The present invention is in the field of solar water heating by a novel method using stored solar heat. More particularly, the present invention uses heat storing materials that absorb solar heat using reusable, inexpensive available materials along with a backup heating method when solar radiation is not sufficiently available.
Solar hot water heater is used extensively. It Is done by absorbing solar radiation on a black metal plate and extracted the heat by pumping an antifreeze liquid which in turn heat cold water in the water storage tank. When it is overcast, rainy or snowy day, the heat generation from solar radiation is relatively low and cannot make enough hot water to fulfil the demand. Since the sun doesn't shine all the time, storage of solar heat is very useful for later use when there is a demand for hot water. The present invention showed a novel method of storing solar heat for a long period of time and can be used later to heat water in the storage tank to meet the demand. Additionally, when the solar rays are not sufficiently available, an auxiliary heating method will generate enough heat for heating the hot water to fulfill the demand.
In accordance with one embodiment of the invention, the present invention relates to a method of storing solar heat in an insulated tank and heating up the water using the stored solar heat. Solar heat can be stored in the insulated tank by using reusable and inexpensive abundantly available heat absorbing or heat storing materials. The stored heat can then be used to heat water in the storage tank by extracting the heat using an antifreeze liquid which in turn heat cold water in the water tank.
Above-mentioned and other features and objectives of this invention will become more apparent by reference to the following description taken in conjunction with the accompanying drawing, in which:
Typically concentrated solar power (CSP) uses solar rays to concentrate using mirrors and reflectors for generating electricity by using high heat generated by the CSP. The generated heat heats up molten salt to nearly 1050 F and can be used for generating steam. This steam can drive a steam turbine to generate large amount of electricity (1). In stead of generating large amount of electricity from CSP, the present invention uses the concentrated solar rays to store heat for water heating using reusable and inexpensive abundantly available heat absorbing or heat storing materials.
Sunrays are reflected from a mirror and directed to a lens (convex, Fresnel) or a parabolic mirror or a magnifying glass for concentrating incident solar rays into a heat insulated storage tank (HIST). High temperature resistant ceramic fiber blanket is used to insulate the storage tank. Ceramic insulating blankets can withstand temperature in excess of 1800 F. Commercial manufactures, such as: Unitherm International, Unifrax, Thermaxx, Morgan Advanced materials supply thermal insulation products which can be used in the HIST. When a mirror is used, reflected rays pass through a quartz window as shown in
Sand, steel and iron have a much lower specific heat than water and that's why sand gets hotter faster than water. Also rocks and stones are commonly used in sauna to store heat as they absorb heat, store and release that heat with time.
Some of the heat conducting materials such as: scrap aluminum, iron and copper plates, rods or filings are also placed inside the insulated tank. They are used for conducting the heat from the focal point of the solar rays to the surrounding heat absorbing materials inside the insulating tank for achieving a steady state temperature.
Thermal conductivity is a measure of material's ability for allowing heat to conduct. Denser material such as metals are good conductors whereas less dense materials and gases are poor conductor (called insulators). Thermal conductivity of selected materials is shown in Table 2.
The ideal heat storing or heat absorbing material should be dense and heavy so that it can absorb and retain significant amounts of heat. Scrap stainless steel, iron, sand, stone, concrete and marble are suitable for this purpose. They are abundantly available and inexpensive. Metallic material such as steel can retain or store heat as it remains hot for the longest period of time. As the sun rays are focused either through a lens (light concentrator) and pass through a quartz window 12, or through a parabolic mirror 11 and pass through a quartz window, intense heat is generated at the focal point 10. Intense heat is then transferred to the surrounding area using heat conducting materials 15 such as scrap aluminum, and copper. Aluminum or copper can be in the form of plates, rods or filings. As concentrated solar rays at the focal point generate heat, (as high as 900-1100 F, referenced in 2-4), this heat is conducted through scrap aluminum or copper to the heat absorbing materials 14 and stores the heat. When the steady state temperature in the HIST reaches around 500 F, a heat transfer liquid, such as: antifreeze is pumped through a doubled wall heat exchanger into the insulated HIST. The antifreeze extract heat from HIST and gets heated in the copper coil 22. This heated antifreeze liquid then passes through a valve to the water storage tank 30 and transfers heat to the stored water as shown in
In order to control the temperature inside the solar HIST, a thermocouple (TC), such as Type-K, (5) with a temperature range of −328 to 2282° F. is placed inside the heat absorbing materials and it is connected to a digital controller, such as: Omega CN 740 series (6). Type K thermocouple is connected to one side of the temperature controller CN 740 and the lens shutter (S) is connected to the other side of the same controller. When the set point temperature say 500 F is reached, the controller shuts off the shutter so that reflected rays cannot go to the insulated heat absorbing tank (
When the water temperature in the water storage tank fall below the set point say 130 F, thermostat (T1) turns on and the circulator pump starts to flow the antifreeze liquid. This liquid extracts the heat from HIST and flows into the water inside the storage tank. This in turn will raise the water temperature to 130 F till the thermostat shuts off.
From May to October when the average temperature in USA is above 60 F as shown in Table 3, solar water heater can provide enough hot water for use. But in winter months particularly in the cold belt states, when the solar water heater cannot make enough hot water to fulfil the demand, a backup water heater is needed to make enough hot water as shown in
The solar ray reflecting mirror, parabolic mirror, shutter and quartz window (in
Even though solar energy can be collected during overcast or rainy days, its efficiency drops down significantly. On overcast, rainy or snowy day or when there are not enough solar rays available, there is an auxiliary back up heating system placed inside the HIST as shown in
A solar ray reflecting mirror or a parabolic mirror needs to track the path of the sun and keep its incoming rays focused at the focal point in order to capture most of the sunrays most throughout the day (
In the present invention, a solar tracking system is used to track a mirror or a parabolic mirror which is smaller in size and less expensive, ranges from $147 to $569 (8-10). There are several newly developed products are commercially available.
Example 1. One such solar tracking product is Sun World's Sun Tracker (ST-600 Sun Tracker) (8). It is a single axis device that will follow the track of the sun from sunrise to sunset. This tracker is powered by using small solar panels. It is a self powered and self aligning design made by Solar Made (Patent pending).
Example 2. Another solar tracking product made by Eco-Worthy (9) is a dual axis solar tracking linear actuator controller complete electronic system dual axis solar tracker kit with linear actuators, 12V system costs $147.
Example 3. Another commercially available solar tracking product is Sunflower3 made by Wikoda, Inc. (10). The Sunflower heliostat mirror continuously tracks the sun and reflects sunlight to a fixed spot. Throughout the day, it adjusts the sunlight to the required spot, such as to the lens in
Number | Name | Date | Kind |
---|---|---|---|
1661473 | Goddard | Mar 1928 | A |
3998205 | Scragg | Dec 1976 | A |
4018212 | Hein | Apr 1977 | A |
4068474 | Dimitroff | Jan 1978 | A |
4280482 | Nilsson, Sr. | Jul 1981 | A |
4397152 | Smith | Aug 1983 | A |
4449515 | Nilsson, Sr. | May 1984 | A |
4466423 | Dolan | Aug 1984 | A |
4619244 | Marks | Oct 1986 | A |
4841946 | Marks | Jun 1989 | A |
5271086 | Kamiyama | Dec 1993 | A |
5685289 | Yogev | Nov 1997 | A |
8413442 | Tarabishi | Apr 2013 | B2 |
8770186 | Clue | Jul 2014 | B2 |
8776784 | Bennett | Jul 2014 | B2 |
9252701 | Tarabishi | Feb 2016 | B1 |
10208735 | Anthony | Feb 2019 | B1 |
10533776 | Hung | Jan 2020 | B2 |
20030159690 | Butler | Aug 2003 | A1 |
20090173336 | Leiter | Jul 2009 | A1 |
20100207951 | Plaisted | Aug 2010 | A1 |
20100245103 | Plaisted | Sep 2010 | A1 |
20170074548 | Hung | Mar 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
20220034551 A1 | Feb 2022 | US |