This application claims priority from U.S. Provisional Patent Application No. 61/470,237 filed on Mar. 31, 2011, entitled Method of Wavelet Estimation and Multiple Prediction in Full Wavefield Inversion, which is incorporated by reference herein in its entirety.
This invention relates generally to the field of geophysical prospecting and, more particularly to seismic data processing. Specifically, the invention is a method of wavelet estimation and multiple prediction in full wavefield inversion of seismic data.
Full waveform inversion (“FWI”) is a method of inverting seismic data to infer earth subsurface properties that affect seismic wave propagation. Its forward modeling engine utilizes finite difference or other computational methods to model propagation of acoustic or elastic seismic waves through the earth subsurface model. FWI seeks the optimal subsurface model such that simulated seismic waveforms match field recorded seismic waveforms at receiver locations. The theory of FWI was initially developed by Tarantola (1989). Research and applications of FWI in exploration geophysics have been very active in the past decade, thanks to the dramatic increase of computing power.
It is well known that simulated waveforms depend linearly on the input source wavelet when linear acoustic or elastic wave equations are used to model seismic wave propagation. In fact, accurate estimation of source wavelet plays a critical role in FWI. Delprat-Jannaud and Lailly (2005) pointed that accurate wavelet measurements appear to be a major challenge for a sound reconstruction of impedance profiles in FWI. They noticed that a small error in the source wavelet leads to a strong disturbance in the deeper part of the inverted model due to the mismatch of multiple reflections. They concluded that “the classical approach for estimating the wavelet by minimizing the energy of the primary reflection waveform is not likely to provide the required accuracy except for very special cases”.
Indeed, inversion of primary reflections without well control faces a fundamental non-uniqueness in estimating the wavelet. For example, larger reflection events can be caused by larger impedance contrasts or a stronger source. Similar ambiguity exits for wavelet phase and power spectrum. Well data are commonly used to constrain wavelet strength and phase. But well logs are not always available, especially in an early exploration setting, or in shallow subsurface cases.
There have been extensive studies of wavelet estimation in the geophysical literature. In particular, inversion of wavelet signature for FWI was discussed by Wang et al. (2009) and the references therein. However, these methods all implicitly rely on direct arrivals or refracted waves for wavelet estimation. Because these transmitted modes propagate along mostly horizontal ray paths, they are influenced by effects (e.g. radiation pattern, complex interaction with the free surface) not affecting the near-vertical reflection ray paths. Such effects are often difficult to describe accurately and to simulate. Hence, there is a need to estimate the wavelet for the vertically-propagated energy, and this is particularly relevant for reflection-dominated applications (e.g. deep-water acquisition, imaging of deeper targets).
Multiples are considered to be noise in traditional seismic processing since they often contaminate primary reflections and make interpretation more difficult. On the other hand, it is known that multiples may also be useful for constraining subsurface properties and the seismic source wavelet. Verschuur et al. (1989, 1992) proposed a method of surface-related multiple elimination (SRME), by which wavelet estimation can be performed along with multiple elimination. The principle of SRME has been extended to an inversion scheme by G. J. A. van Groenestijn et al. (2009) to reconstruct the missing near-offset primaries and the wavelet. However it is unclear whether the optimal wavelet for SRME is also optimal for FWI. Papers such as van Groenestijn and Verschuur perform their multiple modeling and wavelet estimation in the time domain, i.e., data-driven without a subsurface model.
In one embodiment, the invention is a computer-implemented seismic processing method comprising generating and simultaneously optimizing a source wavelet and subsurface model to an extendable depth, wherein simulated waveforms of both primary reflections and multiple reflections are generated from the source wavelet and the subsurface model in the depth domain and are then compared for a match to waveforms as recorded at seismic receiver locations.
The present invention and its advantages will be better understood by referring to the following detailed description and the attached drawings in which:
The invention will be described in connection with example embodiments. However, to the extent that the following detailed description is specific to a particular embodiment or a particular use of the invention, this is intended to be illustrative only, and is not to be construed as limiting the scope of the invention. On the contrary, it is intended to cover all alternatives, modifications and equivalents that may be included within the scope of the invention, as defined by the appended claims. Persons skilled in the technical field will readily recognize that in practical applications of the present inventive method, it must be performed on a suitably programmed computer.
The present invention is a wavelet estimation method for FWI applications that makes use of both the primary and multiple reflections in the data. The present inventive method uses the FWI algorithm to generate a subsurface model from primary reflections. The model is then used to simulate multiples. The wavelet is subsequently modified such that the simulated multiples closely match the true recorded multiples.
In addition to providing an accurate wavelet estimate, this method may provide some benefits as a multiple elimination strategy. In particular, it has no need for dense cross-line sampling to model multiples in 3D: once a model of the shallow subsurface has been built with FWI, modeling multiples is straightforward for any acquisition configuration. Also, because the method is model-based and does not rely on primary/multiple moveout separability, it naturally offers good protection of primaries.
Following the
In step 101 of
A P-wave velocity model in the depth domain is now constructed from the shallow primaries referred to above, using a standard velocity model building tool. Applying acoustic FWI to the shallow primary gives the shallow acoustic impedance in
In step 102, multiple reflections are simulated, i.e. modeled, using the shallow subsurface velocity model obtained by inversion in step 101 and an assumed seismic wavelet. By extending the simulation time to 5.5 s, we are able to simulate water-surface related multiples based on the subsurface model in
In step 103, the simulated multiples are compared to the recorded data within a selected window to determine the degree of mismatch.
If the match between simulated multiples and recorded data in step 103 is not satisfactory, the wavelet used to simulate the multiples may be adjusted in step 104 by correcting any one or more of the three wavelet properties that go into estimating the wavelet, i.e. wavelet amplitude, phase and power spectrum. Simulated multiples in 18 will not match recorded multiples in 17 unless optimal wavelet estimation is achieved. 19 shows the difference between 17 and 18 when the optimal wavelet estimation is used to generate the sub-surface model in
Wavelet amplitude. The amplitude of the primary reflection p is determined by the source wavelet S, source (receiver) ghost Gsrc(Gsrc), subsurface reflectivity Ri and geometric spreading factor Lp:
p=(S*GsrcGrec)·Ri/Lp. (1)
Similarly, the amplitude of the multiple reflection m is determined by the free-surface reflectivity Rfs and the reflectivity of multiple reflection locations. For instance, a “pegleg” multiple is related to the water-bottom reflectivity Rwb by:
m=(S*Gsrc*Grec)·Ri·Rwb·Rfs/Lm. (2)
Dividing (2) by (1) produces the following relation between relative multiple/primary amplitude ratio and wavelet amplitude, assuming perfect reflection at the water-surface (Rfs=1):
where Lp and Lm are fixed relative to Rwb and are hence treated as proportionality constants. The second proportionality in (3) comes from equation (1) which, where the subsurface reflector is the water bottom, can be written as
where the remaining terms from equation (1) make up a proportionality constant independent of S. Given that the primary reflections in the field data were matched by the inverted model using a wavelet of strength S at step 101, equation (3) then indicates that
Thus, if the simulated multiples are too large or too small compared to the multiples in the recorded data, this can be adjusted by increasing or decreasing the source wavelet's strength proportionately. In other words, the geophysical meaning of equation (3) is that, the relative water-bottom multiple/primary amplitude ratio constrains the water-bottom reflectivity. Knowledge of the water-bottom reflectivity allows us then to estimate the wavelet amplitude by matching the amplitude of the water-bottom primary reflection.
Wavelet phase. To demonstrate how wavelet phase may be corrected in the present inventive method, we applied a 30-deg phase rotation to the optimal wavelet, and repeated the FWI process of step 101 in
Wavelet Power Spectrum.
To demonstrate how the wavelet's power spectrum, i.e. the absolute value of the coefficients of a Fourier expansion of the wavelet's waveform, can affect the agreement between simulated and measured multiples, a zero-phase shaping filter was applied to the optimal wavelet to suppress its high frequency energy. By then conducting steps 101 and 102 in
Upon finishing step 104 and cycling through step 101a second time, we have now the optimal wavelet and shallow subsurface model which predict the multiples of interest in step 102. By subtracting simulated multiples from recorded data in step 105, we extend primary reflections from “shallow” to “deep”. Performing FWI on the deep primaries with the optimal wavelet generates a deep subsurface model to match the deep primaries.
In step 106, the comparison in step 103 is repeated. In other words, multiple reflections are simulated again, but now using the model resulting from step 105, and these multiple predictions are compared to the recorded data in the selected window.
By repeating the process above, if necessary, the present inventive method will generate the optimal wavelet and subsurface model such that simulated primaries (shallow and deep), and multiples match recorded data. Notice that the concept of “shallow/deep primaries” and “multiples of interest” are defined recursively, i.e., “deep primary” will become “shallow primary” after “multiples of interest” are modeled and separated, and the multiples that are “of interest” will be the strong multiples in the depth layer to which the model is being extended in the recursive sequence.
The foregoing patent application is directed to particular embodiments of the present invention for the purpose of illustrating it. It will be apparent, however, to one skilled in the art, that many modifications and variations to the embodiments described herein are possible. All such modifications and variations are intended to be within the scope of the present invention, as defined in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3812457 | Weller | May 1974 | A |
3864667 | Bahjat | Feb 1975 | A |
4159463 | Silverman | Jun 1979 | A |
4168485 | Payton et al. | Sep 1979 | A |
4545039 | Savit | Oct 1985 | A |
4562540 | Devaney | Dec 1985 | A |
4575830 | Ingram et al. | Mar 1986 | A |
4594662 | Devaney | Jun 1986 | A |
4636956 | Vannier et al. | Jan 1987 | A |
4675851 | Savit et al. | Jun 1987 | A |
4686654 | Savit | Aug 1987 | A |
4707812 | Martinez | Nov 1987 | A |
4715020 | Landrum, Jr. | Dec 1987 | A |
4766574 | Whitmore et al. | Aug 1988 | A |
4780856 | Becquey | Oct 1988 | A |
4823326 | Ward | Apr 1989 | A |
4924390 | Parsons et al. | May 1990 | A |
4953657 | Edington | Sep 1990 | A |
4969129 | Currie | Nov 1990 | A |
4982374 | Edington et al. | Jan 1991 | A |
5260911 | Mason et al. | Nov 1993 | A |
5469062 | Meyer, Jr. | Nov 1995 | A |
5583825 | Carrazzone et al. | Dec 1996 | A |
5677893 | de Hoop et al. | Oct 1997 | A |
5715213 | Allen | Feb 1998 | A |
5717655 | Beasley | Feb 1998 | A |
5719821 | Sallas et al. | Feb 1998 | A |
5721710 | Sallas et al. | Feb 1998 | A |
5790473 | Allen | Aug 1998 | A |
5798982 | He et al. | Aug 1998 | A |
5822269 | Allen | Oct 1998 | A |
5838634 | Jones et al. | Nov 1998 | A |
5852588 | de Hoop et al. | Dec 1998 | A |
5878372 | Tabarovsky et al. | Mar 1999 | A |
5920828 | Norris et al. | Jul 1999 | A |
5924049 | Beasley et al. | Jul 1999 | A |
5999488 | Smith | Dec 1999 | A |
5999489 | Lazaratos | Dec 1999 | A |
6014342 | Lazaratos | Jan 2000 | A |
6021094 | Ober et al. | Feb 2000 | A |
6028818 | Jeffryes | Feb 2000 | A |
6058073 | VerWest | May 2000 | A |
6125330 | Robertson et al. | Sep 2000 | A |
6169959 | Dragoset, Jr. | Jan 2001 | B1 |
6219621 | Hornbostel | Apr 2001 | B1 |
6225803 | Chen | May 2001 | B1 |
6311133 | Lailly et al. | Oct 2001 | B1 |
6317695 | Zhou et al. | Nov 2001 | B1 |
6327537 | Ikelle | Dec 2001 | B1 |
6374201 | Grizon et al. | Apr 2002 | B1 |
6381543 | Guerillot et al. | Apr 2002 | B1 |
6388947 | Washbourne et al. | May 2002 | B1 |
6480790 | Calvert et al. | Nov 2002 | B1 |
6522973 | Tonellot et al. | Feb 2003 | B1 |
6545944 | de Kok | Apr 2003 | B2 |
6549854 | Malinverno et al. | Apr 2003 | B1 |
6574564 | Lailly et al. | Jun 2003 | B2 |
6593746 | Stolarczyk | Jul 2003 | B2 |
6662147 | Fournier et al. | Dec 2003 | B1 |
6665615 | Van Riel et al. | Dec 2003 | B2 |
6687619 | Moerig et al. | Feb 2004 | B2 |
6687659 | Shen | Feb 2004 | B1 |
6704245 | Becquey | Mar 2004 | B2 |
6714867 | Meunier | Mar 2004 | B2 |
6735527 | Levin | May 2004 | B1 |
6754590 | Moldoveanu | Jun 2004 | B1 |
6766256 | Jeffryes | Jul 2004 | B2 |
6826486 | Malinverno | Nov 2004 | B1 |
6836448 | Robertsson et al. | Dec 2004 | B2 |
6842701 | Moerig et al. | Jan 2005 | B2 |
6859734 | Bednar | Feb 2005 | B2 |
6865487 | Charron | Mar 2005 | B2 |
6865488 | Moerig et al. | Mar 2005 | B2 |
6876928 | Van Riel et al. | Apr 2005 | B2 |
6882938 | Vaage et al. | Apr 2005 | B2 |
6882958 | Schmidt et al. | Apr 2005 | B2 |
6901333 | Van Riel et al. | May 2005 | B2 |
6903999 | Curtis et al. | Jun 2005 | B2 |
6927698 | Stolarczyk | Aug 2005 | B2 |
6944546 | Xiao et al. | Sep 2005 | B2 |
6947843 | Fisher et al. | Sep 2005 | B2 |
6970397 | Castagna et al. | Nov 2005 | B2 |
6977866 | Huffman et al. | Dec 2005 | B2 |
6999880 | Lee | Feb 2006 | B2 |
7027927 | Matsuoka et al. | Apr 2006 | B2 |
7046581 | Calvert | May 2006 | B2 |
7050356 | Jeffryes | May 2006 | B2 |
7069149 | Goff et al. | Jun 2006 | B2 |
7072767 | Routh et al. | Jul 2006 | B2 |
7092823 | Lailly et al. | Aug 2006 | B2 |
7110900 | Adler et al. | Sep 2006 | B2 |
7184367 | Yin | Feb 2007 | B2 |
7230879 | Herkenhoff et al. | Jun 2007 | B2 |
7271747 | Baraniuk et al. | Sep 2007 | B2 |
7330799 | Lefebvre et al. | Feb 2008 | B2 |
7337069 | Masson et al. | Feb 2008 | B2 |
7373251 | Hamman et al. | May 2008 | B2 |
7373252 | Sherrill et al. | May 2008 | B2 |
7376046 | Jeffryes | May 2008 | B2 |
7376539 | Lecomte | May 2008 | B2 |
7400978 | Langlais et al. | Jul 2008 | B2 |
7436734 | Krohn | Oct 2008 | B2 |
7480206 | Hill | Jan 2009 | B2 |
7584056 | Koren | Sep 2009 | B2 |
7599798 | Beasley et al. | Oct 2009 | B2 |
7602670 | Jeffryes | Oct 2009 | B2 |
7616523 | Tabti et al. | Nov 2009 | B1 |
7620534 | Pita et al. | Nov 2009 | B2 |
7646924 | Donoho | Jan 2010 | B2 |
7672194 | Jeffryes | Mar 2010 | B2 |
7672824 | Dutta et al. | Mar 2010 | B2 |
7675815 | Saenger et al. | Mar 2010 | B2 |
7679990 | Herkenhoff et al. | Mar 2010 | B2 |
7715985 | Van Manen et al. | May 2010 | B2 |
7715986 | Nemeth et al. | May 2010 | B2 |
7725266 | Sirgue et al. | May 2010 | B2 |
7791980 | Robertsson et al. | Sep 2010 | B2 |
7835072 | Izumi | Nov 2010 | B2 |
7840625 | Candes et al. | Nov 2010 | B2 |
7940601 | Ghosh | May 2011 | B2 |
8437998 | Routh et al. | May 2013 | B2 |
20020099504 | Cross et al. | Jul 2002 | A1 |
20020120429 | Ortoleva | Aug 2002 | A1 |
20020183980 | Guillaume | Dec 2002 | A1 |
20040199330 | Routh et al. | Oct 2004 | A1 |
20060235666 | Assa et al. | Oct 2006 | A1 |
20060250891 | Krohn | Nov 2006 | A1 |
20070274155 | Ikelle | Nov 2007 | A1 |
20080175101 | Saenger et al. | Jul 2008 | A1 |
20080306692 | Singer et al. | Dec 2008 | A1 |
20090006054 | Song | Jan 2009 | A1 |
20090067041 | Izumi | Mar 2009 | A1 |
20090070042 | Birchwood et al. | Mar 2009 | A1 |
20090083006 | Mackie | Mar 2009 | A1 |
20090164186 | Haase et al. | Jun 2009 | A1 |
20090164756 | Dokken et al. | Jun 2009 | A1 |
20090187391 | Wendt et al. | Jul 2009 | A1 |
20090248308 | Luling | Oct 2009 | A1 |
20090259406 | Khadhraoui et al. | Oct 2009 | A1 |
20090323470 | Ferris | Dec 2009 | A1 |
20100008184 | Hegna et al. | Jan 2010 | A1 |
20100018718 | Krebs et al. | Jan 2010 | A1 |
20100039894 | Abma et al. | Feb 2010 | A1 |
20100054082 | McGarry et al. | Mar 2010 | A1 |
20100088035 | Etgen et al. | Apr 2010 | A1 |
20100103772 | Eick et al. | Apr 2010 | A1 |
20100118651 | Liu et al. | May 2010 | A1 |
20100142316 | Keers et al. | Jun 2010 | A1 |
20100161233 | Saenger et al. | Jun 2010 | A1 |
20100161234 | Saenger et al. | Jun 2010 | A1 |
20100185422 | Hoversten | Jul 2010 | A1 |
20100208554 | Chiu et al. | Aug 2010 | A1 |
20100212909 | Baumstein et al. | Aug 2010 | A1 |
20100265797 | Robertsson et al. | Oct 2010 | A1 |
20100270026 | Lazaratos et al. | Oct 2010 | A1 |
20100286919 | Lee et al. | Nov 2010 | A1 |
20100299070 | Abma | Nov 2010 | A1 |
20110000678 | Krebs et al. | Jan 2011 | A1 |
20110040926 | Frost et al. | Feb 2011 | A1 |
20110051553 | Scott et al. | Mar 2011 | A1 |
20110090760 | Rickett et al. | Apr 2011 | A1 |
Number | Date | Country |
---|---|---|
1 094 338 | Apr 2001 | EP |
1 746 443 | Jan 2007 | EP |
2 390 712 | Jan 2004 | GB |
2 391 665 | Feb 2004 | GB |
WO 2006037815 | Apr 2006 | WO |
WO 2007046711 | Apr 2007 | WO |
WO 2008042081 | Apr 2008 | WO |
WO 2008123920 | Oct 2008 | WO |
WO 2009067041 | May 2009 | WO |
WO 2009117174 | Sep 2009 | WO |
Entry |
---|
Boonyasiriwat, C. et al. (2010), 3D Multisource Full-Waveform using Dynamic Random Phase Encoding, SEG Denver 2010 Annual Meeting, pp. 1044-1049. |
Boonyasiriwat, C. et al. (2010), 3D Multisource Full-Waveform using Dynamic Random Phase Encoding, SEG Denver 2010 Annual Meeting, pp. 3120-3124. |
Bunks, C., et al. (1995), “Multiscale seismic waveform inversion,” Geophysics 60, pp. 1457-1473. |
Burstedde, G. et al. (2009), “Algorithmic strategies for full waveform inversion: 1D experiments,” Geophysics 74(6), pp. WCC17-WCC46. |
Chavent, G. et al. (1999), “An optimal true-amplitude least-squares prestack depth-migration operator,” Geophysics 64(2), pp. 508-515. |
Clapp, R.G. (2009), “Reverse time migration with random boundaries,” SEG International Exposition and Meeting, Expanded Abstracts, pp. 2809-2813. |
Dai, W. et al. (2010), “3D Multi-source Least-squares Reverse Time Migration,” SEG Denver 2010 Annual Meeting, pp. 3120-3124. |
Delprat-Jannuad, F. et al. (2005), “A fundamental limitation for the reconstruction of impedance profiles from seismic data,” Geophysics 70(1), pp. R1-R14. |
Dunkin, J.w. et al. (1973), “Effect of Normal Moveout on a Seismic Pluse,” Geophysics 38(4), pp. 635-642. |
Dziewonski A. et al. (1981), “Preliminary Reference Earth Model”, Phys. Earth Planet. Int. 25(4), pp. 297-356. |
Ernst, F.E. et al. (2000), “Tomography of dispersive media,” J. Acoust. Soc. Am 108(1), pp. 105-116. |
Ernst, F.E. et al. (2002), “Removal of scattered guided waves from seismic data,” Geophysics 67(4), pp. 1240-1248. |
Esmersoy, C. (1990), “Inversion of P and SV waves from multicomponent offset vertical seismic profiles”, Geophysics 55(1), pp. 39-50. |
Fallat, M.R. et al. (1999), “Geoacoustic inversion via local, global, and hybrid algorithms,” Journal of the Acoustical Society of America 105, pp. 3219-3230. |
Fichtner, A. et al. (2006), “The adjoint method in seismology I. Theory,” Physics of the Earth and Planetary Interiors 157, pp. 86-104. |
Forbriger, T. (2003), “Inversion of shallow-seismic wavefields: I. Wavefield transformation,” Geophys. J. Int. 153, pp. 719-734. |
Gibson, B. et al. (1984), “Predictive deconvolution and the zero-phase source,” Geophysics 49(4), pp. 379-397. |
Griewank, A. (1992), “Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation,” 1 Optimization Methods and Software, pp. 35-54. |
Griewank, A. (2000), Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Society for Industrial and Applied Mathematics, 49 pgs. |
Griewank, A. et al. (2000), “Algorithm 799: An implementation of checkpointing for the reverse or adjoint mode of computational differentiation,” 26 ACM Transactions on Mathematical Software, pp. 19-45. |
Griewank, A. et al. (1996), “Algorithm 755: A package for the automatic differentiation of algorithms written in C/C++,” ACM Transactions on Mathematical Software 22(2), pp. 131-167. |
Haber, E. et al. (2010), “An effective method for parameter estimation with PDE constraints with multiple right hand sides,” Preprint—UBC http://www.math.ubc.ca/˜haber/pubs/PdeOptStochV5.pdf. |
Herrmann, F.J. (2010), “Randomized dimensionality reduction for full-waveform inversion,” EAGE abstract G001, EAGE Barcelona meeting, 5 pgs. |
Holschneider, J. et al. (2005), “Characterization of dispersive surface waves using continuous wavelet transforms,” Geophys. J. Int. 163, pp. 463-478. |
Igel, H. et al. (1996), “Waveform inversion of marine reflection seismograms for P impedance and Poisson's ratio,” Geophys. J. Int. 124i, pp. 363-371. |
Ikelle, L.T. (2007), “Coding and decoding: Seismic data modeling, acquisition, and processing,” 77th Annual Int'l. Meeting, SEG Expanded Abstracts, pp. 66-70. |
Jackson, D.R. et al. (1991), “Phase conjugation in underwater acoustics,” J. Acoust. Soc. Am. 89(1), pp. 171-181. |
Jing, X. et al. (2000), “Encoding multiple shot gathers in prestack migration,” SEG International Exposition and 70th Annual Meeting Expanded Abstracts, pp. 786-789. |
Kennett, B.L.N. (1991), “The removal of free surface interactions from three-component seismograms”, Geophys. J. Int. 104, pp. 153-163. |
Krebs, J.R. (2008), “Fast Full-wavefield seismic inversion using encoded sources,” Geophysics 74(6), pp. WCC177-WCC188. |
Krohn, C.E. (1984), “Geophone ground coupling,” Geophysics 49(6), pp. 722-731. |
Kroode, F.T. et al. (2009), “Wave Equation Based Model Building and Imaging in Complex Settings,” OTC 20215, 2009 Offshore Technology Conf., Houston, TX, May 4-7, 2009, 8 pgs. |
Kulesh, M. et al. (2008), “Modeling of Wave Dispersion Using Continuous Wavelet Transforms II: Wavelet-based Frequency-velocity Analysis,” Pure Applied Geophysics 165, pp. 255-270. |
Lancaster, S. et al. (2000), “Fast-track ‘colored’ inversion,” 70th SEG Ann. Meeting, Expanded Abstracts, pp. 1572-1575. |
Lazaratos, S. et al. (2009), “Inversion of Pre-migration Spectral Shaping,” 2009 SEG Houston Int'l. Expo. & Ann. Meeting, Expanded Abstracts, pp. 2383-2387. |
Lazaratos, S. (2006), “Spectral Shaping Inversion for Elastic and Rock Property Estimation,” Research Disclosure, Issue 511, pp. 1453-1455. |
Lecomte, I. (2008), “Resolution and illumination analyses in PSDM: A ray-based approach,” The Leading Edge, pp. 650-663. |
Lee, S. et al. (2010), “Subsurface parameter estimation in full wavefield inversion and reverse time migration,” SEG Denver 2010 Annual Meeting, pp. 1065-1069. |
Levanon, N. (1988), “Radar Principles,” Chpt. 1, John Whiley & Sons, New York, pp. 1-18. |
Liao, Q. et al. (1995), “2.5D full-wavefield viscoacoustic inversion,” Geophysical Prospecting 43, pp. 1043-1059. |
Maharramov, M. et al. (2007) , “Localized image-difference wave-equation tomography,” SEG Annual Meeting, Expanded Abstracts, pp. 3009-3013. |
Malmedy, V. et al. (2009), “Approximating Hessians in unconstrained optimization arising from discretized problems,” Computational Optimization and Applications, pp. 1-16. |
Marcinkovich, C. et al. (2003), “On the implementation of perfectly matched layers in a three-dimensional fourth-order velocity-stress finite difference scheme,” J. of Geophysical Research 108(B5), 2276. |
Anderson, J.E. et al. (2008), “Sources Near the Free-Surface Boundary: Pitfalls for Elastic Finite-Difference Seismic Simulation and Multi-Grid Waveform Inversion,” 70th EAGE Conf. & Exh., 4 pgs. |
Dickens, T.A. et al. (2011), RTM angle gathers using Poynting vectors, SEG Expanded Abstracts 30, pp. 3109-3113. |
Helbig, K. (1994), “Foundations of Anisotropy for Exploration Seismics,” Chapter 5, pp. 185-194. |
Hu, L.Z. et al. (1987), “Wave-field transformations of vertical seismic profiles,” Geophysics 52, pp. 307-321. |
Lazaratos, S. et al. (2011), “Improving the convergence rate of full wavefield inversion using spectral shaping,” SEG Expanded Abstracts 30, pp. 2428-2432. |
Liu, F. et al. (2007), “Reverse-time migration using one-way wavefield imaging condition,” SEG Expanded Abstracts 26, pp. 2170-2174. |
Liu, F. et al. (2011), “An effective imaging condition for reverse-time migration using wavefield decomposition,” Geophysics 76, pp. S29-S39. |
Mora, P. (1987), “Elastic Wavefield Inversion,” PhD Thesis, Stanford University, pp. 22-25. |
Mora, P. (1989), “Inversion = migration + tomography,” Geophysics 64, pp. 888-901. |
Routh, P. et al. (2011), “Encoded Simultaneous Source Full-Wavefield Inversion for Spectrally-Shaped Marine Streamer Data,” SEG San Antonio 2011 Ann. Meeting, pp. 2433-2438. |
Sheng, J. et al. (2006), “Early arrival waveform tomography on near-surface refraction data,” Geophysics 71, pp. U47-U57. |
Simard, P.Y. et al. (1990), “Vector Field Restoration by the Method of Convex Projections,” Computer Vision, Graphics and Image Processing 52, pp. 360-385. |
Tang, Y. (2008), “Wave-equation Hessian by phase encoding,” SEG Expanded Abstracts 27, pp. 2201-2205. |
Tang, Y. (2009), “Target-oriented wave-equation least-squares migration/inversion with phase-encoded Hessian,” Geophysics 74, pp. WCA95-WCA107. |
Tang, Y. et al. (2010), “Preconditioning full waveform inversion with phase-encoded Hessian,” SEG Expanded Abstracts 29, pp. 1034-1037. |
Tsvankin, I. (2001), “Seismic Signatures and Analysis of Reflection Data in Anisotropic Media,” Elsevier Science, p. 8. |
Xie, X. et al. (2002), “Extracting angle domain information from migrated wavefield,” SEG Expanded Abstracts21, pp. 1360-1363. |
Xie, X.-B. et al. (2006), “Wave-equation-based seismic illumination analysis,” Geophysics 71(5), pp. S169-S177. |
Yoon, K. et al. (2004), “Challenges in reverse-time migration,” SEG Expanded Abstracts 23, pp. 1057-1060. |
Young, J. et al. (2011), “An application of random projection to parameter estimation in partial differential equations,” SIAM, 20 pgs. |
Abt, D.L. et al. (2010), “North American lithospheric discontinuity structured imaged by Ps and Sp receiver functions”, J. Geophys. Res., 24 pgs. |
Akerberg, P., et al. (2008), “Simultaneous source separation by sparse radon transform,” 78th SEG Annual International Meeting, Expanded Abstrcts, pp. 2801-2805. |
Aki, K. et al. (1980), “Quantitative Seismology: Theory and Methods vol. I—Chapter 7—Surface Waves in a Vertically Heterogenous Medium,” W.H. Freeman and Co., pp. 259-318. |
U.S. Appl. No. 13/224,005, filed Sep. 1, 2011, Routh et al. |
Aki, K. et al. (1980), “Quantitative Seismology: Theory and Methods vol. I,” W.H. Freeman and Co., p. 173. |
Baumstein, A. et al. (2009), “Scaling of the Objective Function Gradient for Full Wavefield Inversion,” SEG Houston 2009 Int'l. Expo and Annual Meeting, pp. 2243-2247. |
Beasley, C. (2008), “A new look at marine simultaneous sources,” The Leading Edge 27(7), pp. 914-917. |
Beaty, K.S. et al. (2003), “Repeatability of multimode Rayleigh-wave dispersion studies,” Geophysics 68(3), pp. 782-790. |
Beaty, K.S. et al. (2002), “Simulated annealing inversion of multimode Rayleigh wave dispersion waves for geological structure,” Geophys. J. Int. 151, pp. 622-631. |
Becquey, M. et al. (2002), “Pseudo-Random Coded Simultaneous Vibroseismics,” SEG Int'l. Exposition and 72th Annl. Mtg., 4 pgs. |
Berkhout, A.J. (1987), “Applied Seismic Wave Theory,” Elsevier Science Publishers, p. 142. |
Berkhout, A.J. (1992), “Areal shot record technology,” Journal of Seismic Exploration 1, pp. 251-264. |
Berkhout, A.J. (2008), “Changing the mindset in seismic data acquisition,” The Leading Edge 27(7), pp. 924-938. |
Ben-Hadj-Ali, H. et al. (2009), “Three-dimensional frequency-domain full waveform inversion with phase encoding,” SEG Expanded Abstracts, pp. 2288-2292. |
Beylkin, G. (1985), “Imaging of discontinuities in the inverse scattring problem by inversion of a causal generalized Radon transform,” J. Math. Phys. 26, pp. 99-108. |
Bonomi, E. et al. (2006), “Wavefield Migration plus Monte Carlo Imaging of 3D Prestack Seismic Data,” Geophysical Prospecting 54, pp. 505-514. |
Martin, G.S. et al. (2006), “Marmousi2: An elastic upgrade for Marmousi,” The Leading Edge, pp. 156-166. |
Meier, M.A. et al. (2009), “Converted wave resolution,” Geophysics, 74(2):doi:10.1190/1.3074303, pp. Q1-Q16. |
Moghaddam, P.P. et al. (2010), “Randomized full-waveform inversion: a dimenstionality-reduction approach,” 80th SEG Ann. Meeting, Expanded Abstracts, pp. 977-982. |
Mora, P. (1987), “Nonlinear two-dimensional elastic inversion of multi-offset seismic data,” Geophysics 52, pp. 1211-1228. |
Nazarian, S. et al. (1983), “Use of spectral analysis of surface waves method for determination of moduli and thickness of pavement systems,” Transport Res. Record 930, pp. 38-45. |
Neelamani, R., (2008), “Simultaneous sourcing without compromise,” 70th Annual Int'l. Conf. and Exh., EAGE, 5 pgs. |
Neelamani, R. (2009), “Efficient seismic forward modeling using simultaneous sources and sparsity,” SEG Expanded Abstracts, pp. 2107-2111. |
Nocedal, J. et al. (2006), “Numerical Optimization, Chapt. 7—Large-Scale Unconstrained Optimization,” Springer, New York, 2nd Edition, pp. 165-176. |
Ostmo, S. et al. (2002), “Finite-difference iterative migration by linearized waveform inversion in the frequency domain,” SEG Int'l. Expo. & 72nd Ann. Meeting, 4 pgs. |
Park, C.B. et al. (1999), “Multichannel analysis of surface waves,” Geophysics 64(3), pp. 800-808. |
Park, C.B. et al. (2007), “Multichannel analysis of surface waves (MASW)—active and passive methods,” The Leading Edge, pp. 60-64. |
Pica, A. et al. (2005), “3D Surface-Related Multiple Modeling, Principles and Results,” 2005 SEG Ann. Meeting, SEG Expanded Abstracts 24, pp. 2080-2083. |
Plessix, R.E. et al. (2004), “Frequency-domain finite-difference amplitude preserving migration,” Geophys. J. Int. 157, pp. 975-987. |
Porter, R.P. (1989), “Generalized holography with application to inverse scattering and inverse source problems,” in E. Wolf. editor, Progress in Optics XXVII, Elsevier, pp. 317-397. |
Pratt, R.G. et al. (1998), “Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion,” Geophys. J. Int. 133, pp. 341-362. |
Rawlinson, N. et al. (2008), “A dynamic objective function technique for generating multiple solution models in seismic tomography,” Geophys. J. Int. 178, pp. 295-308. |
Rayleigh, J.W.S. (1899), “On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky,” Phil. Mag. 47, pp. 375-384. |
Romero, L.A. et al. (2000), Phase encoding of shot records in prestack migration, Geophysics 65, pp. 426-436. |
Ryden, N. et al. (2006), “Fast simulated annealing inversion of surface waves on pavement using phase-velocity spectra,” Geophysics 71(4), pp. R49-R58. |
Schuster, G.T. et al. (2010), “Theory of Multisource Crosstalk Reduction by Phase-Encoded Statics,” SEG Denver 2010 Ann. Meeting, pp. 3110-3114. |
Sheen, D-H. et al. (2006), “Time domain Gauss-Newton seismic waveform inversion in elastic media,” Geophysics J. Int. 167, pp. 1373-1384. |
Shen, P. et al. (2003), “Differential semblance velocity analysis by wave-equation migration,” 73rd Ann. Meeting of Society of Exploration Geophysicists, 4 pgs. |
Sheriff, R.E.et al. (1982), “Exploration Seismology”, pp. 134-135. |
Shih, R-C. et al. (1996), “Iterative pre-stack depth migration with velocity analysis,” Terrestrial, Atmospheric & Oceanic Sciences 7(2), pp. 149-158. |
Shin, C. et al. (2001), “Waveform inversion using a logarithmic wavefield, ” Geophysics 49, pp. 592-606. |
Sirgue, L. (2004), “Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies,” Geophysics 69, pp. 231-248. |
Spitz, S. (2008), “Simultaneous source separation: a prediction-subtraction approach,” 78th Annual Int'l. Meeting, SEG Expanded Abstracts, pp. 2811-2815. |
Stefani, J. (2007), “Acquisition using simultaneous sources,” 69th Annual Conf. and Exh., EAGE Extended Abstracts, 5 pgs. |
Symes, W.W. (2007), Reverse time migration with optimal checkpointing, Geophysics 72(5), pp. P.SM213-SM221. |
Tarantola, A. (1984), “Inversion of seismic reflection data in the acoustic approximation,” Geophysics 49, pp. 1259-1266. |
Tarantola, A. (1986), “A strategy for nonlinear elastic inversion of seismic reflection data,” Geophysics 51(10), pp. 1893-1903. |
Tarantola, A. (1988), “Theoretical background for the inversion of seismic waveforms, including elasticity and attenuation,” Pure and Applied Geophysics 128, pp. 365-399. |
Tarantola, A. (2005), “Inverse Problem Theory and Methods for Model Parameter Estimation,” SIAM, pp. 79. |
Trantham, E.C. (1994), “Controlled-phase acquisition and processing,” SEG Expanded Abstracts 13, pp. 890-894. |
van Groenestijn, G.J.A. et al. (2009), “Estimating primaries by sparse inversion and application to near-offset reconstruction,” Geophyhsics 74(3), pp. A23-A28. |
van Manen, D.J. (2005), “Making wave by time reversal,” SEG International Exposition and 75th Annual Meeting, Expanded Abstracts, pp. 1763-1766. |
Verschuur, D.J. (2009), Target-oriented, least-squares imaging of blended data, 79th Annual Int'l. Meeting, SEG Expanded Abstracts, pp. 2889-2893. |
Verschuur, D.J. et al. (1992), “Adaptive surface-related multiple elimination,” Geophysics 57(9), pp. 1166-1177. |
Veerschuur, D.J. et al. (1989), “Wavelet Estimation by Prestack Multiple Elimination,” SEG Expanded Abstracts 8, pp. 1129-1132. |
Vigh, D. et al. (2008), “3D prestack plane-wave, full-waveform inversion,” Geophysics 73(5), pp. VE135-VE144. |
Wang, Y. (2007), “Multiple prediction through inversion: Theoretical advancements and real data application,” Geophysics 72(2), pp. V33-V39. |
Wang, K. et al. (2009), “Simultaneous full-waveform inversion for source wavelet and earth model,” SEG Int'l. Expo. & Ann. Meeting, Expanded Abstracts, pp. 2537-2541. |
Weglein, A.B. (2003), “Inverse scattering series and seismic exploration,” Inverse Problems 19, pp. R27-R83. |
Wu, R-S. et al. (2006), “Directional illumination analysis using beamlet decomposition and propagation,” Geophysics 71(4), pp. S147-S159. |
Xia, J. et al. (2004), “Utilization of high-frequency Rayleigh waves in near-surface geophysics,” The Leading Edge, pp. 753-759. |
Zhang, Y. (2005), “Delayed-shot 3D depth migration,” Geophysics 70, pp. E21-E28. |
Ziolkowski, A. (1991), “Why don't we measure seismic signatures?,” Geophysics 56(2), pp. 190-201. |
Number | Date | Country | |
---|---|---|---|
20120253758 A1 | Oct 2012 | US |