Information
-
Patent Grant
-
6308906
-
Patent Number
6,308,906
-
Date Filed
Monday, May 15, 200024 years ago
-
Date Issued
Tuesday, October 30, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 242 4762
- 242 4763
- 242 4764
- 242 4779
-
International Classifications
-
Abstract
A method for winding a continuously advancing yarn to a cross-wound package on a rotating tube wherein the yarn is deposited on the tube during the winding of the package within a winding range. Directly before the winding cycle, a yarn reserve wind forming a trailing yarn end of the package is deposited outside of the winding range. In this process, the yarn is guided by a yarn guide that is movable substantially parallel to the tube surface. In accordance with the invention, the yarn guide is reciprocated at different guiding speeds for purposes of securing the trailing yarn end on the circumference of the tube with at least some yarn winds of the yarn reserve wind.
Description
BACKGROUND OF THE INVENTION
The present invention relates to a method of winding a continuously advancing yarn to a cross wound package, and so as to form a yarn reserve wind at the beginning of the winding cycle.
EP 0 311 827 and corresponding U.S. Pat. No. 4,948,057 disclose a winding method wherein an advancing yarn is wound on a driven tube which is clamped between two centering plates. The centering plates are rotatably supported. The tube lies against a drive roll, and is driven by same. After the tube has reached a predetermined winding speed, the yarn is caught and cut by a catching groove, which is arranged in the circumferential region of one centering plate. The loose yarn end is taken in by a suction device. After initial layers of the yarn have been wound on the tube laterally next to the winding range to a so-called yarn reserve wind, winding of the package starts. For catching and winding initial layers, the yarn is guided by a movable yarn guide.
Takeup devices of the described type are used, for example, in texturing machines for winding a textured yarn to a package. To this end, the continuously advancing yarn is caught before the winding start, cut, and deposited on the tube with a yarn reserve wind next to the actual winding range. In this connection, the yarn reserve wind forms the trailing yarn end of the package, which is knotted in a further processing operation to the leading yarn end of a second package. This makes it necessary to secure the yarn end on the tube surface in an easily recognizable and reliable manner. In the known method, the yarn is clamped at the front end of the package between the centering plate and the tube, so that after the package doff, the yarn end is no longer clamped. After completing the package and after doffing the package, there arises the problem that the yarn end disengages from the yarn reserve wind, and leads in the extreme case to a complete unwinding of the yarn reserve.
It is therefore an object of the invention to further develop a method of the initially described type in such a manner that the yarn end is reliably secured on the circumference of the tube, even when the packages are removed.
A further object of the invention involves depositing the yarn end on the circumference of the package with clear identification marks.
SUMMARY OF THE INVENTION
The above and other objects and advantages are achieved by the provision of a method of winding a continuously advancing yarn which comprises initially forming a yarn reserve on the tube outside the winding range by guiding the advancing yarn with a yarn guide which is moveable substantially parallel to the tube. The yarn guide is moved by a controllable drive such that the yarn guide is reciprocated to secure the trailing yarn end on the circumference of the tube with at least some of the winds of the yarn reserve. The advancing yarn is then wound onto the tube within the winding range to form a cross wound package.
The invention makes it possible to influence the winds in their slope, as well as in their direction of deposit. To this end, the yarn guide may be moved to reciprocate at different guiding speeds, which renders it possible to influence the slope of the yarn wind on the tube surface. In this connection, the higher the guiding speed, the steeper is the slope of the wind. The direction of the yarn deposit is dependent on the direction of movement of the yarn guide. Thus, at each change in direction of the yarn guide, the reciprocating movement causes a change in the direction of deposit of the winds on the tube surface.
When winding dye yarn packages (subsequently dyed packages), it is often necessary to wind a waste wind within the winding range, before winding a yarn reserve wind. Subsequent thereto, the yarn reserve is produced outside of the winding range, so as to start thereafter the actual winding cycle. These sequences of movements produce on the tube surface a plurality of wind transitions between the yarn reserve wind and the package. Since the leading yarn end with the waste wind is unsuitable for further processing, the trailing yarn end of the package is formed by the yarn reserve wind that is produced after the waste wind. The invention makes it easy to identify the yarn end after completion of the package. To this end, the yarn winds that are produced in a forward movement and a return movement between the package and the yarn reserve wind, are deposited with different slopes on the circumference of the tube. This is realized by carrying out the forward and the return movement of the yarn guide at different guiding speeds. The special advantage of this invention lies in that no waste yarn is included in the further processing operation.
In one embodiment of the method, the forward movement occurs in the transition of the yarn guide to the winding range before producing the waste wind, at a higher guiding speed than the return movement performed by the yarn guide after producing the waste wind. With that, the yarn end of the yarn reserve wind produced during the return movement, is deposited on the tube with a gentle slope, so that for forming the yarn end, it is possible to cut the yarn within the wind with a gentle slope.
However, it is also possible to perform the return movement of the yarn guide at a higher guiding speed than the forward movement. With that, the yarn end is to be formed with the yarn wind, which is deposited with a steeper slope between the yarn reserve and the package.
In the production of dye yarn packages, it is also common to wind a first yarn reserve wind before winding the waste wind. Such a first yarn reserve wind can be deposited inside or outside of the winding range. When winding outside of the winding range, it is preferred to wind the two yarn reserve winds in the same place on the tube circumference. This ensures that the second, relevant yarn reserve wind also exhibits a uniform dyeing as is required for further processing.
To secure the yarn end of a yarn reserve wind in an advantageous manner, the yarn guide may be operated at the beginning of the yarn reserve wind in a forward movement and a return movement directly following the forward movement. The forward movement occurs at a higher guiding speed than the return movement, so that the steep yarn wind deposited on the tube surface during the forward movement, is wound over by the winds following during the return movement. With that, it is realized that the yarn end is secured on the circumference of the tube by a plurality of side-by-side winds.
To secure the yarn end on the circumference of the tube with parallel winds, the distances covered by the yarn guide in its reciprocating movement may be different. Thus, a greater distance is covered in the forward movement than in the return movement, so that the winds deposited in the forward movement are covered by the winds produced in the return movement.
Another variant of the method is especially suited for securing the yarn with a minimal length of the yarn reserve wind. In this connection, the forward and return movements of the yarn guide occur briefly within a wind deposited on the tube, so that the deposited wind is directly wound over by a following wind.
The method of the present invention can be used with advantage in all known takeup devices. Thus, it is possible to transfer the yarn after a winding start from the yarn guide to a traversing yarn guide of a yarn traversing device, so that the yarn guide guides the yarn only during the catching and during the winding of the yarn reserve. However, it is also possible that the yarn guide guides the yarn during the catching, winding start, and winding, so that the yarn guide is simultaneously used a traversing yarn guide. Essential is that the movement of the yarn guide can be controlled by a controllable drive at a variable speed independently of the direction.
BRIEF DESCRIPTION OF THE DRAWINGS
In the following, the method is described in greater detail with reference to some embodiments and types of apparatus and to the attached drawings in which:
FIG. 1
is a schematic view of a clamped tube end with a first embodiment of a yarn reserve wind;
FIG. 2
is a schematic view of a clamped tube end with a further embodiment of a yarn reserve wind;
FIG. 3
is a schematic view of a clamped tube with a waste wind and yarn reserve winds;
FIG. 4
is a schematic view of a first embodiment of an apparatus for carrying out the method; and
FIG. 5
is a schematic view of a further embodiment of an apparatus for carrying out the method.
DETAILED OF THE PREFERRED EMBODIMENTS
FIG. 1
schematically illustrates an end of a tube
13
. The tube
13
is clamped between two centering plates and driven at a winding speed.
FIG. 1
shows the right end of the tube
13
with the centering plate
27
. In a plane substantially parallel to the tube
13
, a movable yarn guide
18
is arranged. The yarn guide
18
connects to a drive, which is described in greater detail below. The yarn guide
18
guides a continuously advancing yarn
1
.
To be able to wind the yarn
1
on the tube
13
to a package, it is necessary to catch the yarn
1
by means of a catching device. This threading operation proceeds in a known manner. To this end, the yarn guide
18
moves to a catching position at the end of the tube
13
. In this phase, a suction device or a second, fully wound package continuously receives the advancing yarn
1
. In the catching position of the yarn guide
18
, the yarn
1
is guided over a catching device such that it is caught and cut. For example, in the case of the tube
13
shown in
FIG. 1
, catching could occur by a catching groove provided on the circumference of the centering plate
27
. In so doing, the yarn is guided through the catching groove into a clamping slot between the front-face end of the tube
13
and the centering plate
27
. After the yarn
1
is caught and cut, the yarn guide
18
moves in the direction of the package center for winding a yarn reserve wind. This forward movement is performed at a predetermined guiding speed of the yarn guide
18
, so that the initial winds on the tube surface are deposited on the tube at an angle of slope α.
FIG. 1
shows two winds, which were deposited on the tube
13
during the forward movement. After a predetermined time or after a predetermined distance covered by the yarn guide
18
, the forward movement ends, and the yarn guide moves back to the tube end in a return movement. In so doing, the return movement of the yarn proceeds at a lower guiding speed, so that the winds deposited on the tube
13
exhibits a smaller angle of slope β. The winds produced during the return movement are thus wound over the winds produced during the forward movement. With that, the yarn is secured on the circumference of the tube
13
. After the yarn reserve wind
15
is fully wound, the yarn guide
18
moves to the winding range of the tube
13
. The winding range is the area on the tube surface, in which the package is wound. Therefore, the winding range is defined by the package width. To wind the package, the yarn
1
can be guided by means of a separate, traversing yarn guide or by the yarn guide
18
.
FIG. 2
shows a further embodiment of a yarn reserve wind. The apparatus parts are identical with the components shown in FIG.
1
. Insofar the foregoing description is herewith incorporated by reference. After the yarn
1
is caught and clamped, the yarn guide
18
starts to move in a normal plane to the tube
13
, in which the yarn reserve wind is to be produced. As soon as the yarn guide
18
reaches the normal plane, a brief forward and return movement of the traversing yarn guide
18
is generated, so that in a first wind, the yarn
1
is deposited on the tube
13
with a loop extending in the axial direction. Directly thereafter, the yarn reserve wind is produced, in that the loop of the first wind is wound over by the subsequent winds. After completing the yarn reserve wind
15
on the tube
13
, the yarn guide
18
moves to the winding range. For producing the yarn reserve wind
15
in FIG.
1
and
FIG. 2
, it is preferred to move the yarn guide
18
in one direction at a constant guiding speed. However, for producing the yarn reserve wind
15
, it is also possible to move the yarn guide
18
reciprocatingly with small deflections, so that a cross wind is produced.
FIG. 3
illustrates a further embodiment of a yarn reserve wind, which was produced by the method of the present invention. This method is applied in particular for producing packages, which are subjected to a dye treatment after the winding. Since in the dyeing of packages, the first yarn layers on the tube surface are not suitable for further processing because of dye differences, it is necessary to produce in the winding range a so-called waste wind. In the situation shown in
FIG. 3
, the tube
13
is clamped between centering plates
27
and
28
. Once the yarn is threaded, the yarn guide
18
moves for producing a waste wind on the tube surface to the winding range, which is identified in
FIG. 3
by the package width B. After completing the waste wind, a yarn reserve
15
is wound outside the winding range. Between the winding range B and the yarn reserve
15
, a distance A extending in the axial direction is formed on the tube surface. In the region A, one or more transition winds by the deposit of yarn
1
are produced by the forward movement of the traversing yarn guide
18
. At the transition to the waste wind
37
, the forward movement of yarn guide
18
is performed at a predetermined guiding speed, so that a plurality of winds are deposited on the tube surface at an angle of slope α.
Once the waste wind
37
is completed, the yarn guide
18
moves for producing the yarn reserve wind
15
from the winding range B toward the end of tube
13
. In so doing, the return movement of yarn guide
18
occurs at a guiding speed, which differs from the guiding speed of the forward movement. The yarn
1
is deposited in the transition range A with winds, which exhibit an angle of slope β. In
FIG. 3
, the yarn guide
18
has covered the transition range A, and winds the yarn reserve wind
15
. Once the yarn reserve wind
15
is completed, the yarn guide
18
returns, again in a forward movement, to the winding range B. In so doing, the forward movement occurs likewise at a guiding speed, which leads to a yarn deposit at an angle of slope α.
After completing the package, one needs to identify, based on the different angles of slope α and β in the transition range A, the yarn end, which is to be removed for joining to a subsequent package in a further processing operation. In the embodiment shown in
FIG. 3
, one would therefore cut the wind with the angle of slope β in the transition range A, and knot it as a trailing yarn end to a leading yarn end of a subsequent package. This ensures that the waste wind and, if need be, a first yarn reserve wind remain on the tube
13
and do no reach a further processing operation.
FIG. 4
illustrates an embodiment of an apparatus, which is suitable for carrying out the method. The apparatus for winding an advancing yarn
1
comprises a winding spindle
12
. The winding spindle
12
is supported in cantilever fashion with a bearing
17
in a machine frame. The bearing end of the winding spindle
12
connects to a spindle motor
16
. The winding spindle
12
mounts a tube
13
. A contact pressure roll
10
extends axis parallel to the winding spindle
12
in spaced relationship with the tube
13
. The contact pressure roll
10
is rotatably supported with a shaft
11
in the machine frame. Upstream of the winding spindle
12
and contact pressure roll
10
, a yarn traversing device
22
is arranged in the machine frame. In the present embodiment, the yarn traversing device
22
is of the rotary-blade type. A traversing yarn guide
7
designed and constructed as a rotary blade is rotated by means of a rotor
5
in such a manner that the yarn
1
is guided from the right package edge to the left package edge. In so doing, the yarn slides along a guide bar
9
. At the opposite end, the yarn is taken over by a second rotary blade
6
, which is driven by a rotor
4
in the opposite direction. For this purpose, the guide bar
9
is arranged between the yarn traversing device
22
and the contact pressure roll
10
.
At its one end, the tube
13
mounted on winding spindle
12
comprises a catching device
14
which includes a catching groove
21
. At the end of tube
13
with the catching device
14
, a movable yarn guide
18
is arranged upstream of the winding spindle. The yarn guide
18
connects to a drive
19
, which moves the yarn guide
18
in a plane parallel to the winding spindle
12
in the longitudinal direction of the tube
13
away from the tube end and back to the tube end. The drive
19
connects to a controller
8
. In the region of the winding spindle
12
, a sensor
20
is provided for measuring the rotational speed of the winding spindle. The sensor
20
connects to the controller. The controller
8
stores control programs for forming a yarn reserve wind
15
.
FIG. 4
illustrates the operating situation, in which the yarn
1
continuously advancing via a yarn guide
2
reaches the takeup device and, while being guided by yarn guide
18
, it contacts the tube
13
. The yarn
1
is already caught in the catching device
14
and wound on the tube
13
to a yarn reserve wind. To this end, the yarn guide
18
is moved by drive
19
. In this process, the drive
19
is controlled by controller
8
.
After the yarn reserve wind is deposited on the tube
13
, the yarn disengages from the yarn guide
18
, and it drops into the traversing device. To this end, the yarn guide may be constructed for pivotal movement in the axial direction.
By determining the spindle speed, it is also possible to predetermine in the controller
8
the length of the yarn reserve wind from the parameters spindle speed and winding time of the yarn reserve wind.
FIG. 5
illustrates a further embodiment of an apparatus for carrying out the method, as is applied, for example in a texturing machine. In the following description, components with the same function are indicated at the same numerals. A pivot axle
40
arranged in a machine frame pivotally mounts a package holder
26
. The free end of the fork-shaped package holder
26
rotatably supports two opposite centering plates
28
and
27
. Between the centering plates
28
and
27
, a tube
13
is clamped for receiving a package. A drive roll
29
lies against the surface of the tube
13
. The drive roll
29
is mounted on a drive shaft
31
. At its one end, the drive shaft
31
connects to a motor
30
, which drives the drive roll
29
at a substantially constant speed. By frictional engagement, the drive drives the tube
13
to a winding speed, which makes it possible to wind the yarn at the yarn speed. The winding speed thus remains substantially constant during the winding cycle. Upstream of the drive roll
29
, a yarn traversing device
22
is arranged. The yarn traversing device
22
is constructed as a so-called belt-type traversing device, in which a traversing yarn guide
6
is attached to an endless belt
33
. The belt
33
extends between deflection pulleys
34
.
1
and
34
.
2
parallel to the tube
13
. In the plane of the belt, a drive pulley
35
partially looped by the belt is arranged parallel to the deflection pulleys
34
.
1
and
34
.
2
. The drive pulley
35
is mounted on a drive shaft
44
of an electric motor
36
. The electric motor
36
drives the drive pulley
35
for oscillation, so that the traversing yarn guide
6
reciprocates in the range between the two deflection pulleys
34
.
1
and
34
.
2
. The electric motor
36
is controllable via a controller
8
. The controller
8
connects to a sensor
32
arranged on the package holder
26
, which senses the rotational speed of centering plate
27
.
In the apparatus shown in
FIG. 5
, the traversing yarn guide
6
guides the yarn for threading, catching, winding initial layers thereof, and for winding the package. The control programs for producing the yarn reserve wind and for winding the package respectively are stored in the controller
8
, so that the motor
36
is able to control accordingly the traversing yarn guide
6
in the sequence of its movements. In the operating situation shown in
FIG. 5
, the yarn reserve wind
15
is just being wound.
Claims
- 1. A method of winding a continuously advancing yarn to a cross wound package within a winding range on a rotating tube, and comprising the steps ofinitially forming a yarn reserve on the tube outside of the winding range, by guiding the advancing yarn with a yarn guide which is moveable substantially parallel to the tube, and wherein the yarn guide is moved by a controllable drive such that the yarn guide is reciprocated to secure a trailing yarn end on the circumference of the tube with at least some of the winds of the yarn reserve, then winding the advancing yarn onto the tube within the winding range to form a cross wound package, and wherein the guiding step includes moving the yarn guide by the controllable drive such that the yarn guide is reciprocated in a forward direction toward the winding range and an opposite return direction, and so that the forward and return movements are at different speeds.
- 2. The method of claim 1 wherein the movement in the return direction directly follows the movement in the forward direction, and the forward movement is performed at a higher speed than the return movement.
- 3. The method of claim 1 wherein the distance covered by the yarn guide in its forward movement is greater than the distance covered by the yarn guide in its return movement.
- 4. The method of claim 1 wherein the forward movement and the return movement of the yarn guide occur briefly to form an axially extending loop within a wind deposited on the tube, so that the deposited wind can be wound over by a subsequent wind.
- 5. A method of winding a continuously advancing yarn to a cross wound package within a winding range on a rotating tube, and comprising the steps ofinitially forming a yarn reserve on the tube outside of the winding range, by guiding the advancing yarn with a yarn guide which is moveable substantially parallel to the tube, and wherein the yarn guide is moved by a controllable drive such that the yarn guide initially moves in a forward direction toward the winding range so as to form initial winds on the tube and then moves in a return direction to form further winds which overlie at least some of the initial winds and thereby secure the initial winds on the circumference of the tube, and such that the initial winds and the further winds lie outside of the winding range, and then winding the advancing yarn onto the tube within the winding range to form a cross wound package.
- 6. The method of claim 5 wherein the forward movement occurs at a speed which is different from the return movement speed.
- 7. The method of claim 5 wherein the forward movement occurs at a higher guiding speed than the return movement, so that a relatively steep yarn wind is formed during the forward movement and a less steep wind is formed during the return movement.
- 8. A method of winding a continuously advancing yarn to form a cross wound package within a winding range on a rotating tube, comprising the steps ofguiding the advancing yarn onto the tube so that the yarn(1) initially moves in a forward direction at a predetermined speed from one end of the tube to the winding range, (2) then moves within the winding range to form a waste wind, (3) then moves in a rearward direction from the winding range toward the one end of the tube at a speed which differs from said predetermined speed and so as to form a yarn reserve outside the winding range, (4) then moves in the forward direction back into the winding range, and (5) then reciprocates within the winding range to form a cross wound package wherein the waste wind is formed along substantially the full length of the winding range.
- 9. The method as defined in claim 8 wherein the speed of the forward movement in step (4) is substantially the same as the predetermined speed of step (1).
- 10. The method as defined in claim 8 comprising the further subsequent step of cutting a winding formed during step (3) to form a free end which may be knotted to a leading yarn end of another package.
- 11. A method of winding a continuously advancing yarn to form a cross wound package within a winding range on a rotating tube, comprising the steps ofguiding the advancing yarn onto the tube so that the yarn(1) initially moves in a forward direction from one end of the tube to the winding range, (2) then moves within the winding range to form a waste wind which extends along substantially the full length of the winding range, (3) then moves in a rearward direction from the winding range toward the one end of the tube so as to form a yarn reserve outside the winding range, (4) then moves in the forward direction back into the winding range, and (5) then reciprocates within the winding range to form a cross wound package.
- 12. The method as defined in claim 11 comprising the further subsequent step of cutting a winding formed during step (3) to form a free end which may be knotted to a leading yarn end of another package.
Priority Claims (2)
Number |
Date |
Country |
Kind |
199 22 393 |
May 1999 |
DE |
|
199 36 349 |
Aug 1999 |
DE |
|
US Referenced Citations (1)
Number |
Name |
Date |
Kind |
4948057 |
Greis |
Aug 1990 |
|
Foreign Referenced Citations (1)
Number |
Date |
Country |
0 311 827 A2 |
Apr 1989 |
EP |