The field of the invention is well abandonment and more particularly a one trip method for plugging the well with a plug and delivering cement to seal the well above the plug followed by supporting and cutting the tubular for removal above the cut.
One way a well is plugged and abandoned is to set a bridge plug and pump a cement plug above the plug. The string is cut and removed above the cut. This has been done in multiple trips in the hole in the past. Discrete segments of the above steps have been done in a single trip such as setting a bridge plug and cementing above it or cutting and pulling a string above the cut. Relevant to such subsets of operations done in a single trip are U.S. Pat. Nos. 6,464,008; 6,745,834 and 8,869,896. One holdback in the past to accomplishing all these tasks in a single trip has been an inability to convey pressure through a spear cutter combination that accommodates relative rotation between the spear and the cutter. Another issue is the ability to actuate the tools in the desired sequence. Hydraulic actuation that involves dropped balls also precluded rotation of cutting blades with a downhole motor.
The present invention use a modular approach to sequential operation of the components needed to plug the hole with a plug and then deliver a cement plug to meet local plugging regulations followed with cutting and removal of the string above the cut. The bottom hole assembly that is envisioned for a one trip operation starts with a plug with an open passage for circulation for running in. Once the plug is properly located a ball is landed on a seat to set and release from the packer. Cement is pumped through a spear cutter combination onto the plug that has its passage blocked with the first dropped ball. The set plug can also be pressure tested before or after cement delivery depending on local regulations. Setting the plug releases the setting tool from the plug so the bottom hole assembly (BHA) can be repositioned for delivery of cement to create the barrier on the plug. The spear can be set with axial and rotational movements of the string supporting the BHA. The cutter blades are enabled to extend by seating a larger second ball and pressuring up. After that a circulation path opens in the cutter and flow extends the blades. The string rotates the cutter relative to the spear while tension is pulled on the string as it rotates. After cutting through the tubular, the flow is discontinued to let the blades retract. The spear can be released and repositioned to the top of the string to make string disassembly easier than if the spear were to be left at the bottom of the string just above the cut. The spear drains as it is removed to avoid pulling out the drill string wet. These and other aspects of the present invention will be more readily apparent to those skilled in the art from a review of the description of the preferred embodiment and the associated drawings while recognizing that the full scope of the invention is to be found in the appended claims.
A one trip bottom hole assembly allows setting and testing a plug and release from the plug. Cement can be pumped onto the plug, after the BHA is raised, to an extent to meet local regulatory requirements. The cutter spear combination can be activated with pressure built on a second dropped ball larger than the first ball to release the blades for extension with fluid circulation. The circulation path through the spear is opened using pipe manipulation during the spear setting sequence. The cuttings from severing the tubular fall onto the cement. The spear is set with string manipulation as the drill string rotates the blades while maintaining the string under tension. The spear can be released and repositioned for the top of the string to facilitate removal and disassembly at the surface. All the above described operations are accomplished with a single trip into the hole.
The BHA is shown being run in in
At this point in
When the cement 16 sets the casing or tubing 2 can be cut. The blades 4 that up to this time had been locked retracted need to be mechanically released. A second ball is landed on a sleeve that locks the blades 24 retracted. When that locking sleeve is shifted the blades 24 are able to rotate into cutting position with flow that is enabled with the shifting of the blade locking sleeve. Flow through the mandrel of the casing cutter 12 can continue out and can return uphole through a screened return passage that that opens when the spear 18 is set with string manipulation. Right hand rotation of the spear 18 with upward string motion allows the slips 26 and seal 28 to extend and hold the set position. The j-slot mechanism (not shown) un-locks an inner mandrel (not shown) from the outer body to allow said inner mandrel to rotate freely through the engaged outer body (containing slip assembly 26), therefore allowing drill string 20 rotation to be transferred to the cutter 12 below the spear while the outer body remains stationary. The spear 18 is set by picking up and turning to the right, and released by setting down and turning to the right. Setting the spear 18 opens a screened return flow path uphole through the spear 18 so that flow can move through the tubular cutter 12 to keep the blades 24 extended as the string 20 is rotated putting tension on tubular 22 above the cut 30.
While the bulk of the devices described above are known, what enables the method to occur in a single trip is the idea of making all these events happen in a single trip in the first place followed by adaptation of some of the components to convey pressure as well as devices that allow one component to be actuated without impairing the ability to separately actuate another component. The plug is set with a smaller ball than the ball that unlocks the blades to rotate out with flow. The sleeve that holds the blades retracted is subsequently actuated by a larger ball that opens a lateral passage to allow flow through the casing cutter to extend its blades. The BHA is open to circulation for running in. Setting the plug and releasing the BHA closes the passage through the plug so a pressure test can be run. The passage through the BHA is reopened when the setting tool for the plug releases from the plug. The casing cutter and spear are designed to contain the setting pressure for the plug. The dropping of the second and larger ball into the casing cutter allows a second pressure buildup to move a sleeve that results in not only freeing the blades to respond to flow and extend but also allowing flow to be initiated as a mandrel passage is opened when the blades are freed to respond to flow to rotate into cutting position. The spear is set with a pickup and rotation force to the right. The release involves setting down and rotating to the right again. The spear is set and tension is applied before the rotation of the drill string starts the blades rotating. The drill string turns freely within the spear and the pickup force while turning allows the casing cutter to deliver a tensile force to the string being cut. The cuttings fall on the cement plug and the circulation flow passes through a passage that is screened in the spear that opens when the spear is set to extend the slips and sealing element to the surrounding tubular. As a result the process of plug setting, cement delivery, grabbing the casing with a spear and rotating a cutter through the spear with the drill string all occur in the same trip. The string is cut in tension and either the casing is brought out with the spear gripping near the cut, or preferably the spear is repositioned to the top of the string to facilitate separation of the joints in the casing at the surface.
The above description is illustrative of the preferred embodiment and many modifications may be made by those skilled in the art without departing from the invention whose scope is to be determined from the literal and equivalent scope of the claims below:
Number | Name | Date | Kind |
---|---|---|---|
6464008 | Roddy et al. | Oct 2002 | B1 |
6745834 | Davis et al. | Jun 2004 | B2 |
8869896 | Crow et al. | Oct 2014 | B2 |
8881818 | Crow et al. | Nov 2014 | B2 |
8955597 | Connell et al. | Feb 2015 | B2 |
20140251616 | O'Rourke | Sep 2014 | A1 |
20150275605 | Bennett | Oct 2015 | A1 |
20180195359 | Pray | Jul 2018 | A1 |
Number | Date | Country | |
---|---|---|---|
20180216432 A1 | Aug 2018 | US |