None
The present invention generally relates to a collocated wireless local area network/Bluetooth (WLAN/BT) device that avoids radio interference between the two wireless systems by collaborative coexistence mechanisms. Particularly, the present invention relates to a collocated WLAN/BT device and coexistence methods that include time division multiplexing based on various operating states of the collocated WLAN and BT systems, respectively.
The Institute of Electronic and Electrical Engineer's (IEEE's) 802.11 standards for wireless local area networks (WLANs) and the Bluetooth (BT) specifications for wireless personal area networks (WPANs) are the leading wireless networking technologies. As the size and power requirements of both WLAN and BT devices become smaller, both technologies are finding their way into a growing number of mobile devices, such as cellphones, smartphones, personal digital assistants (PDAs), and laptop computers. Both 802.11 WLANs and BT WPANs utilize the unlicensed 2.4-2.5 GHz Industrial Scientific Medical (ISM) radio frequency band, resulting in potential radio interference between these two wireless networking technologies. For example, when a WLAN radio transceiver and a BT radio transceiver are collocated in the same device, radio interference can become a severe problem.
The IEEE 802.11b and 802.11g WLAN standards specify a physical layer that transmits data using a direct sequence spread spectrum (DSSS) with quaternary phase-shift keying or complementary code keying at 11 Mbps and orthogonal frequency division multiplexing at 54 Mbps, respectively. WLAN transmission at, for example, 11 Mbps, represents a raw data rate of transmission. In such a WLAN system, protocol overheads for the Transmission Control Protocol (TCP) and Internet Protocol (IP) for network communications, as well as the Media Access Control (MAC) overhead of the WLAN system's communications, result in an actual transmission rate of up to about 5 Mbps for a single WLAN communication link.
In the US, the Federal Communications Commission divides the 2.4 GHz ISM band into 11 adjacent channels of 5 MHz from 2.412-2.462 GHz for Direct Sequence Spread Spectrum (DSSS) wireless technologies. Since a single 802.11b WLAN channel has a bandwidth of about 16 MHz at 20 dB, using adjacent channels would result in severe radio interference. For this reason, WLANs that operate in proximity to one another are typically operated on channels 1, 6, and 11 with an interchannel interval of 25 MHz to prevent radio interference among the WLANs.
The BT standard is based on a frequency hopping spread spectrum (FHSS) technology. At any point in time, the BT communication signal occupies only 1 MHz of bandwidth. Over time, the signal changes its center frequency, i.e., hops, between 79 center frequencies, equally spaced between 2.402 GHz and 2.480 GHz of the ISM band. Hence, over time the BT signal actually occupies a bandwidth of 79 MHz of the available 83.5 MHz of the 2.4 GHz ISM band.
The BT standard version 1.1 is a Time Division Multiplexed (TDM) system, where the basic unit of operation is a time slot of 625 μs duration. All BT system transmissions or receptions occur in 1, 3, or 5 time slots, in which each time slot is occupied by a communication packet. During communication between a BT master device and BT slave device in a wireless Personal Area Network (WPAN), a transmission packet and a reception packet are joined together in a pair to provide a communication link. The paired time slots of the BT master device comprise a transmission time slot followed immediately by a reception time slot, while the synchronized and corresponding paired time slots of the BT slave device comprise a reception time slot followed immediately by a transmission time slot. Every BT signal packet transmitted by the master device must be received by the slave device and acknowledged by a transmission from the slave device back to the master device during the corresponding reception time slot of the master device. Hence, communication links between master and slave BT devices may comprise packet pairs of 2, 4, 6, 8, or 10 time slots in duration.
Since a BT device hops over 78 MHz of the ISM band and an 802.11 WLAN device requires approximately 16 MHz of bandwidth within the ISM band, it is not possible to simultaneously operate both BT and WLAN devices in the same area without radio interference.
Coexistence is a technique that is designed to reduce radio interference, and in turn, enhance performance, of both BT and WLAN devices operating in the same area. Within the context of coexistence, BT and WLAN devices can be “collocated” or “non-collocated.” Collocated means that a BT and a WLAN system reside in the same device, i.e, the two systems are collocated. Within the collocated device, the electrical isolation between the BT and WLAN transmission signals can be as low as 10 dB.
The requirements for a coexistence protocol, i.e., a protocol for a collocated device, are: (1) the collocated device will ensure undisturbed BT high priority traffic, for example, real-time voice communications; (2) the collocated device will maintain fairness between non-voice BT communication, for example, low priority data signals, and WLAN communication; (3) if the BT system does not have traffic, then WLAN performance should not be impacted; and (4) if the WLAN system does not have traffic, then BT performance should not be impacted.
A coexistence solution for a collocated WLAN and BT device may be provided by using, for example, Texas Instruments' TNETW1100b WLAN processors and Texas Instruments' BRF6100 or BRF6150 single chip BT systems. When used in a collocated device, the WLAN processor acts as a coexistence master. The coexistence master has internal knowledge of the state of the WLAN system and it has knowledge of the state of the BT system via a hardware coexistence interface. The WLAN coexistence master also controls the BT system's transmission. The coexistence mechanism is collaborative and is based on time division multiplexing (TDM), which allows for sharing of time, and hence, of the wireless medium, between the BT system and the WLAN system.
As shown in
Without a coexistence mechanism for a collocated device, experimental results indicate that a collocated BT system is usually able to operate at 80-90% of its baseline performance; however, this comes at the expense of very poor WLAN performance, i.e., <20% of its baseline performance. In the real world, this often results in termination of the WLAN application as soon as a BT connection is formed. In general, BT usually harms the WLAN operation more than the other way around. In some cases, however, operation of collocated WLAN and BT systems without coexistence may result in disconnection of the BT link. Altogether, without coexistence, user acceptable BT and WLAN operation cannot be guaranteed.
When the coexistence mechanism described above is used, user acceptable collocated BT and WLAN operation may be achieved. In this case, each technology operates at about 60% of its baseline performance. In many cases, the actual data rate of communication for the two systems is not limited by the wireless network, but rather by other limiting factors, for example, broadband access pipe and host processor speed.
There remains a need to further enhance the coexistence mechanism described above, to assure acceptable coexistence: during the transmission of low priority WLAN and BT data signals in a collocated WLAN/BT device; during the sleep mode of the collocated WLAN system; during the transmission of high priority data signals from the collocated BT system during time division multiplexed WLAN and BT periods; during the transition of the collocated BT system from an active state to an idle state; and during the transition of the collocated WLAN system from an active state to an idle state.
An aspect of an exemplary embodiment of the present invention provides a collocated wireless local area network/Bluetooth (WLAN/BT) device that comprises a WLAN system including a coexistence master, a BT system including a timing block, which signals a state of the BT system, a BT radio shut-down signal output from the coexistence master to the BT system, a timing signal output from the BT system to the coexistence master of the WLAN system, the timing signal indicating a state corresponding to either transmission or reception by the BT system, and an algorithm residing in the coexistence master in which the algorithm provides time division multiplexing of BT and WLAN signals to avoid radio interference.
Another aspect of an exemplary embodiment of the present invention provides a method of wireless local area network/Bluetooth (WLAN/BT) coexistence for a collocated WLAN/BT device. The method comprises time division multiplexing of WLAN and BT transmissions from a collocated WLAN system and a collocated BT system, respectively, the time division multiplexing including a WLAN period and a BT period, in which during the WLAN period, transmission and reception of frames from an access point to the collocated WLAN system and from the collocated WLAN system to the access point are allowed, while transmissions by the collocated BT system are not allowed, and during the BT period, transmission and reception of packets by the collocated BT system are allowed, while the collocated WLAN system acknowledges receipt of frames from the access point.
Yet another aspect of an exemplary embodiment of the present invention provides a method of wireless local area network/Bluetooth (WLAN/BT) coexistence for a collocated WLAN/BT device. The method comprises time division multiplexing of WLAN and BT transmissions from a collocated WLAN system and a collocated BT system, respectively, the time division multiplexing including a WLAN period and a BT period, in which the WLAN period corresponds to a sleep state and the collocated BT system transmits during the WLAN period corresponding to a sleep state.
Yet another aspect of an exemplary embodiment of the present invention provides a method of wireless local area network/Bluetooth (WLAN/BT) coexistence for a collocated WLAN/BT device. The method comprises time division multiplexing of WLAN and BT transmissions from a collocated WLAN system and a collocated BT system, respectively, the time division multiplexing including a WLAN period and a BT period, in which during the WLAN period, a high priority data signal from the collocated BT system causes transmission of the collocated WLAN system to be disabled and transmission/reception of the collocated BT system to be enabled.
Yet another aspect of an exemplary embodiment of the present invention provides a method of wireless local area network/Bluetooth (WLAN/BT) coexistence for a collocated WLAN/BT device. The method comprises time division multiplexing of WLAN and BT transmissions from a collocated WLAN system and a collocated BT system, respectively, the time division multiplexing including a WLAN period and a BT period, in which during the WLAN period, a high priority data signal from the collocated BT system causes the collocated WLAN system to enter a power-save mode and transmission/reception of the collocated BT system to be enabled.
Yet another aspect of an exemplary embodiment of the present invention provides a method of wireless local area network/Bluetooth (WLAN/BT) coexistence for a collocated WLAN/BT device. The method comprises time division multiplexing of WLAN and BT transmissions from a collocated WLAN system and a collocated BT system, respectively, the time division multiplexing including a WLAN period and a BT period, in which during a BT period, the collocate BT system is idle and the collocated WLAN system transmits.
Yet another aspect of an exemplary embodiment of the present invention provides a method of wireless local area network/Bluetooth (WLAN/BT) coexistence for a collocated WLAN/BT device. The method comprises time division multiplexing of WLAN and BT transmissions from a collocated WLAN system and a collocated BT system, respectively, the time division multiplexing including a WLAN period and a BT period, in which during a WLAN period, the collocated WLAN is idle and the collocated BT system transmits.
Exemplary embodiments of the present invention are discussed below in reference to the drawings, in which:
A WLAN system may decrease the rate of signal transmission by a rate fallback mechanism after a number of unsuccessful communications to improve communications. However, during a designated BT period of an exemplary embodiment of the invention, it is possible that a number of WLAN transmission attempts may be unsuccessful. In this case, decreasing the rate of WLAN signal transmission does not offer a solution to the number of unsuccessful WLAN communications. Hence, in various exemplary embodiments of the invention, a rate fallback mechanism of the WLAN system may be disabled in a collocated WLAN/BT device during periods in which the collocated BT system may transmit.
Wireless personal area networks (WPANs) may comprise several BT systems including the BT system of the collocated device. In various exemplary embodiments of the invention, as additional BT devices are added to a WPAN including the collocated BT system, the collocated BT system may designate the BT signaling, for example, page, page scan, and master-slave switch information required for the build-up of the WPAN, as a high priority BT communication, to allow the WPAN build-up to occur without transmission interference from the collocated WLAN system.
The collocated BT system may be in a low power mode that comprises “sniffs” at known timing intervals, to “sniff” for other BT systems belonging to the WPAN with which the collocated BT system is associated. In various exemplary embodiments of the invention, the collocated BT system may designate the sniff as a high priority BT communication, to allow BT communications to occur without transmission interference from the collocated WLAN system.
Because many varying and different exemplary embodiments may be made within the scope of the inventive concepts taught above and because many modifications may be made in the exemplary embodiments detailed above, in accordance with the descriptive requirements of the law, it is understood that the detailed descriptions exemplified above are to be interpreted as illustrative and not in a limiting sense.