurality of ports formed through the horizontally oriented vessel to thereby cool the dispersion or refresh the dispersion.
These and other features, aspects, and advantages of the present invention will become more apparent from the following description, appended claims, and accompanying exemplary embodiments shown in the drawings.
Although references are made below to directions in describing the structure, they are made relative to the drawings (as normally viewed) for convenience. The directions, such as top, bottom, upper, lower, etc., are not intended to be taken literally or limit the present invention.
A small-scale mill 1, 1A, 2 (
A vertically oriented mills 1, 1A is exemplified in
Referring to
The outer cylindrical wall 14 has two openings 20, preferably positioned diametrically opposite to each other and a pair of coolant connectors 22 aligned with the openings 20. Either of these connectors 22 can serve as a coolant inlet or outlet. These connectors 22 can extend substantially radially outwardly. The free end of each connector can have a sanitary fitting, which includes an annular mounting flange 24 and a complementary fitting (essentially mirror image thereof—not shown), adapted to be clamped with, for example, a TRI-CLAMP available from Tri-Clover Inc. of Kenosha, Wis. These mounting flanges 24 are configured substantially similar to the mounting flanges 16, 52 connecting the vessel 10, 10A, 10B, 10C to the motor 100. All of these mounting flanges 16, 24, 52 can be adapted for a TRI-CLAMP, as described below. Each of these flanges 16, 24, 52 has an annular groove G for seating an annular gasket 60 and a beveled or tapered surface B. The mounting flanges and the gasket 60, which is FDA approved, adapted for the TRI-CLAMP are also available from Tri-Clover Inc.
Alternative to the double walled vessel is a single walled vessel 10C shown in
In the embodiments of
The mounting flanges 24 of the connectors 22 (
Referring to the embodiments of
Referring to
The shaft mount 110 has a central through hole 115 dimensioned larger than the shaft 40. The distal (lower) end of the cylindrical member 114 has an annular projection 116 that bears against the seal ring 70 (see
The rotor shaft 40 comprises a larger diameter portion 42 and a smaller diameter portion 44 having a threaded free end 45. A tapered section 46 extends between these portions 42, 44. The rotor 30 is attached to the motor 100 by inserting the smaller diameter portion 44 into a hollow motor shaft 120 and threading a nut 49 or a manual knob 49A (
Although the above-described mill 1 (
Referring to
The vessel 10D is illustrated with four fill/drain/cooling ports P1–P4 for illustrative purposes only. Only one port is needed in the horizontally oriented mill 2. The ports P2–P4 are radially extending through the cylindrical wall 12 of the vessel 10B, whereas the port P1 is axially extending from the end wall 13 of the vessel 10B. In one embodiment, the vessel 10D can have a single top fill port P2 or P3. In such an embodiment, it is especially desirable for the top port P2 or P3 to be located at or along the highest point of the milling chamber, i.e., at 12 O'clock position for a cylindrical vessel 10D, as this allows the chamber to be filled so that all of the air is displaced from the chamber. The absence of air in the milling chamber during operation prevents the formation of foam and enhances milling performance.
Alternatively, the horizontally oriented vessel 10D can contain two or more ports, such as two top radial ports P2 and P3, a single axial port P1 and a single top radial port P3, or a single top radial port P3 and a single bottom radial port P4. In such embodiments, the dispersion can be externally circulated through the vessel 10D, where one port acts as an outlet and the other an inlet. The dispersion can be cooled or replenished during the circulating process. Using two ports, one can recirculate (or add) the process fluid and/or attrition media via an external vessel and pump (not shown). If the attrition media has to remain in the vessel, the outlet port can be fitted with a suitable screen or filter to retain the media during operation.
Referring to
The rotor 32 also can comprise a variety of geometries, surface textures, and surface modifications, such as channels or protrusions to alter the fluid flow patterns. For example, the rotor 32 can be cylindrical (straight), as shown in
Specifically, the hexagonal rotor 32A (
The cylindrical rotors 32G, 32H, 32I, 32J (
The rotors 32G–32J of
In other embodiments (not shown), rotors also can contain pegs, agitator discs, or a combination thereof.
Referring to the cylindrical rotor 32 shown in
The vessel size can vary for milling small amounts of dispersion. Although the present invention is not limited to particular sizes, in the preferred embodiment, the inner diameter of the vessel is between ⅝ inch to 4 inches. By way of examples only, milling chamber of the vessel 10, 10A, 10B, 10C, and 10D and the cylindrical rotor 32 can have the dimensions specified in Tables 1 and 2.
It was mentioned that the gap X between the rotor 32 and the inner surface 12″ of the cylindrical wall 12 should be approximately 6 times the diameter of the attrition milling media. Nonetheless, the vessel and rotor combination can be used with 50, 200, 500 and mixtures of 50/200, 50/500, or 50/200/500 micron media These milling media also can be used with a gap X of 1 mm. The rotor speed is correlated to the rotor diameter to produce different tip speeds, which are related to the milling action. A too high tip speed can generate much heat and can evaporate the dispersion. A too low tip speed causes inefficient milling.
Tapering the ends of the rotor 32, as illustrated in
U.S. Pat. No. 5,145,684 issued to Liversidge et al., U.S. Pat. No. 5,518,187 issued to Bruno et al., and U.S. Pat. Nos. 5,718,388 and 5,862,999 issued to Czekai et al. disclose milling pharmaceutical products using polymeric milling media. These patents further disclose dispersion formulations for wet media milling. The disclosures of these patents are incorporated herein by reference.
In operation of the vertically oriented mill 1, 1A, an appropriate dispersion formulation containing the milling media and the product to be milled is prepared, which can be prepared according to the aforementioned patents. The dispersion is poured into the vessel 10, 10A, 10B, 10C to a level that would cause the dispersion to fill to the brim or the top face 61 (see
Because the coupling 50 seals the vessel 10, 10A, 10B, 10C, and because only a very small amount of air is trapped in the vessel, vortexing and contamination problems are minimized or avoided. Thus, the mill according to the present invention can prevent the dispersion formulation from foaming. Further, because the vessel is cooled, either by the cooling jacket or by circulating the dispersion, the rotor 32 can be spun faster. Thus, a higher energy can be transferred to the dispersion.
In the operation of the horizontally oriented mill 2, the vessel 10D is first mounted to the shaft mount 110 with either a threaded coupling 16′ (as shown in
Because virtually all or substantially all of the air can be displaced in the horizontally oriented mill 2, vortexing and contamination problems are minimized or avoided. Thus, the mill according to the present invention can prevent the dispersion formulation from foaming. Further, because the dispersion can be circulated, where it can be cooled with external cooling system, the rotor can be spun faster and high energy can be transferred to the dispersion. Moreover, the dispersion can be refreshed or made in batches or inspected without having to disassemble the vessel 10D from the shaft mount 110.
Exemplary Pharmaceutical Products
The pharmaceutical products herein include those products described in the aforementioned patents incorporated herein by reference and any human or animal ingestable products and cosmetic products.
As disclosed in U.S. Pat. No. 5,145,684 for “Surface Modified Drug Nanoparticles” to Liversidge et al., the drug substance must be poorly soluble and dispersible in at least one liquid medium. By “poorly soluble” it is meant that the drug substance has a solubility in the liquid dispersion medium of less than about 10 mg/ml, and preferably of less than about 1 mg/ml.
A preferred liquid dispersion medium is water. However, other liquid media in which a drug substance is poorly soluble and dispersible can be employed in the milling process, such as, for example, aqueous salt solutions, safflower oil, and solvents such as ethanol, t-butanol, hexane, and glycol.
Suitable drug substances can be selected from a variety of known classes of drugs including, for example, analgesics, anti-inflammatory agents, anthelmintics, anti-arrhythmic agents, antibiotics (including penicillins), anticoagulants, antidepressants, antidiabetic agents, antiepileptics, antihistamines, antihypertensive agents, antimuscarinic agents, antimycobacterial agents, antineoplastic agents, immunosuppressants, antithyroid agents, antiviral agents, anxiolytic sedatives (hypnotics and neuroleptics), astringents, beta-adrenoceptor blocking agents, blood products and substitutes, cardiac inotropic agents, contrast media, corticosteroids, cough suppressants (expectorants and mucolytics), diagnostic agents, diagnostic imaging agents, diuretics, dopaminergics (antiparkinsonian agents), haemostatics, immunological agents, lipid regulating agents, muscle relaxants, parasympathomimetics, parathyroid calcitonin and biphosphonates, prostaglandins, radio-pharmaceuticals, sex hormones (including steroids), anti-allergic agents, stimulants and anoretics, sympathomimetics, thyroid agents, vasodilators, xanthines, and antiviral agents. Preferred drug substances include those intended for oral administration and intravenous administration.
A description of these classes of drugs and a listing of species within each class can be found in Martindale, The Extra Pharmacopoeia, Twenty-ninth Edition (The Pharmaceutical Press, London, 1989), the disclosure of which is hereby incorporated by reference in its entirety. The drug substances are commercially available and/or can be prepared by techniques known in the art.
As taught in U.S. Pat. No. 5,518,187, the invention is also applicable for the grinding of particles for cosmetic and photographic compositions.
In addition, as taught in U.S. Pat. No. 5,718,388 for “Continuous Method of Grinding Pharmaceutical Substances” to Czekai et al.; U.S. Pat. No. 5,518,187 for “Method of Grinding Pharmaceutical Substances” to Bruno et al.; and U.S. Pat. No. 5,862,999 for “Method of Grinding Pharmaceutical Substances” to Czekai et al., other suitable drug substances include NSAIDs described in U.S. patent application Ser. No. 897,193, filed on Jun. 10, 1992, and the anticancer agents described in U.S. patent application Ser. No. 908,125, filed on Jul. 1, 1992. U.S. patent application Ser. No. 897,193 was abandoned and refiled on Mar. 13, 1995, as U.S. patent application Ser. No. 402,662, now U.S. Pat. No. 5,552,160 for “Surface Modified NSAID Nanoparticles.” U.S. patent application Ser. No. 908,125 issued as U.S. Pat. No. 5,399,363 for “Surface Modified Anticancer Nanoparticles.”
U.S. Pat. No. 5,552,160 states that useful NSAIDS can be selected from suitable acidic and nonacidic compounds. Suitable acidic compounds include carboxylic acids and enolic acids. Suitable nonacidic compounds include, for example, nabumetone, tiaramide, proquazone, bufexamac, flumizole, epirazole, tinoridine, timegadine, and dapsone. Suitable carboxylic acid NSAIDs include, for example: (1) salicylic acids and esters thereof, such as aspirin; (2) phenylacetic acids such as diclofenac, alclofenac, and fenclofenac; (3) carbo- and heterocyclic acetic acids such as etodolac, indomethacin, sulindac, tolmetin, fentiazac, and tilomisole; (4) propionic acids such as carprofen, fenbufen, flurbiprofen, ketoprofen, oxaprozin, suprofen, tiaprofenic acid, ibuprofen, naproxen, fenoprofen, indoprofen, and pirprofen; and (5) fenamic acids such as flufenamic, mefenamic, meclofenamic, and niflumic. Suitable enolic acid NSAIDs include, for example: (1) pyrazolones such as oxyphenbutazone, phenylbutazone, apazone, and feprazone; and (2) oxicams such as piroxicam, sudoxicam, isoxicam, and tenoxicam.
U.S. Pat. No. 5,399,363 states that useful anticancer agents are preferably selected from alkylating agents, antimetabolites, natural products, hormones and antagonists, and miscellaneous agents, such as radiosensitizers.
Examples of alkylating agents include: (1) alkylating agents having the bis-(2-chloroethyl)-amine group such as, for example, chlormethine, chlorambucile, melphalan, uramustine, mannomustine, extramustinephoshate, mechlore-thaminoxide, cyclophosphamide, ifosfamide, and trifosfamide; (2) alkylating agents having a substituted aziridine group such as, for example, tretamine, thiotepa, triaziquone, and mitomycine; (3) alkylating agents of the alkyl sulfonate type, such as, for example, busulfan, piposulfan, and piposulfam; (4) alkylating N-alkyl-N-nitrosourea derivatives, such as, for example, carmustine, lomustine, semustine, or streptozotocine; and (5) alkylating agents of the mitobronitole, dacarbazine, and procarbazine type.
Examples of antimetabolites include: (1) folic acid analogs, such as, for example, methotrexate; (2) pyrimidine analogs such as, for example, fluorouracil, floxuridine, tegafur, cytarabine, idoxuridine, and flucytosine; and (3) purine derivatives such as, for example, mercaptopurine, thioguanine, azathioprine, tiamiprine, vidarabine, pentostatin, and puromycine.
Examples of natural products include: (1) vinca alkaloids, such as, for example, vinblastine and vincristine; (2) epipodophylotoxins, such as, for example, etoposide and teniposide; (3) antibiotics, such as, for example, adriamycine, daunomycine, doctinomycin, daunorubicin, doxonibicin, mithramycin, bleomycin, and mitomycin; (4) enzymes, such as, for example, L-asparaginase; (5) biological response modifiers, such as, for example, alpha-interferon; (6) camptothecin; (7) taxol; and (8) retinoids, such as retinoic acid.
Examples of hormones and antagonists include: (1) adrenocorticosteroids, such as, for example, prednisone; (2) progestins, such as, for example, hydroxyprogesterone caproate, medroxyprogesterone acetate, and megestrol acetate; (3) estrogens, such as, for example, diethylstilbestrol and ethinyl estradiol; (4) antiestrogens, such as, for example, tamoxifen; (5) androgens, such as, for example, testosterone propionate and fluoxymesterone; (6) antiandrogens, such as, for example, flutamide; and (7) gonadotropin-releasing hormone analogs, such as, for example leuprolide.
Examples of miscellaneous agents include: (1) radiosensitizers, such as, for example, 1,2,4-benzotriazin-3-amine 1,4-dioxide (SR 4889) and 1,2,4-benzotriazine-7-amine 1,4-dioxide (WIN 59075); (2) platinum coordination complexes such as cisplatin and carboplatin; (3) anthracenediones, such as, for example, mitoxantrone; (4) substituted ureas, such as, for example, hydroxyurea; (5) and adrenocortical suppressants, such as, for example, mitotane and aminoglutethimide.
In addition, the anticancer agent can be an immunosuppressive drug, such as, for example, cyclosporine, azathioprine, sulfasalazine, methoxsalen, and thalidomide.
Surface Modifiers
Also as disclosed in U.S. Pat. No. 5,145,684, the drug particles comprise a discrete phase of a drug substance having a surface modifier adsorbed on the surface thereof. Useful surface modifiers are believed to include those which physically adhere to the surface of the drug substance but do not chemically bond to the drug.
Suitable surface modifiers can preferably be selected from known organic and inorganic pharmaceutical excipients. Such excipients include various polymers, low molecular weight oligomers, natural products and surfactants. Preferred surface modifiers include nonionic and anionic surfactants.
Representative examples of excipients include gelatin, casein, lecithin (phosphatides), gum acacia, cholesterol, tragacanth, stearic acid, benzalkonium chloride, calcium stearate, glyceryl monostearate, cetostearl alcohol, cetomacrogol emulsifying wax, sorbitan esters, polyoxyethylene alkyl ethers, e.g., macrogol ethers such as cetomacrogol 1000, polyoxyethylene castor oil derivatives, polyoxyethylene sorbitan fatty acid esters, e.g., the commercially available Tweens, polyethylene glycols, polyoxyethylene stearates, colloidol silicon dioxide, phosphates, sodium dodecylsulfate, carboxymethylcellulose calcium, carboxymethylcellulose sodium, methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethycellulose phthalate, noncrystalline cellulose, magnesium aluminum silicate, triethanolamine, polyvinyl alcohol, and polyvinylpyrrolidone (PVP).
Most of these excipients are described in detail in the Handbook of Pharmaceutical Excipients, published jointly by the American Pharmaceutical Association and The Pharmaceutical Society of Great Britain, the Pharmaceutical Press (1986), the disclosure of which is hereby incorporated by reference in its entirety. The surface modifiers are commercially available and/or can be prepared by techniques known in the art.
Particularly preferred surface modifiers include polyvinylpyrrolidone, Pluronic® F68 and F108, which are block copolymers of ethylene oxide and propylene oxide, Tetronic® 908, which is a tetrafunctional block copolymer derived from sequential addition of ethylene oxide and propylene oxide to ethylenediamine, dextran, lecithin, Aerosol OT® (American Cyanamid), which is a dioctyl ester of sodium sulfosuccinic acid, Duponol P® (DuPont), which is a sodium lauryl sulfate, Triton X-200® (Robin and Haas), which is an alkyl aryl polyether sulfonate, Tween® 80 (ICI Specialty Chemicals), which is a polyoxyethylene sorbitan fatty acid ester, and Carbowax® 3350 and 934 (Union Carbide), which are polyethylene glycols. Surface modifiers which have found to be particularly useful include polyvinylpyrrolidone, Pluronic® F-68, and lecithin.
The surface modifier does not chemically react with the drug substance or itself. Furthermore, the individually adsorbed molecules of the surface modifier are essentially free of intermolecular crosslinkages.
The drug particles can be reduced in size in the presence of a surface modifier. Alternatively, the particles can be contacted with a surface modifier after attrition.
The relative amount of drug substance and surface modifier can vary widely and the optimal amount of the surface modifier can depend, for example, upon the particular drug substance and surface modifier selected, the critical micelle concentration of the surface modifier if it forms micelles, etc. The surface modifier preferably is present in an amount of about 0.1–10 mg per square meter surface area of the drug substance. The surface modifier can be present in an amount of 0.1–90%, preferably 20–60% by weight based on the total weight of the dry particle.
Particle Size
Also disclosed in U.S. Pat. No. 5,145,684 is the particle size of the milled pharmaceutical substances. As used herein, particle size refers to a number average particle size as measured by conventional particle size measuring techniques well known to those skilled in the art, such as sedimentation field flow fractionation, photon correlation spectroscopy, or disk centrifugation. By “an effective average particle size of less than about 400 nm” it is meant that at least 90% of the particles have a weight average particle size of less than about 400 nm when measured by the above-noted techniques. In other embodiments of the invention, the effective average particle size is less than about 250 nm. In some embodiments of the invention, an effective average particle size of less than about 100 nm has been achieved.
As disclosed in U.S. Pat. Nos. 5,862,999, 5,518,187, and 5,718,388, the particle size of the milled compound can be submicron or nanoparticulate. In other embodiments described by these patents, the average particle size of the milled compound can be less than about 500 nm, less than about 400 nm, less than about 300 nm, or less than about 100 nm.
With reference to the effective average particle size, it is preferred that at least 95% and, more preferably, at least 99% of the particles have a particle size less than the effective average, e.g., 400 nm. In particularly preferred embodiments, essentially all of the particles have a size less than 400 nm. In some embodiments, essentially all of the particles have a size less than 250 nm.
Grinding Media
As disclosed in U.S. Pat. Nos. 5,145,684 and 5,862,999, the grinding media for the particle size reduction step can be selected from rigid media, preferably spherical or particulate in form, having an average size less than about 3 mm and, more preferably, less than about 1 mm. However, grinding media in the form of other non-spherical shapes are expected to be useful in the practice of this invention. Such media desirably can provide the particles of the invention with shorter processing times and impart less wear to the milling equipment.
As disclosed in U.S. Pat. No. 5,862,999, the grinding media can range in size up to about 100 microns. For fine grinding, the grinding particles preferably have a mean size of less than about 75 microns, more preferably, less than about 50 microns, and, most preferably, less than about 25 microns, in size. Excellent particle size reduction has been achieved with media having a particle size of about 5 microns.
As disclosed in U.S. Pat. No. 5,518,187, the grinding media can range in size from about 0.1 to 3 mm. For fine grinding, the grinding particles preferably are from 0.2 to 2 mm, more preferably, 0.25 to 1 mm in size.
As disclosed in U.S. Pat. No. 5,718,388, the grinding media can range in size up to about 1000 microns. Other useful sizes of grinding media include media having a particle size of less than about 300 microns, less than about 75 microns, or less than about 50 microns.
As disclosed in U.S. Pat. No. 5,718,288, grinding media having mixed media sizes can be utilized. For example, larger media may be employed in a conventional manner where such media is restricted to the milling chamber. Smaller grinding media may be continuously recirculated through the system and permitted to pass through the agitated bed of larger grinding media. In this embodiment, the smaller media is preferably between about 1 and 300 microns in mean particle size and the larger grinding media is between about 300 and 1000 microns in mean particle size.
As disclosed in U.S. Pat. Nos. 5,145,684, 5,862,999, and 5,718,388, the selection of material for the grinding media is not believed to be critical. It has been found that zirconium oxide, such as 95% ZrO stabilized with magnesia, zirconium silicate, glass, stainless steel, titania, alumina, and 95% ZrO stabilized with yttrium grinding media provide particles having levels of contamination which are believed to be acceptable for the preparation of pharmaceutical compositions. Preferred media have a density greater than about 3 g/cm3.
As disclosed in U.S. Pat. Nos. 5,862,999, 5,518,187, and 5,718,388, the grinding media can comprise particles, preferably substantially spherical in shape, e.g., beads, of a polymeric resin.
In general, polymeric resins suitable for use herein are chemically and physically inert, substantially free of metals, solvent and monomers, and of sufficient hardness and friability to enable them to avoid being chipped or crushed during grinding. Suitable polymeric resins include crosslinked polystyrenes, such as polystyrene crosslinked with divinylbenzene, styrene copolymers, polyacrylates such as polymethyl methylcrylate, polycarbonates, polyacetals, such as Delrin™., vinyl chloride polymers and copolymers, polyurethanes, polyamides, poly(tetrafluoroethylenes), e.g., Teflon™, and other fluoropolymers, high density polyethylenes, polypropylenes, cellulose ethers and esters such as cellulose acetate, polyhydroxymethacrylate, polyhydroxyethyl acrylate, silicone containing polymers such as polysiloxanes and the like.
The polymer can be biodegradable. Exemplary biodegradable polymers include poly(lactides), poly(glycolide) copolymers of lactides and glycolide, polyanhydrides, poly(hydroxyethyl methacrylate), poly(imino carbonates), poly(N-acylhydroxyproline)esters, poly(N-palmitoyl hydroxyproline) esters, ethylene-vinyl acetate copolymers, poly(orthoesters), poly(caprolactones), and poly(phosphazenes). In the case of biodegradable polymers, contamination from the media itself advantageously can metabolize in vivo into biologically acceptable products which can be eliminated from the body.
The polymeric resin can have a density from 0.8 to 3.0 g/cm3. Higher density resins are preferred inasmuch as it is believed that these provide more efficient particle size reduction.
As disclosed in U.S. Pat. No. 5,518,187, the grinding media can comprise particles comprising a core having a coating of the polymeric resin adhered thereon. The core material preferably can be selected from materials known to be useful as grinding media when fabricated as spheres or particles. Suitable core materials include zirconium oxides (such as 95% zirconium oxide stabilized with magnesia or yttrium), zirconium silicate, glass, stainless steel, titania, alumina, ferrite and the like. Preferred core materials have a density greater than about 2.5 g/cm3. The selection of high density core materials is believed to facilitate efficient particle size reduction.
Useful thicknesses of the polymer coating on the core are believed to range from about 1 to about 500 microns, although other thicknesses outside this range may be useful in some applications. The thickness of the polymer coating preferably is less than the diameter of the core.
The cores can be coated with the polymeric resin by techniques known in the art. Suitable techniques include spray coating, fluidized bed coating, and melt coating. Adhesion promoting or tie layers can optionally be provided to improve the adhesion between the core material and the resin coating. The adhesion of the polymer coating to the core material can be enhanced by treating the core material to adhesion promoting procedures, such as roughening of the core surface, corona discharge treatment, and the like.
Milling Process
As disclosed in U.S. Pat. No. 5,718,388, the milling process can be continuous. In such a process, the active agent to be milled and rigid grinding media are continuously introduced into a milling chamber, the active agent is contacted with the grinding media while in the chamber to reduce the particle size of the active agent, the agent and the grinding media are continuously removed from the milling chamber, and thereafter the active agent is separated from the grinding media.
Given the disclosure of the present invention, one versed in the art would appreciate that there may be other embodiments and modifications within the scope and spirit of the present invention. Accordingly, all modifications attainable by one versed in the art from the present disclosure within the scope and spirit of the present invention are to be included as further embodiments of the present invention. The scope of the present invention accordingly is to be defined as set forth in the appended claims.
This application is a continuation of application Ser. No. 10/037,566, filed on Oct. 19, 2001, now U.S. Pat. No. 6,745,962, which is a divisional of application Ser. No. 09/583,893, filed on May 31, 2000, now U.S. Pat. No. 6,431,478, which is based on Provisional Application No. 60/137,142, filed on Jun. 1, 1999, the disclosures of which are specifically incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4848676 | Stehr | Jul 1989 | A |
5133506 | Bogen | Jul 1992 | A |
5145684 | Liversidge et al. | Sep 1992 | A |
5183215 | Getzmann | Feb 1993 | A |
5464163 | Zoz | Nov 1995 | A |
5518187 | Bruno et al. | May 1996 | A |
5593097 | Corbin | Jan 1997 | A |
5718388 | Czekai et al. | Feb 1998 | A |
5797550 | Woodall et al. | Aug 1998 | A |
5862999 | Czekai et al. | Jan 1999 | A |
Number | Date | Country |
---|---|---|
0483808 | May 1992 | EP |
0686428 | Dec 1995 | EP |
Number | Date | Country | |
---|---|---|---|
20040251332 A1 | Dec 2004 | US |
Number | Date | Country | |
---|---|---|---|
60137142 | Jun 1999 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09583893 | May 2000 | US |
Child | 10037566 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10037566 | Oct 2001 | US |
Child | 10833045 | US |