The present disclosure relates to indwelling medical devices, and more specifically, stents.
Stents may be used to maintain a pathway within a bodily lumen. However, in many bodily areas, such as the esophageal tract, such stents are susceptible to migration from the area in which originally deployed. Such migration is generally undesired because the stent may damage surrounding tissue and may no longer maintain a pathway of the desired lumen. One solution to stent migration is providing a stent with openings that facilitate tissue ingrowth. However, tissue ingrowth is problematic when the stent is designed for temporary deployment. When tissue ingrowth occurs, removal and/or repositioning of the stent is difficult or dangerous.
In one aspect, the present disclosure provides a stent with a tubular stent body having a lumen extending therethrough. The stent may further include an anchor portion attached to an end of the tubular stent body, where the lumen continues through the anchor portion, and where the anchor portion includes at least one opening configured to facilitate tissue ingrowth. The anchor portion may be detachable from the tubular stent body while the stent is in a deployed state.
In another aspect, the present disclosure provides a stent with a tubular stent body having a lumen extending therethrough, where the tubular stent body includes at least one of a covering and a coating to prevent tissue ingrowth (e.g., where a covering may include a membrane or other sleeve-like structure that covers at least a portion of the stent body). An anchor portion may be attached to an end of the tubular stent body, where the lumen continues through the anchor portion, and where the anchor portion includes at least one opening configured to facilitate tissue ingrowth. The anchor portion may include a bioabsorbable material configured to degrade at a predetermined rate.
In another aspect, the present disclosure provides a stent deployment system with a stent body, an anchor portion attached to an end of the stent body, and a sheath. The stent body may be located at least partially within the sheath in a collapsed state. The anchor portion may be located at least partially outside the sheath to prevent plastic deformation of the anchor portion.
The embodiments will be further described in connection with the attached drawings. It is intended that the drawings included as a part of this specification be illustrative of the exemplary embodiments and should in no way be considered as a limitation on the scope of the present disclosure. Indeed, the present disclosure specifically contemplates other embodiments not illustrated but intended to be included in the claims.
The embodiments illustrated herein can be used in any portion of the body benefiting from a removable or repositionable indwelling medical device, such as a stent, including but not limited to, the gastrointestinal region, esophageal region, duodenum region, biliary region, colonic region, as well as any other bodily region or field, and they are not limited to the sizes or shapes illustrated herein.
Throughout, patients are not limited to being a human being, and indeed animals and others are contemplated. Users contemplated throughout the disclosure may be anyone or thing capable of using the device, including but not limited to a human being (e.g., a medical professional) and machine.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. In case of conflict, the present document, including definitions, will control. Preferred methods and materials are described below, although methods and materials similar or equivalent to those described herein can be used in practice or testing of the present invention. All publications, patent applications, patents and other references mentioned herein are incorporated by reference in their entirety. The materials, methods, and examples disclosed herein are illustrative only and not intended to be limiting.
The invention is described with reference to the drawings in which like elements are referred to by like numerals. The relationship and functioning of the various elements of this invention are better understood by the following detailed description.
However, the embodiments of this invention are not limited to the embodiments illustrated in the drawings. It should be understood that the drawings are not to scale, and in certain instances details have been omitted which are not necessary for an understanding of the present invention, such as conventional fabrication and assembly.
As used in the specification, the terms proximal and distal should be understood as being in the terms of a physician delivering the medical device to a patient. Hence the term “distal” means the portion of the medical device that is farthest from the physician and the term “proximal” means the portion of the medical device that is nearest to the physician.
The stent body 102 may include a generally-tubular shape with a proximal end 106, a distal end 108, and a lumen extending therethrough for providing an interior passage from the proximal end 106 to the distal end 108. The lumen 110 may continue through the anchor portion 104, which may also be generally-tubular in shape. As shown, the anchor portion 104 may be attached to an end of the stent body 102 (e.g., the proximal end, as shown, or the distal end), and in some embodiments an anchor portion 104 may be attached to each of the proximal end 106 and distal end 108 (e.g., as shown in
The stent body 102 may be any suitable stent structure, such as a self-expanding stent body or a body that expands under pressures or other influence from another device, such as an inflatable balloon at the tip of a balloon catheter. One example of an exemplary stent body is a self-expanding woven or braided stent body, such as a woven stent body formed from a plurality of wires 112 extending in opposite-helical directions around the outer perimeter of the stent body's outer surface. Certain examples of woven stent bodies are described in more detail in U.S. Patent Application Publication No. 2017/0105854, filed Oct. 20, 2015, which is hereby incorporated by reference in its entirety. One particular example is the Evolution® stent commercialized by Cook® Medical.
In other embodiments, the stent body 102 may be formed by a Z-stent design or Gianturco stent design (commercialized by Cook® Medical). In this instance, the stent body 102 may include a series of substantially straight segments or struts interconnected by a series of bent segments or bends. The bent segments may include acute bends or apices. The segments may be arranged in a zigzag configuration where the straight segments are set at angles relative to one another and are connected by the bent segments. The first stent may additionally or alternatively be formed of another stent pattern, such as an annular or helical stent pattern.
Without limitation, the stent segments and/or woven wires mentioned herein may be made from standard medical grade stainless steel or from nitinol or other shape-memory materials, and/or other metals/polymers in either a permanent or bioabsorbable design. It is also contemplated that the stent body 102 may be something other than a self-expanding stent, such as a substantially rigid or obstinate tube formed of a biocompatible material and/or any other suitable device for temporarily or permanently providing support to a body lumen.
The anchor portion 104 may incorporate any of the structures described with respect to the stent body 102 (e.g., the anchor portion 104 may incorporate wires 114 woven in opposite helical directions in certain exemplary embodiments). In some embodiments, the anchor portion 104 may be at least partially formed of a biodegradable and/or bioabsorbable material, such as a material that degrades at a known rate (e.g., hours, days, weeks, or months as required) when the anchor portion 104 is located inside a patient body. For example, without limitation, the frame member(s) (e.g., woven wires or other structure-providing device) may be formed of the materials and techniques discussed in U.S. Patent Application Publication No. 2005/0267560, filed May 23, 2005, which is hereby incorporated by reference in its entirety.
For example, one or more bioabsorbable polymer materials may be used to form the anchor portion 104. Using polymer materials provide the ability to enhance certain characteristics such as flexibility, compliance, and rate of bioabsorption. The properties of the bioabsorbable polymers may differ considerably depending on the nature and amounts of the comonomers, if any, employed and/or the polymerization procedures used in preparing the polymers. Biodegradable polymers that can be used to form the support frame of a medical device (such as the anchor portion 104), or can be coated on a frame member, include a wide variety of materials. Examples of such materials, include but are not limited to, polyesters, polycarbonates, polyanhydrides, poly(amino acids), polyimines, polyphosphazenes and various naturally occurring biomolecular polymers, as well as co-polymers and derivatives thereof. Certain hydrogels, which are cross-linked polymers, can also be made to be biodegradable. These include, but are not necessarily limited to, polyesters, poly(amino acids), copoly(ether-esters), polyalkylenes oxalates, polyamides, poly(iminocarbonates), polyorthoesters, polyoxaesters, polyamidoesters, polyoxaesters containing amido groups, poly(anhydrides), polyphosphazenes, poly-alpha-hydroxy acids, trimethlyene carbonate, poly-beta-hydroxy acids, polyorganophosphazines, polyanhydrides, polyesteramides, polyethylene oxide, polyester-ethers, polyphosphoester, polyphosphoester urethane, cyanoacrylates, poly(trimethylene carbonate), poly(iminocarbonate), polyalkylene oxalates, polyvinylpyrolidone, polyvinyl alcohol, poly-N-(2-hydroxypropyl)-methacrylamide, polyglycols, aliphatic polyesters, poly(orthoesters), poly(ester-amides), polyanhydrides, modified polysaccharides and modified proteins. Some specific examples of bioabsorbable materials include poly(epsilon-caprolactone), poly(dimethyl glycolic acid), poly(hydroxyl butyrate), poly(p-dioxanone), polydioxanone, PEO/PLA, poly(lactide-co-glycolide), poly(hydroxybutyrate-covalerate), poly(glycolic acid-eo-trimethylene carbonate), poly(epsilon-caprolactone-co-p-dioxanone), poly-Lglutamic acid or poly-L-lysine, polylactic acid, polylactide, polyglycolic acid, polyglycolide, poly(D,L-lactic acid), L-polylactic acid, poly(glycolic acid), polyhydroxyvalerate, cellulose, chitin, dextran, fibrin, casein, fibrinogen, starch, collagen, hyaluronic acid, hydroxyethyl starch, and gelatin.
If a metallic bioabsorbable material is used, it may be selected from a first group consisting of: magnesium, titanium, zirconium, niobium, tantalum, zinc and silicon. Mixtures and alloys of metallic bioabsorbable materials including those selected from the group in the preceding sentence are also contemplated. In some embodiments, the metallic bioabsorbable material can be an alloy of materials from the first group and a material selected from a second group consisting of: lithium, sodium, potassium, calcium, iron and manganese. Without being limited to theory, it is believed that the metallic bioabsorbable material from the first group may form a protective oxide coat upon exposure to blood or interstitial fluid. The material from the second group is preferably soluble in blood or interstitial fluid to promote the dissolution of an oxide coat. The bioabsorption rate, physical properties and surface structure of the metallic bioabsorbable material can be adjusted by altering the composition of the alloy. In addition, other metal or non-metal components, such as gold, may be added to alloys or mixtures of metallic bioabsorbable materials. Some preferred metallic bioabsorbable material alloy compositions include lithium-magnesium, sodium-magnesium, and zinctitanium, which can optionally further include gold. The frame members themselves, or any portion of the anchor portion 104, can be made from one or more metallic bioabsorbable materials, and can further include one or more non-metallic bioabsorbable materials, as well as various non-bioabsorbable materials. The bioabsorbable material can be distributed throughout the entirety of the frame member(s), or any localized portion thereof, in various ways. In some embodiments, the frame member(s) can include a bioabsorbable material or a non-bioabsorbable material as a “core” material, which can be at least partially enclosed by other materials. The frame can also have multiple bioabsorbable materials stacked on all or part of the surface of a non-bioabsorbable core material. The frame member(s) can also include a surface area presenting both a bioabsorbable material and a non-bioabsorbable material.
In some embodiments, the anchor portion 104 may have a diameter 116 (e.g., an outer diameter) that is larger than a diameter 118 of the stent body 102. Advantageously, the larger diameter 116 of the anchor portion 104 may ensure that appropriate contact and pressure is experienced between the anchor portion 104 and an inner surface of a body lumen to prevent migration, promote tissue ingrowth, promote bioabsorption, etc. The diameter 116 of the anchor portion 104 may be at least about 5% larger than the diameter 118 of the central portion 120 of the stent body 102, such as about 10% greater. In one non-limiting embodiment for use in a human esophagus, the outer diameter 116 of the anchor portion 104 may be about 1″ and the outer diameter 118 of the central portion 120 may be about 0.75″.
Optionally, the stent body 102 may include a proximal flange 122 and/or a distal flange 124 that have diameters greater than the diameter 118 of the central portion. As shown, the diameter of the flanges 122, 124 is approximately equal to the diameter 116 of the anchor portion 104, but this is not required. The flanges 122, 124 may be advantageous to enhance anchorage of the stent body 102 when it is deployed and to accommodate engagement with the anchor portion 104. While not shown in the depicted embodiment, it is contemplated that the flanges 122, 124 may be sized such that their inner diameters are slidably received by the inner diameter of the anchor portion 104, or vice versa. To prevent tissue ingrowth through the outer walls of the flanges 122, 124, the flanges 122, 124 may be covered (as described above), but it is also contemplated that limited tissue ingrowth may be desirable through the flanges 122, 124 in some situations (e.g., to prevent migration of the stent body 102 when the anchor portion 104 degrades).
While the central portion 120 may have a smaller diameter (as shown) than the above-described flanges and/or anchor portions, it is contemplated that the central portion 120 may be more rigid than other portions or otherwise configured to provide a relatively high radial force (e.g., to press back benign tumors), while the flange 122, 124 and/or the anchor portion 104 may be relatively compliant to provide comfort to a patient (particularly when the flange 122, 124 and/or the anchor portion 104 is configured to abut patient tissue (e.g., healthy patient tissue).
As shown in
Referring to
As described above, the anchor portion 104 may be detachable from the stent body 102. Preferably, such detachability can occur when the stent 102 is in a deployed state located within the patient body. Advantageously, the anchor portion 104 can be left in the body (or it can disintegrate prior to stent removal) while the stent body 102 can be removed. This detachability may be provided by the attachment mechanism that initially secures the stent body 102 to the anchor portion 104, the material of the stent body 102 and/or the anchor portion 104, by a separate medical instrument, etc.
For example, referring to
In other embodiments, including the embodiment depicted in
To detach the anchor portion 104 from the stent body 102, the cord 128 can be removed. For example, the cord 128 may be formed of a biodegradable material to allow detachment of the anchor portion 104 from the stent body 102 after a predetermined amount of time in the body (e.g., due to degradation of the cord 128). It is contemplated that the cord 128 may be configured to degrade faster (i.e., at a first predetermined rate) than the material of the anchor portion 104 (i.e., degradable at a second predetermined rate), and thus the anchor portion 104 can be left in the patient body for additional time to provide structure to the body lumen even after the stent body 102 is separated and removed. Additionally or alternatively, the cord 128 can be cut (e.g., with a separate cutting device, such as a knife or scissors) and then pulled out of the patient, leaving the stent body 102 and the anchor portion 104 separated. As shown in
To detach the anchor portion 104 from the stent body 102, at least one of the anchor portion 104, the first string 132, the second string 134, and the cord 128 (or even the stent body 102) may degrade during its time in the body due to including a bioabsorbable material, and/or at least one of those components can be broken (e.g., cut with a cutting device). In one exemplary embodiment, the first string 132 is configured to be cut and removed or weaken by degradation to detach the anchor portion 104 from the remainder of the stent 100. The second string 134 and the cord 128 may then function to at least partially collapse an end of the stent body 102 for ease of removal, as shown in
To further illustrate,
While not shown, more than one string may be included to provide a collapsing effect at more than one location. For example, the proximal end 106 and the distal end 108 (
As shown in
Referring to
Advantageously, the compact nature of the delivery system 200 prior to deployment (when the stent 100 is located inside the sheath 202) facilitates stent delivery to a target area of a body lumen prior to its release it into its expanded state (shown in
Referring now to
In some embodiments, the anchor portion 104 may be secured to the stent portion 102 without the use of a string or pin. For example, in some embodiments, the crown tip 300 may have one or more wings 310 (shown in two of the many possible orientations in
Another embodiment is shown in
While not shown, it is further contemplated that a lockstitch may be used (e.g., such that one pull of a string releases the components from one another).
The figures and disclosure are intended to be illustrative and not exhaustive. This description will suggest many variations and alternatives to one of ordinary skill in the art. All such variations and alternatives are intended to be encompassed within the scope of the attached claims. Those familiar with the art may recognize other equivalents to the specific embodiments described herein which equivalents are also intended to be encompassed by the attached claims.
This application is a continuation of U.S. Non-Provisional patent application Ser. No. 16/514,026, filed Jul. 17, 2019, pending, which claims the benefit of U.S. Provisional Application No. 62/699,090, filed Jul. 17, 2018, expired, which are hereby incorporated by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
62699090 | Jul 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16514026 | Jul 2019 | US |
Child | 18477671 | US |