The present invention relates to methods of displaying data from analytical instruments. More specifically, the present invention relates to methods of displaying data from mass spectroscopy instruments and data structures containing such data.
Metabolite profiling is an emerging science that is used in determining gene function, effects of genetic engineering on an organism, substantive equivalence, drug mechanisms of action, adverse drug reaction monitoring and the biochemical basis of diseases. Non-targeted metabolic profiling using FT-ICR-MS identifies a large number of metabolites from complex biological extracts. The final output from such analyses is the masses and intensities of observed metabolites. The masses can be used to determine the molecular formulas, and thus the identity of the metabolites present in the sample, whereas the intensity is used to determine the amount of the metabolite present in the sample. By comparing the metabolite profiles of different biological samples, metabolite changes can be observed. These biochemical changes can then be used to understand the effect of the experimental event.
Although multiple visualization tools have been developed to display mass spectral and chromatographic data as well as databases to store, organize, and search this type of data, these tools work only for targeted analyses of known molecules. Currently, there is no effective way to display or organize information from multiple non-targeted sample analyses such that a user can quickly identify changes in metabolite profiles.
The ability to view and interpret large amounts of metabolite data is a rate-limiting step in the study of biological systems using non-targeted metabolomic methods. The creation of a process that would allow users to quickly interpret and report their findings would dramatically reduce the time and thus the cost of functional genomics utilizing non-targeted metabolomics.
There is a need in the art for novel methods of displaying data obtained by analytical instruments. Further, there is a need in the art for novel methods of displaying or visualizing data from large numbers of non-targeted samples. Also, there is a need in the art for methods and data structures to organize and display in a 2-D array format, non-targeted metabolomic data arising from FT-ICR-MS. There is also a need to link the displayed data to additional databases to characterize or analyse further the displayed data.
It is an object of the present invention to overcome disadvantages of the prior art.
The above object is met by a combination of the features of the main claims. The sub claims disclose further advantageous embodiments of the invention.
The present invention relates to methods of displaying data from analytical instruments. More specifically, the present invention relates to methods of displaying data from mass spectroscopy instruments and data structures containing such data.
According to the present invention there is provided a method of displaying spectroscopic data comprising the steps of,
Further, according to the present invention there is provided a method for visualizing multiple FT-ICR-MS metabolite analysis data files that contain mass and intensity values. The method comprises the following steps:
Also provided by the present invention is a method for visualizing multiple FT-ICR-MS, non-targeted complex sample analyses, comprising the steps of: creating a metabolite data file consisting of mass and intensity data and/or molecular formula data and/or other identifying data such as ionization mode, chemical class, extraction mode, file name, experimental condition, etc., in either neutral or charged forms for each independent analysis, selecting and combining a number of these data files into one file; sorting the data in the combined file by mass or molecular formula to batch together all unique metabolites from the selected files; performing statistical calculations on each of the metabolite batches (including but not limited to average and standard deviation and the number of files out of the total number of files selected that the metabolite was observed in; displaying this data in any of three ways, one, using the unique mass or molecular formula as the y-axis and file name as the x-axis, fill in for each file either the observed intensity or the observed intensity as a ratio or percent of the average intensity of the metabolite observed from the selected files, or the observed intensity as a percent or ratio of the observed intensity from one of the files selected; displaying either zero or a value corresponding to the noise level or detection limit or any other such qualifier in situations in which a metabolite is not observed in one file but is in another; assigning a color code to the intensity or ratio in each of the cells defined by the x and y coordinates described above.
Also contemplated by the present invention are data structures produced by the method of the present invention as defined above. Further, the data structures may comprise a computer readable medium, hardware, software or a combination thereof permitting information to be transferred to or from the data structure.
This summary does not necessarily describe all necessary features of the invention but that the invention may also reside in a sub-combination of the described features.
These and other features of the invention will become more apparent from the following description in which reference is made to the appended drawings wherein:
The present invention relates to methods of displaying data from analytical instruments. More specifically, the present invention relates to methods of displaying data from mass spectroscopy instruments and data structures containing such data.
The following description is of a preferred embodiment by way of example only and without limitation to the combination of features necessary for carrying the invention into effect.
According to an embodiment of the present invention, there is provided a method of analysing spectroscopic data comprising the steps of,
By the term “spectroscopic data” it is meant data from any spectroscopic instrument, for example, but not limited to visible, IR, or UV spectrometer, mass spectrometer, NMR apparatus or the like. Preferably the spectroscopic data is from a mass spectrometer.
Any mass spectrometer may be employed in the method of the present invention. Further, the mass spectrometer may be employed in combination with other analytical devices such as, but not limited to chromatographic systems. Preferably, the mass spectrometer is a Fourier transform ion cyclotron mass spectrometer. A description of a Fourier transform ion cyclotron mass spectrometer is described in CA 2,298,181 and PCT/CA01/00111 which are both herein incorporated by reference.
By the term “sample” it is meant any composition for which data may be acquired. For example, the sample may comprise any biological sample, or fraction or extract thereof. The biological sample may be unprocessed or processed by one or more steps known in the art. Examples of such steps include, but are not limited to, extraction steps, purification steps, chemical reaction steps or any combination thereof. In this regard the sample may be processed in any manner known in the art. The biological sample may also comprise other components that have been added thereto. For example, but not wishing to be limiting, the biological sample may comprise components which are commonly added to mass spectroscopy samples as would be known to those of skill in the art. In an aspect of an embodiment, the sample is a complex sample comprising a plurality of components that may be resolved or separated by a mass spectrometer.
By the term “ordered, pair (X,Y) of data” it is meant data which characterizes a component in a sample. For example, X may comprise a numerical value for the mass of a component and Y may comprise a numerical value for the amount the component. Further, X may comprise a value or other identifier which is a characteristic of the specific component. For example, but not wishing to be limiting, X may comprise the retention time in a column, a specific signal location in a mass spectrometer detector, or the like. Further, X may comprise the mass, chemical formula or a structural formula of a specific component. Further, other data such as, but not limited to, intensity, molecular formula data, ionization mode, chemical class, extraction mode, filename, experimental condition, or a combination thereof may be provided in a higher ordered data set and such data sets are fully contemplated by the present invention.
By the term “unique components” it is meant the collection of all specific components which are present in at least one sample, of all the samples analyzed.
By the term “data structure” it is meant an ordered grouping of information derived from a plurality of samples. The data structure may comprise a database or an array comprising a plurality of cells containing information derived or processed from the samples. Further the data structure may comprise a plurality of cells wherein one or more cells are assigned a color code based on a value contained in the cell. However, the cells may be assigned any other attribute or characteristic identifier based on the value contained in the cell. By other attribute or color characteristic code it is meant a color, pattern, shade, or combination thereof which may be employed to differentiate between cells based on the value contained therein.
By the term “predetermined value or other characteristic of the spectroscopic data” it is meant a value such as, but not limited to, an observed component intensity, or average intensity or standard deviation of one or more component intensities, or the ratio or percentage of an observed intensity for one or more components in relation to the average intensity for one or more other components in one or more samples. Further, other values and characteristics are contemplated by the present invention.
The color or other identifiable characteristic as described above may optionally define a range of values. For example, but not wishing to be limiting in any manner, the color red may be employed for values between A and B, while the color blue may be employed for color values between C and D. Other combinations are also possible.
In an aspect of an embodiment, there is provided a method of displaying data obtained from Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) of complex multi-component biological samples. The method is described with reference to
Referring now to
As will be evident to a person of skill in the art, each independent sample that is analyzed by FT-ICR-MS produces data which may be organized in a manner similar to the data shown in
Referring now to
As further shown in
Referring now to
Also contemplated by the present invention, the data in the data structure may be processed further or displayed in alternate ways. For example, the intensity values for each sample number may be compared to the average intensity of the component for all independent samples for example, but not limited to as shown in
In an alternate embodiment of the present invention, there is provided a method for visualizing multiple FT-ICR-MS metabolite analysis data files that contain mass and intensity values. The method comprises the following steps:
The present invention further contemplates any of the above mentioned data structures. Further, the present invention contemplates any of the above mentioned data structures on a computer readable medium, for example, but not limited to a compact disc, floppy disc, hard drive or the like, as will be understood by a person of skill in the art.
Also contemplated by the present invention is the data structure of the present invention in combination with necessary hardware, software, or a combination thereof which permits the data structure of the present invention to obtain data from or pass data to one or more other databases, for example, but not limited to natural product databases, metabolic pathway databases, bioinformatics programs or a combination thereof. Further the cells of the data structure can be linked to one or more databases containing all the experimental information regarding the metabolite including, but not limited to the file name, observed mass, observed intensity, quality assurance control data, such as, but not limited to, internal standard data, molecular formulas and mass errors.
In an alternate embodiment, the present invention provides a method as defined above wherein the ordered pair of data is derived from a higher ordered data set (A1 . . . An, X, Y, B1 . . . Bn).
The present invention also: provides a method as defined above wherein the predetermined value or other characteristic of the data is selected from the group consisting of:
The present invention also contemplates a system for analysing spectroscopic data comprising a computer processing unit, the processing unit capable of:
The system may further include a monitor to display the data structure, a spectroscopic instrument to generate the spectroscopic data, or both. Further, any relationship to a characteristic of the data may be employed, as would be understood by a person of skill in the art, for example, but not limited to
Thus, the method of the present invention provides a means to analyze, display, visualize and process large amounts of data from complex samples, such as but not limited to, biological samples and extracts. Further, the method provides a means to analyze the information in a non-targeted and unbiased fashion to determine the differences between samples.
The above description is not intended to limit the claimed invention in any manner, Furthermore, the discussed combination of features might not be absolutely necessary for the inventive solution.
The present invention will be further illustrated in the following examples. However, it is to be understood that these examples are for illustrative purposes only, and should not be used to limit the scope of the present invention in any manner.
Processed data files from complex samples are first analyzed as described in a previous patent application (No. 2,298,181, Canada, No. PCT/CA01/00111). The results of this analysis are in the format as shown in
All references are herein incorporated by reference.
The present invention has been described with regard to preferred embodiments. However, it will be obvious to persons skilled in the art that a number of variations and modifications can be made without departing from the scope of the invention as described herein.
Number | Date | Country | Kind |
---|---|---|---|
60/366277 | Mar 2002 | US | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CA03/00389 | 3/20/2003 | WO | 00 | 12/14/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/081506 | 10/2/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4956788 | Guan et al. | Sep 1990 | A |
4978852 | Williams et al. | Dec 1990 | A |
5233190 | Schlereth et al. | Aug 1993 | A |
5636350 | Eick et al. | Jun 1997 | A |
6680203 | Dasseux et al. | Jan 2004 | B2 |
6873914 | Winfield et al. | Mar 2005 | B2 |
20020042075 | Nelson | Apr 2002 | A1 |
20030113761 | Tan et al. | Jun 2003 | A1 |
20040029120 | Goodenowe | Feb 2004 | A1 |
20040143461 | Watkins | Jul 2004 | A1 |
20050170372 | Afeyan et al. | Aug 2005 | A1 |
20060228730 | Rando et al. | Oct 2006 | A1 |
Number | Date | Country |
---|---|---|
2092570 | Sep 1991 | CA |
2185574 | Sep 1995 | CA |
2252715 | Nov 1997 | CA |
2264535 | Mar 1998 | CA |
2339817 | Feb 2000 | CA |
2 360 816 | Oct 2000 | CA |
2303758 | Oct 2000 | CA |
2303761 | Oct 2000 | CA |
1 182 615 | Feb 2002 | EP |
WO 0077712 | Dec 2000 | WO |
0138568 | May 2001 | WO |
WO 0157518 | Aug 2001 | WO |
WO 0204957 | Jan 2002 | WO |
WO 03005628 | Jan 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20050107957 A1 | May 2005 | US |