Environments in which objects are managed, such as retail facilities, warehousing and distribution facilities, and the like, may be complex and fluid. For example, a retail facility may include objects such as products for purchase, and a distribution facility may include objects such as parcels or pallets. The visual and structural features of such facilities may also vary widely. A mobile automation apparatus may be deployed within such facilities to perform tasks at various locations. For example, a mobile automation apparatus may be deployed to capture data relating to these objects at various locations in a retail, warehousing, or distribution facility. To navigate to the appropriate locations, the mobile automation apparatus may track its own location within the facility. The complexity and variability of the facility may reduce the accuracy of the apparatus' localization.
The accompanying figures, where like reference numerals refer to identical or functionally similar elements throughout the separate views, together with the detailed description below, are incorporated in and form part of the specification, and serve to further illustrate embodiments of concepts that include the claimed invention, and explain various principles and advantages of those embodiments.
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present invention.
The apparatus and method components have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.
Examples disclosed herein are directed to a method in a navigational controller including: controlling a ceiling-facing camera of a mobile automation apparatus to capture a stream of images of a facility ceiling; activating a primary localization mode including: (i) detecting primary features in the captured image stream; and (ii) updating, based on the primary features, an estimated pose of the mobile automation apparatus and a confidence level corresponding to the estimated pose; determining whether the confidence level exceeds a confidence threshold; when the confidence level does not exceed the threshold, switching to a secondary localization mode including: (i) detecting secondary features in the captured image stream; (ii) updating the estimated pose and the confidence level based on the secondary features; and (iii) searching the image stream for the primary features; and responsive to detecting the primary features in the image stream, re-activating the primary localization mode.
Additional examples disclosed herein are directed to a mobile automation apparatus comprising: a chassis; a ceiling-facing camera supported by the chassis; and
a navigational controller configured to: control the ceiling-facing camera to capture a stream of images of a facility ceiling; activate a primary localization mode to:
(i) detect primary features in the captured image stream; and (ii) update, based on the primary features, an estimated pose of the mobile automation apparatus and a confidence level corresponding to the estimated pose; determine whether the confidence level exceeds a confidence threshold; when the confidence level does not exceed the threshold, switch to a secondary localization mode to: (i) detect secondary features in the captured image stream; (ii) update the estimated pose and the confidence level based on the secondary features; and (iii) search the image stream for the primary features; and responsive to detection of the primary features in the image stream, re-activate the primary localization mode.
Further examples disclosed herein are directed to a method in a navigational controller, the method comprising: controlling a camera of a mobile automation apparatus to capture a stream of images in a facility; updating an estimated pose of the mobile automation apparatus based on one of primary features or secondary features detected in the images; and selecting whether to detect the primary features or the secondary features in the images according to a confidence level associated with the estimated pose.
The client computing device 104 is illustrated in
The system 100 is deployed, in the illustrated example, in a retail facility including a plurality of support structures such as shelf modules 110-1, 110-2, 110-3 and so on (collectively referred to as shelf modules 110 or shelves 110, and generically referred to as a shelf module 110 or shelf 110—this nomenclature is also employed for other elements discussed herein). Each shelf module 110 supports a plurality of products 112. Each shelf module 110 includes a shelf back 116-1, 116-2, 116-3 and a support surface (e.g. support surface 117-3 as illustrated in
The shelf modules 110 are typically arranged in a plurality of aisles, each of which includes a plurality of modules 110 aligned end-to-end. In such arrangements, the shelf edges 118 face into the aisles, through which customers in the retail facility, as well as the apparatus 103, may travel. As will be apparent from
The apparatus 103 is equipped with a plurality of navigation and data capture sensors 108, such as image sensors (e.g. one or more digital cameras) and depth sensors (e.g. one or more Light Detection and Ranging (LIDAR) sensors, one or more depth cameras employing structured light patterns, such as infrared light, or the like). The apparatus 103 is deployed within the retail facility and, via communication with the server 101 and use of the sensors 108, navigates autonomously or partially autonomously along a length 119 of at least a portion of the shelves 110.
While navigating among the shelves 110, the apparatus 103 can capture images, depth measurements and the like, representing the shelves 110 (generally referred to as shelf data or captured data). Navigation may be performed according to a frame of reference 102 established within the retail facility. The apparatus 103 therefore tracks its pose (i.e. location and orientation) in the frame of reference 102. The process of updating the current pose of the apparatus 103 relative to the frame of reference 102 is also referred to as localization. As will be discussed below, the apparatus 103 implements a plurality of localization modes, and switches between those localization modes under various conditions in order to maintain an accurate pose estimate under a wide variety of environmental and operational conditions.
The server 101 includes a special purpose controller, such as a processor 120, specifically designed to control and/or assist the mobile automation apparatus 103 to navigate the environment and to capture data. The processor 120 is interconnected with a non-transitory computer readable storage medium, such as a memory 122, having stored thereon computer readable instructions for performing various functionality, including control of the apparatus 103 to navigate the modules 110 and capture shelf data, as well as post-processing of the shelf data. The memory 122 can also store data for use in the above-mentioned control of the apparatus 103, such as a repository 123 containing a map of the retail environment and any other suitable data (e.g. operational constraints for use in controlling the apparatus 103, data captured by the apparatus 103, and the like).
The memory 122 includes a combination of volatile memory (e.g. Random Access Memory or RAM) and non-volatile memory (e.g. read only memory or ROM, Electrically Erasable Programmable Read Only Memory or EEPROM, flash memory). The processor 120 and the memory 122 each comprise one or more integrated circuits. In some embodiments, the processor 120 is implemented as one or more central processing units (CPUs) and/or graphics processing units (GPUs).
The server 101 also includes a communications interface 124 interconnected with the processor 120. The communications interface 124 includes suitable hardware (e.g. transmitters, receivers, network interface controllers and the like) allowing the server 101 to communicate with other computing devices—particularly the apparatus 103, the client device 104 and the dock 106—via the links 105 and 107. The links 105 and 107 may be direct links, or links that traverse one or more networks, including both local and wide-area networks. The specific components of the communications interface 124 are selected based on the type of network or other links that the server 101 is required to communicate over. In the present example, as noted earlier, a wireless local-area network is implemented within the retail facility via the deployment of one or more wireless access points. The links 105 therefore include either or both wireless links between the apparatus 103 and the mobile device 104 and the above-mentioned access points, and a wired link (e.g. an Ethernet-based link) between the server 101 and the access point.
The processor 120 can therefore obtain data captured by the apparatus 103 via the communications interface 124 for storage (e.g. in the repository 123) and subsequent processing (e.g. to detect objects such as shelved products in the captured data, and detect status information corresponding to the objects). The server 101 may also transmit status notifications (e.g. notifications indicating that products are out-of-stock, in low stock or misplaced) to the client device 104 responsive to the determination of product status data. The client device 104 includes one or more controllers (e.g. central processing units (CPUs) and/or field-programmable gate arrays (FPGAs) and the like) configured to process (e.g. to display) notifications received from the server 101.
Turning now to
The mast 205 also supports at least one depth sensor 209, such as a 3D digital camera capable of capturing both depth data and image data. The apparatus 103 also includes additional depth sensors, such as LIDAR sensors 211. In the present example, the mast 205 supports two LIDAR sensors 211-1 and 211-2. As shown in
The mast 205 also supports a plurality of illumination assemblies 213, configured to illuminate the fields of view of the respective cameras 207. That is, the illumination assembly 213-1 illuminates the field of view of the camera 207-1, and so on. The sensors 207 and 211 are oriented on the mast 205 such that the fields of view of the sensors each face a shelf 110 along the length 119 of which the apparatus 103 is traveling. As noted earlier, the apparatus 103 is configured to track a pose of the apparatus 103 (e.g. a location and orientation of the center of the chassis 201) in the frame of reference 102, permitting data captured by the apparatus 103 to be registered to the frame of reference 102 for subsequent processing.
Referring to
The processor 300, when so configured by the execution of the application 308, may also be referred to as a navigational controller 300. Those skilled in the art will appreciate that the functionality implemented by the processor 300 via the execution of the application 308 may also be implemented by one or more specially designed hardware and firmware components, such as FPGAs, ASICs and the like in other embodiments.
The memory 304 may also store a repository 312 containing, for example, a map of the environment in which the apparatus 103 operates, for use during the execution of the application 308. In addition, the apparatus 103 can (e.g. via execution of the application 308) update the map in the repository 312, in a process referred to as simultaneous localization and mapping (SLAM). The apparatus 103 also includes a communications interface 316 enabling the apparatus 103 to communicate with the server 101 (e.g. via the link 105 or via the dock 106 and the link 107), for example to receive instructions to navigate to specified locations and initiate data capture operations.
In addition to the sensors mentioned earlier, the apparatus 103 includes a motion sensor 318, such as one or more wheel odometers coupled to the locomotive assembly 203. The motion sensor 318 can also include, in addition to or instead of the above-mentioned wheel odometer(s), an inertial measurement unit (IMU) configured to measure acceleration along a plurality of axes.
The application 308, in the present example, includes a data capture controller 320 that controls the sensors of the apparatus 108 to obtain data for subsequent processing by the remaining components of the application 308. For example, the data capture controller 320 controls the camera 208 to capture a stream of images, and can also control the motion sensor to capture wheel odometry data, acceleration measurements, or the like.
The data obtained by the data capture controller 320 is provided to either or both of a pose estimator 324 and a set of feature detectors 328. The pose estimator 324 executes any suitable mechanism, or combination of mechanisms, to generate an estimated pose of the apparatus 103 according to the frame of reference 102, as well as a confidence level associated with the estimated pose. The pose estimator 324 can generate the estimated pose and confidence directly from sensor data received from the data capture controller 320 under some conditions. Under other conditions, the pose estimator 324 generates the pose and confidence based on features detected in the sensor data by the feature detectors 328. Two feature detectors 328-1 and 328-2 are shown in the illustrated example, but in other embodiments a greater number of feature detectors 328 may be implemented. The pose estimator 324 also controls the activity of the feature detectors 328, as will be discussed in greater detail below, enabling or disabling the feature detectors 328 depending on the active localization mode.
The actions performed by the apparatus 103, and specifically by the processor 300 as configured via execution of the application 308, to maintain an updated pose estimate of the apparatus in the frame of reference 102 will now be discussed in greater detail, with reference to
In general, via the performance of the method 400, the apparatus 103 implements at least two localization modes (three modes are discussed in the example below). In each localization mode, the apparatus 103 detects distinct types of features present in the retail facility from captured sensor data, and updates the estimated pose of the apparatus 103 based on the detected features. The apparatus 103 additionally monitors certain conditions and switches between localization modes when such conditions are met.
Beginning at block 405, the apparatus 103 initiates capture of an image stream via the camera 208. For example, the data capture controller 320 shown in
At block 410, the apparatus 103 performs localization via the detection of primary features in the images captured by the camera 208. In particular, the pose estimator 324 activates the primary feature detector 328-1. The primary feature detector 328-1, in turn, searches the image stream initiated at block 405 for primary features. Various forms of primary features are contemplated. In the present example, the primary features are corner-point features, detected via any suitable feature-tracking mechanism.
An example of such a mechanism, which also enables the application 308 to update the map in the repository 312 simultaneously with the localization functions discussed herein (i.e. which enables the apparatus 103 to perform SLAM), is ORB SLAM. In such an implementation, the primary feature detector 328-1 is an Oriented FAST and rotated BRIEF (ORB) feature detector configured to detect the positions of salient points in successive images of the image stream. Various other examples of SLAM mechanisms and feature detectors will be apparent to those skilled in the art.
Turning to
Returning to
Referring again to
At block 415, the pose estimator 324 determines whether the confidence level associated with the current pose estimate (i.e. the confidence level 532, in the illustrated example) exceeds a threshold. The threshold may be configurable, and may represent a level below which the estimated pose is considered insufficiently accurate for use in navigation. Assuming that, in the example illustrated in
The performance of the method 400 then returns to block 410, for continued detection of primary features and updating of the current estimated pose and associated confidence level. As will now be apparent, as the apparatus 103 travels along the shelf module 110, the position of the point 528 within successive images (i.e. captured after the image 508 shown in
Turning to
The pose estimate and confidence generated at block 415 may reflect the reduced accuracy of primary feature detection under such conditions. For example,
At block 425, the pose estimator 324 switches from the primary localization mode implemented by blocks 410-420 into a secondary localization mode. In the secondary localization mode, the secondary feature detector 328-2 is enabled, and the apparatus therefore localizes based on secondary features detected in the image stream. The secondary features, in the present example, are the lamps 512 and 516. As will be apparent, certain facilities may contain both linear and bulb lamps, while other facilities may contain only linear lamps, or only bulb lamps. The memory 304 can store a configuration setting indicating the types of lamps present in the facility, to reduce computational load on the processor 300 in facilities known to contain only one of the above types of lamps.
As noted earlier, the lamps 512 and 516 generally lack clearly detectable corner features, and the lamps 512 also generally lack detectable edge features. The lamps 512 and 516 may also appear in repeating patterns throughout the facility. These attributes may render the lamps 512 and 516 less effective for pose tracking than corner features such as the point 528 mentioned above. However, the lamps 512 and 516 are generally detectable in a wide range of environmental and operational conditions. For example, the lamps 512 and 516 may be less susceptible to motion blur caused by movement and/or rotation of the apparatus 103. Specifically, the generally circular shape of the lamps 512 reduces the impact of motion blur in images of the lamps 512. The lamps 516, as a result of their readily detectable linear shapes and high contrast (when the lamps 516 are emitting light), may also be less susceptible to motion blur under at least some conditions (e.g. when the lamps 516 are at or near the center of the field of view of the camera 208).
The motion blur mentioned above may be caused by rapid movement of the apparatus 103, rotation of the apparatus 103, alone or in combination with insufficient shutter speed or exposure parameters of the camera 208. The camera 208 may, for example, adjust such parameters too slowly to counteract changes in motion of the apparatus 103. In other examples, the camera 208 may have fixed shutter speed and/or exposure settings. Further, in some examples the camera 208 may employ a fisheye lens, which captures images with distorted edges. The bulb lamps 512 in particular may be less susceptible to such distortion, remaining readily detectable by the secondary feature detector 328-1 over the full field of view 504 of the camera 208.
The lamps 512 and 516 may be detected by the secondary feature detector 328-1 according to any suitable detection algorithms, including for example intensity-based algorithms suited to detecting the contrast between the lamps 512 and 516 and the ceiling 500. Blob detection algorithms may be employed to detect the lamps 512, while edge detection algorithms may be employed to detect the lamps 516. Turning to
Due to the repetitive nature of the lamps 512 and 516 in the facility, localization at block 425 can include the definition of a search area centered on the most recent pose estimate with a confidence level exceeding the threshold (e.g. the pose estimate 532 of
Referring again to
While localizing the secondary localization mode, the apparatus 103 continues to search the image stream for primary features. That is, during the determination of pose estimates based on the secondary features, the primary feature detector 328-1 remains active, and any detected primary features are provided to the pose estimator. At block 440, the pose estimator 324 determines whether any primary features have been detected by the primary feature detector 328-1. Detection of primary features when the secondary (i.e. lamp-based) localization mode is active may indicate a return to environmental or operational conditions that are favorable to the more accurate primary localization mode. When the determination at block 440 is affirmative, the pose estimator 324 therefore returns to block 410 (i.e. switches back to the primary localization mode). The secondary feature detector 328-2 is therefore disabled, and localization proceeds according to blocks 410-420 as discussed above. Thus, when the rotation of the apparatus 103 mentioned above ceases, the point 528 may once again be detectable on the sign 520, and the primary localization mode may be reactivated.
Under certain conditions, the lamps 512 and 516 may also be rendered difficult to detect by the secondary feature detector 328-2. For example, the lamps 512 and 516 may be turned off at certain hours of the day. Further, certain lamps may fail unpredictably, or the apparatus 103 may enter an area of the facility that does not contain ceiling-mounted lamps. Under such conditions, the secondary localization mode may also not generate a pose estimate with sufficiently high confidence.
For example, referring to
At block 445, the pose estimator 324 obtains odometry data directly from the data capture controller 320, and generates a pose estimate and confidence level according to the odometry data alone. The performance of block 445 constitutes a backup localization mode. At block 450 the pose estimator 324 provides the pose estimate and associated confidence level for use by other components of the apparatus 103. At block 455, the pose estimator 324 then determines whether any secondary features have been detected. That is, in the backup localization mode, the secondary feature detector 328-2 remains active. The primary feature detector 328-1, however, is disabled in the backup localization mode. When the determination at block 455 is negative, localization based on odometry data continues at block 445.
When the determination at block 455 is affirmative, however (e.g. when the lamps 512 and 516 are turned back on), the pose estimator 324 returns to block 425, and begins localizing based on the detected secondary features. As still now be apparent, when the pose estimator returns to block 425 from block 455, the primary feature detector 328-1 is also enabled, to search for primary features that can be used to return to the primary localization mode.
Variations to the above systems and methods are contemplated. For example, in each of the primary and secondary localization modes noted above, odometry data may also be employed, for example by integrating odometry with visual features (whether primary or secondary) to generate the pose estimate.
In the foregoing specification, specific embodiments have been described. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present teachings.
The benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential features or elements of any or all the claims. The invention is defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued.
Moreover in this document, relational terms such as first and second, top and bottom, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” “has”, “having,” “includes”, “including,” “contains”, “containing” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises, has, includes, contains a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “comprises . . . a”, “has . . . a”, “includes . . . a”, “contains . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises, has, includes, contains the element. The terms “a” and “an” are defined as one or more unless explicitly stated otherwise herein. The terms “substantially”, “essentially”, “approximately”, “about” or any other version thereof, are defined as being close to as understood by one of ordinary skill in the art, and in one non-limiting embodiment the term is defined to be within 10%, in another embodiment within 5%, in another embodiment within 1% and in another embodiment within 0.5%. The term “coupled” as used herein is defined as connected, although not necessarily directly and not necessarily mechanically. A device or structure that is “configured” in a certain way is configured in at least that way, but may also be configured in ways that are not listed.
It will be appreciated that some embodiments may be comprised of one or more specialized processors (or “processing devices”) such as microprocessors, digital signal processors, customized processors and field programmable gate arrays (FPGAs) and unique stored program instructions (including both software and firmware) that control the one or more processors to implement, in conjunction with certain non-processor circuits, some, most, or all of the functions of the method and/or apparatus described herein. Alternatively, some or all functions could be implemented by a state machine that has no stored program instructions, or in one or more application specific integrated circuits (ASICs), in which each function or some combinations of certain of the functions are implemented as custom logic. Of course, a combination of the two approaches could be used.
Moreover, an embodiment can be implemented as a computer-readable storage medium having computer readable code stored thereon for programming a computer (e.g., comprising a processor) to perform a method as described and claimed herein. Examples of such computer-readable storage mediums include, but are not limited to, a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a ROM (Read Only Memory), a PROM (Programmable Read Only Memory), an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Erasable Programmable Read Only Memory) and a Flash memory. Further, it is expected that one of ordinary skill, notwithstanding possibly significant effort and many design choices motivated by, for example, available time, current technology, and economic considerations, when guided by the concepts and principles disclosed herein will be readily capable of generating such software instructions and programs and ICs with minimal experimentation.
The Abstract of the Disclosure is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in various embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.
Number | Name | Date | Kind |
---|---|---|---|
4933864 | Evans, Jr. | Jun 1990 | A |
5209712 | Ferri | May 1993 | A |
5214615 | Bauer | May 1993 | A |
5408322 | Hsu et al. | Apr 1995 | A |
5414268 | McGee | May 1995 | A |
5423617 | Marsh et al. | Jun 1995 | A |
5534762 | Kim | Jul 1996 | A |
5566280 | Fukui et al. | Oct 1996 | A |
5704049 | Briechle | Dec 1997 | A |
5953055 | Huang et al. | Sep 1999 | A |
5988862 | Kacyra et al. | Nov 1999 | A |
6026376 | Kenney | Feb 2000 | A |
6034379 | Bunte et al. | Mar 2000 | A |
6075905 | Herman et al. | Jun 2000 | A |
6115114 | Berg et al. | Sep 2000 | A |
6141293 | Amorai-Moriya et al. | Oct 2000 | A |
6304855 | Burke | Oct 2001 | B1 |
6442507 | Skidmore et al. | Aug 2002 | B1 |
6549825 | Kurata | Apr 2003 | B2 |
6580441 | Schileru-Key | Jun 2003 | B2 |
6711293 | Lowe | Mar 2004 | B1 |
6721723 | Gibson et al. | Apr 2004 | B1 |
6721769 | Rappaport et al. | Apr 2004 | B1 |
6836567 | Silver et al. | Dec 2004 | B1 |
6995762 | Pavlidis et al. | Feb 2006 | B1 |
7090135 | Patel | Aug 2006 | B2 |
7137207 | Armstrong et al. | Nov 2006 | B2 |
7245558 | Willins et al. | Jul 2007 | B2 |
7248754 | Cato | Jul 2007 | B2 |
7277187 | Smith et al. | Oct 2007 | B2 |
7373722 | Cooper et al. | May 2008 | B2 |
7474389 | Greenberg et al. | Jan 2009 | B2 |
7487595 | Armstrong et al. | Feb 2009 | B2 |
7493336 | Noonan | Feb 2009 | B2 |
7508794 | Feather et al. | Mar 2009 | B2 |
7527205 | Zhu et al. | May 2009 | B2 |
7605817 | Zhang et al. | Oct 2009 | B2 |
7647752 | Magnell | Jan 2010 | B2 |
7693757 | Zimmerman | Apr 2010 | B2 |
7726575 | Wang et al. | Jun 2010 | B2 |
7751928 | Antony et al. | Jul 2010 | B1 |
7783383 | Eliuk et al. | Aug 2010 | B2 |
7839531 | Sugiyama | Nov 2010 | B2 |
7845560 | Emanuel et al. | Dec 2010 | B2 |
7885865 | Benson et al. | Feb 2011 | B2 |
7925114 | Mai et al. | Apr 2011 | B2 |
7957998 | Riley et al. | Jun 2011 | B2 |
7996179 | Lee et al. | Aug 2011 | B2 |
8009864 | Linaker et al. | Aug 2011 | B2 |
8049621 | Egan | Nov 2011 | B1 |
8091782 | Cato et al. | Jan 2012 | B2 |
8094902 | Crandall et al. | Jan 2012 | B2 |
8094937 | Teoh et al. | Jan 2012 | B2 |
8132728 | Dwinell et al. | Mar 2012 | B2 |
8134717 | Pangrazio et al. | Mar 2012 | B2 |
8189855 | Opalach et al. | May 2012 | B2 |
8199977 | Krishnaswamy et al. | Jun 2012 | B2 |
8207964 | Meadow et al. | Jun 2012 | B1 |
8233055 | Matsunaga et al. | Jul 2012 | B2 |
8260742 | Cognigni et al. | Sep 2012 | B2 |
8265895 | Willins et al. | Sep 2012 | B2 |
8277396 | Scott et al. | Oct 2012 | B2 |
8284988 | Sones et al. | Oct 2012 | B2 |
8423431 | Rouaix et al. | Apr 2013 | B1 |
8429004 | Hamilton et al. | Apr 2013 | B2 |
8463079 | Ackley et al. | Jun 2013 | B2 |
8479996 | Barkan et al. | Jul 2013 | B2 |
8520067 | Ersue | Aug 2013 | B2 |
8542252 | Perez et al. | Sep 2013 | B2 |
8571314 | Tao et al. | Oct 2013 | B2 |
8599303 | Stettner | Dec 2013 | B2 |
8630924 | Groenevelt et al. | Jan 2014 | B2 |
8660338 | Ma et al. | Feb 2014 | B2 |
8743176 | Stettner et al. | Jun 2014 | B2 |
8757479 | Clark et al. | Jun 2014 | B2 |
8812226 | Zeng | Aug 2014 | B2 |
8923893 | Austin et al. | Dec 2014 | B2 |
8939369 | Olmstead et al. | Jan 2015 | B2 |
8954188 | Sullivan et al. | Feb 2015 | B2 |
8958911 | Wong et al. | Feb 2015 | B2 |
8971637 | Rivard | Mar 2015 | B1 |
8989342 | Liesenfelt et al. | Mar 2015 | B2 |
9007601 | Steffey et al. | Apr 2015 | B2 |
9037287 | Grauberger et al. | May 2015 | B1 |
9064394 | Trundle | Jun 2015 | B1 |
9070285 | Ramu et al. | Jun 2015 | B1 |
9072929 | Rush et al. | Jul 2015 | B1 |
9120622 | Elazary et al. | Sep 2015 | B1 |
9129277 | Macintosh | Sep 2015 | B2 |
9135491 | Morandi et al. | Sep 2015 | B2 |
9159047 | Winkel | Oct 2015 | B2 |
9171442 | Clements | Oct 2015 | B2 |
9247211 | Zhang et al. | Jan 2016 | B2 |
9329269 | Zeng | May 2016 | B2 |
9349076 | Liu et al. | May 2016 | B1 |
9367831 | Besehanic | Jun 2016 | B1 |
9380222 | Clayton et al. | Jun 2016 | B2 |
9396554 | Williams et al. | Jul 2016 | B2 |
9400170 | Steffey | Jul 2016 | B2 |
9424482 | Patel et al. | Aug 2016 | B2 |
9517767 | Kentley et al. | Dec 2016 | B1 |
9542746 | Wu et al. | Jan 2017 | B2 |
9549125 | Goyal et al. | Jan 2017 | B1 |
9562971 | Shenkar et al. | Feb 2017 | B2 |
9565400 | Curlander et al. | Feb 2017 | B1 |
9589353 | Mueller-Fischer et al. | Mar 2017 | B2 |
9600731 | Yasunaga et al. | Mar 2017 | B2 |
9600892 | Patel et al. | Mar 2017 | B2 |
9612123 | Levinson et al. | Apr 2017 | B1 |
9639935 | Douady-Pleven et al. | May 2017 | B1 |
9697429 | Patel et al. | Jul 2017 | B2 |
9766074 | Roumeliotis et al. | Sep 2017 | B2 |
9778388 | Connor | Oct 2017 | B1 |
9779205 | Namir | Oct 2017 | B2 |
9791862 | Connor | Oct 2017 | B1 |
9805240 | Zheng et al. | Oct 2017 | B1 |
9811754 | Schwartz | Nov 2017 | B2 |
9827683 | Hance et al. | Nov 2017 | B1 |
9880009 | Bell | Jan 2018 | B2 |
9928708 | Lin et al. | Mar 2018 | B2 |
9953420 | Wolski et al. | Apr 2018 | B2 |
9980009 | Jiang et al. | May 2018 | B2 |
9994339 | Colson et al. | Jun 2018 | B2 |
9996818 | Ren et al. | Jun 2018 | B1 |
10019803 | Venable et al. | Jul 2018 | B2 |
10111646 | Nycz et al. | Oct 2018 | B2 |
10121072 | Kekatpure | Nov 2018 | B1 |
10127438 | Fisher et al. | Nov 2018 | B1 |
10133951 | Mendonca et al. | Nov 2018 | B1 |
10197400 | Jesudason et al. | Feb 2019 | B2 |
10210603 | Venable et al. | Feb 2019 | B2 |
10229386 | Thomas | Mar 2019 | B2 |
10248653 | Blassin et al. | Apr 2019 | B2 |
10262294 | Hahn et al. | Apr 2019 | B1 |
10265871 | Hance et al. | Apr 2019 | B2 |
10289990 | Rizzolo et al. | May 2019 | B2 |
10336543 | Sills et al. | Jul 2019 | B1 |
10349031 | DeLuca | Jul 2019 | B2 |
10352689 | Brown et al. | Jul 2019 | B2 |
10373116 | Medina et al. | Aug 2019 | B2 |
10394244 | Song et al. | Aug 2019 | B2 |
20010031069 | Kondo et al. | Oct 2001 | A1 |
20010041948 | Ross et al. | Nov 2001 | A1 |
20020006231 | Jayant et al. | Jan 2002 | A1 |
20020059202 | Hadzikadic et al. | May 2002 | A1 |
20020097439 | Braica | Jul 2002 | A1 |
20020146170 | Rom | Oct 2002 | A1 |
20020158453 | Levine | Oct 2002 | A1 |
20020164236 | Fukuhara et al. | Nov 2002 | A1 |
20030003925 | Suzuki | Jan 2003 | A1 |
20030094494 | Blanford et al. | May 2003 | A1 |
20030174891 | Wenzel et al. | Sep 2003 | A1 |
20040021313 | Gardner et al. | Feb 2004 | A1 |
20040084527 | Bong et al. | May 2004 | A1 |
20040131278 | imagawa et al. | Jul 2004 | A1 |
20040240754 | Smith et al. | Dec 2004 | A1 |
20050016004 | Armstrong et al. | Jan 2005 | A1 |
20050114059 | Chang et al. | May 2005 | A1 |
20050128195 | Houston et al. | Jun 2005 | A1 |
20050174351 | Chang | Aug 2005 | A1 |
20050213082 | DiBernardo et al. | Sep 2005 | A1 |
20050213109 | Schell et al. | Sep 2005 | A1 |
20060032915 | Schwartz | Feb 2006 | A1 |
20060045325 | Zavadsky et al. | Mar 2006 | A1 |
20060064286 | Fink et al. | Mar 2006 | A1 |
20060106742 | Bochicchio et al. | May 2006 | A1 |
20060279527 | Zehner et al. | Dec 2006 | A1 |
20060285486 | Roberts et al. | Dec 2006 | A1 |
20070036398 | Chen | Feb 2007 | A1 |
20070074410 | Armstrong et al. | Apr 2007 | A1 |
20070272732 | Hindmon | Nov 2007 | A1 |
20080002866 | Fujiwara | Jan 2008 | A1 |
20080025565 | Zhang et al. | Jan 2008 | A1 |
20080027591 | Lenser et al. | Jan 2008 | A1 |
20080077511 | Zimmerman | Mar 2008 | A1 |
20080159634 | Sharma et al. | Jul 2008 | A1 |
20080164310 | Dupuy et al. | Jul 2008 | A1 |
20080175513 | Lai et al. | Jul 2008 | A1 |
20080181529 | Michel et al. | Jul 2008 | A1 |
20080183730 | Enga | Jul 2008 | A1 |
20080238919 | Pack | Oct 2008 | A1 |
20080294487 | Nasser | Nov 2008 | A1 |
20090009123 | Skaff | Jan 2009 | A1 |
20090024353 | Lee et al. | Jan 2009 | A1 |
20090057411 | Madej et al. | Mar 2009 | A1 |
20090059270 | Opalach et al. | Mar 2009 | A1 |
20090060349 | Linaker et al. | Mar 2009 | A1 |
20090063306 | Fano et al. | Mar 2009 | A1 |
20090063307 | Groenovelt et al. | Mar 2009 | A1 |
20090074303 | Filimonova et al. | Mar 2009 | A1 |
20090088975 | Sato et al. | Apr 2009 | A1 |
20090103773 | Wheeler et al. | Apr 2009 | A1 |
20090125350 | Lessing et al. | May 2009 | A1 |
20090125535 | Basso et al. | May 2009 | A1 |
20090152391 | McWhirk | Jun 2009 | A1 |
20090160975 | Kwan | Jun 2009 | A1 |
20090192921 | Hicks | Jul 2009 | A1 |
20090206161 | Olmstead | Aug 2009 | A1 |
20090236155 | Skaff | Sep 2009 | A1 |
20090252437 | Li et al. | Oct 2009 | A1 |
20090287587 | Bloebaum et al. | Nov 2009 | A1 |
20090323121 | Valkenburg et al. | Dec 2009 | A1 |
20100017407 | Beniyama et al. | Jan 2010 | A1 |
20100026804 | Tanizaki et al. | Feb 2010 | A1 |
20100070365 | Siotia et al. | Mar 2010 | A1 |
20100082194 | Yabushita et al. | Apr 2010 | A1 |
20100091094 | Sekowski | Apr 2010 | A1 |
20100118116 | Tomasz et al. | May 2010 | A1 |
20100131234 | Stewart et al. | May 2010 | A1 |
20100141806 | Uemura et al. | Jun 2010 | A1 |
20100161569 | Schreter | Jun 2010 | A1 |
20100171826 | Hamilton et al. | Jul 2010 | A1 |
20100208039 | Setettner | Aug 2010 | A1 |
20100214873 | Somasundaram et al. | Aug 2010 | A1 |
20100235033 | Yamamoto et al. | Sep 2010 | A1 |
20100241289 | Sandberg | Sep 2010 | A1 |
20100257149 | Cognigni et al. | Oct 2010 | A1 |
20100295850 | Katz et al. | Nov 2010 | A1 |
20100315412 | Sinha et al. | Dec 2010 | A1 |
20100326939 | Clark et al. | Dec 2010 | A1 |
20110047636 | Stachon et al. | Feb 2011 | A1 |
20110052043 | Hyung et al. | Mar 2011 | A1 |
20110093306 | Nielsen et al. | Apr 2011 | A1 |
20110121068 | Emanuel | May 2011 | A1 |
20110137527 | Simon et al. | Jun 2011 | A1 |
20110168774 | Magal | Jul 2011 | A1 |
20110172875 | Gibbs | Jul 2011 | A1 |
20110188759 | Filimonova et al. | Aug 2011 | A1 |
20110216063 | Hayes | Sep 2011 | A1 |
20110242286 | Pace et al. | Oct 2011 | A1 |
20110246503 | Bender et al. | Oct 2011 | A1 |
20110254840 | Halstead | Oct 2011 | A1 |
20110286007 | Pangrazio et al. | Nov 2011 | A1 |
20110288816 | Thierman | Nov 2011 | A1 |
20110310088 | Adabala et al. | Dec 2011 | A1 |
20120017028 | Tsirkin | Jan 2012 | A1 |
20120019393 | Wolinsky et al. | Jan 2012 | A1 |
20120022913 | VolKmann et al. | Jan 2012 | A1 |
20120051730 | Cote et al. | Mar 2012 | A1 |
20120069051 | Hagbi et al. | Mar 2012 | A1 |
20120075342 | Choubassi et al. | Mar 2012 | A1 |
20120133639 | Kopf et al. | May 2012 | A1 |
20120307108 | Forutanpour | Jun 2012 | A1 |
20120169530 | Padmanabhan et al. | Jul 2012 | A1 |
20120179621 | Moir et al. | Jul 2012 | A1 |
20120185112 | Sung et al. | Jul 2012 | A1 |
20120194644 | Newcombe et al. | Aug 2012 | A1 |
20120197464 | Wang et al. | Aug 2012 | A1 |
20120201466 | Funayama et al. | Aug 2012 | A1 |
20120209553 | Doytchinov et al. | Aug 2012 | A1 |
20120236119 | Rhee et al. | Sep 2012 | A1 |
20120249802 | Taylor | Oct 2012 | A1 |
20120250978 | Taylor | Oct 2012 | A1 |
20120269383 | Bobbitt et al. | Oct 2012 | A1 |
20120278782 | Pal et al. | Nov 2012 | A1 |
20120287249 | Choo et al. | Nov 2012 | A1 |
20120323620 | Hofman et al. | Dec 2012 | A1 |
20130030700 | Miller et al. | Jan 2013 | A1 |
20130076586 | Karhuketo et al. | Mar 2013 | A1 |
20130090881 | Janardhanan et al. | Apr 2013 | A1 |
20130119138 | Winkel | May 2013 | A1 |
20130132913 | Fu et al. | May 2013 | A1 |
20130134178 | Lu | May 2013 | A1 |
20130138246 | Gutmann et al. | May 2013 | A1 |
20130138534 | Herwig | May 2013 | A1 |
20130142421 | Silver et al. | Jun 2013 | A1 |
20130144565 | Miller | Jun 2013 | A1 |
20130154802 | O'Haire et al. | Jun 2013 | A1 |
20130156292 | Chang et al. | Jun 2013 | A1 |
20130162806 | Ding et al. | Jun 2013 | A1 |
20130169681 | Rasane et al. | Jul 2013 | A1 |
20130176398 | Bonner et al. | Jul 2013 | A1 |
20130178227 | Vartanian et al. | Jul 2013 | A1 |
20130182114 | Zhang et al. | Jul 2013 | A1 |
20130226344 | Wong et al. | Aug 2013 | A1 |
20130228620 | Ahem et al. | Sep 2013 | A1 |
20130232039 | Jackson et al. | Sep 2013 | A1 |
20130235165 | Gharib et al. | Sep 2013 | A1 |
20130235206 | Smith et al. | Sep 2013 | A1 |
20130236089 | Litvak et al. | Sep 2013 | A1 |
20130278631 | Border et al. | Oct 2013 | A1 |
20130299306 | Jiang et al. | Nov 2013 | A1 |
20130299313 | Baek, IV et al. | Nov 2013 | A1 |
20130300729 | Grimaud | Nov 2013 | A1 |
20130303193 | Dharwada et al. | Nov 2013 | A1 |
20130321418 | Kirk | Dec 2013 | A1 |
20130329013 | Metois et al. | Dec 2013 | A1 |
20130341400 | Lancaster-Larocque | Dec 2013 | A1 |
20130342363 | Paek et al. | Dec 2013 | A1 |
20140002597 | Taguchi et al. | Jan 2014 | A1 |
20140003655 | Gopalkrishnan et al. | Jan 2014 | A1 |
20140003727 | Lortz et al. | Jan 2014 | A1 |
20140006229 | Birch et al. | Jan 2014 | A1 |
20140016832 | Kong et al. | Jan 2014 | A1 |
20140019311 | Tanaka | Jan 2014 | A1 |
20140025201 | Ryu et al. | Jan 2014 | A1 |
20140028837 | Gao et al. | Jan 2014 | A1 |
20140047342 | Breternitz et al. | Feb 2014 | A1 |
20140049616 | Stettner | Feb 2014 | A1 |
20140052555 | MacIntosh | Feb 2014 | A1 |
20140086483 | Zhang et al. | Mar 2014 | A1 |
20140098094 | Neumann et al. | Apr 2014 | A1 |
20140100813 | Shaowering | Apr 2014 | A1 |
20140104413 | McCloskey et al. | Apr 2014 | A1 |
20140112537 | Frank et al. | Apr 2014 | A1 |
20140129027 | Schnittman | May 2014 | A1 |
20140156133 | Cullinane et al. | Jun 2014 | A1 |
20140161359 | Magri et al. | Jun 2014 | A1 |
20140192050 | Qiu et al. | Jul 2014 | A1 |
20140195095 | Flohr et al. | Jul 2014 | A1 |
20140195374 | Bassemir et al. | Jul 2014 | A1 |
20140214547 | Signorelli et al. | Jul 2014 | A1 |
20140214600 | Argue et al. | Jul 2014 | A1 |
20140267614 | Ding et al. | Sep 2014 | A1 |
20140267688 | Aich et al. | Sep 2014 | A1 |
20140277691 | Jacobus et al. | Sep 2014 | A1 |
20140277692 | Buzan et al. | Sep 2014 | A1 |
20140279294 | Field-Darragh et al. | Sep 2014 | A1 |
20140300637 | Fan et al. | Oct 2014 | A1 |
20140316875 | Tkachenko et al. | Oct 2014 | A1 |
20140330835 | Boyer | Nov 2014 | A1 |
20140344401 | Varney et al. | Nov 2014 | A1 |
20140351073 | Murphy et al. | Nov 2014 | A1 |
20140369607 | Patel et al. | Dec 2014 | A1 |
20150015602 | Beaudoin | Jan 2015 | A1 |
20150019391 | Kumar et al. | Jan 2015 | A1 |
20150029339 | Kobres et al. | Jan 2015 | A1 |
20150032304 | Nakamura et al. | Jan 2015 | A1 |
20150039458 | Reid | Feb 2015 | A1 |
20150052029 | Wu et al. | Feb 2015 | A1 |
20150088618 | Basir et al. | Mar 2015 | A1 |
20150088701 | Desmarais et al. | Mar 2015 | A1 |
20150088703 | Yan | Mar 2015 | A1 |
20150092066 | Geiss et al. | Apr 2015 | A1 |
20150106403 | Haverinen et al. | Apr 2015 | A1 |
20150117788 | Patel et al. | Apr 2015 | A1 |
20150139010 | Jeong et al. | May 2015 | A1 |
20150154467 | Feng et al. | Jun 2015 | A1 |
20150161793 | Takahashi | Jun 2015 | A1 |
20150170256 | Pettyjohn et al. | Jun 2015 | A1 |
20150181198 | Baele et al. | Jun 2015 | A1 |
20150212521 | Pack et al. | Jul 2015 | A1 |
20150235157 | Avegliano et al. | Aug 2015 | A1 |
20150245358 | Schmidt | Aug 2015 | A1 |
20150262116 | Katircioglu et al. | Sep 2015 | A1 |
20150279035 | Wolski et al. | Oct 2015 | A1 |
20150298317 | Wang et al. | Oct 2015 | A1 |
20150310601 | Rodriguez et al. | Oct 2015 | A1 |
20150332368 | Vartiainen et al. | Nov 2015 | A1 |
20150352721 | Wicks et al. | Dec 2015 | A1 |
20150353280 | Brazeau et al. | Dec 2015 | A1 |
20150355639 | Versteeg et al. | Dec 2015 | A1 |
20150363625 | Wu et al. | Dec 2015 | A1 |
20150363758 | Wu et al. | Dec 2015 | A1 |
20150365660 | Wu et al. | Dec 2015 | A1 |
20150379704 | Chandrasekar et al. | Dec 2015 | A1 |
20160026253 | Bradski et al. | Jan 2016 | A1 |
20160042223 | Suh et al. | Feb 2016 | A1 |
20160044862 | Kocer | Feb 2016 | A1 |
20160061591 | Pangrazio et al. | Mar 2016 | A1 |
20160070981 | Sasaki et al. | Mar 2016 | A1 |
20160092943 | Vigier et al. | Mar 2016 | A1 |
20160012588 | Taguchi et al. | Apr 2016 | A1 |
20160104041 | Bowers et al. | Apr 2016 | A1 |
20160107690 | Oyama et al. | Apr 2016 | A1 |
20160112628 | Super et al. | Apr 2016 | A1 |
20160114488 | Mascorro Medina et al. | Apr 2016 | A1 |
20160129592 | Saboo et al. | May 2016 | A1 |
20160132815 | Itoko et al. | May 2016 | A1 |
20160144511 | Romanov | May 2016 | A1 |
20160150217 | Popov | May 2016 | A1 |
20160156898 | Ren et al. | Jun 2016 | A1 |
20160163067 | Williams et al. | Jun 2016 | A1 |
20160171336 | Schwartz | Jun 2016 | A1 |
20160171429 | Schwartz | Jun 2016 | A1 |
20160171707 | Schwartz | Jun 2016 | A1 |
20160185347 | Lefevre et al. | Jun 2016 | A1 |
20160191759 | Somanath et al. | Jun 2016 | A1 |
20160224927 | Pettersson | Aug 2016 | A1 |
20160253735 | Scudillo et al. | Sep 2016 | A1 |
20160253844 | Petrovskaya et al. | Sep 2016 | A1 |
20160259329 | High et al. | Sep 2016 | A1 |
20160260051 | Wu et al. | Sep 2016 | A1 |
20160260054 | High et al. | Sep 2016 | A1 |
20160271795 | Vicenti | Sep 2016 | A1 |
20160290805 | Irish et al. | Oct 2016 | A1 |
20160313133 | Zeng et al. | Oct 2016 | A1 |
20160328618 | Patel et al. | Nov 2016 | A1 |
20160328767 | Bonner et al. | Nov 2016 | A1 |
20160353099 | Thomson et al. | Dec 2016 | A1 |
20160364634 | Davis et al. | Dec 2016 | A1 |
20170004649 | Collet Romea et al. | Jan 2017 | A1 |
20170011281 | Dijkman et al. | Jan 2017 | A1 |
20170011308 | Sun et al. | Jan 2017 | A1 |
20170032311 | Rizzolo et al. | Feb 2017 | A1 |
20170041553 | Cao et al. | Feb 2017 | A1 |
20170054965 | Raab et al. | Feb 2017 | A1 |
20170066459 | Singh | Mar 2017 | A1 |
20170074659 | Giurgiu et al. | Mar 2017 | A1 |
20170083774 | Solar et al. | Mar 2017 | A1 |
20170109940 | Guo et al. | Apr 2017 | A1 |
20170147966 | Aversa et al. | May 2017 | A1 |
20170150129 | Pangrazio | May 2017 | A1 |
20170178060 | Schwartz | Jun 2017 | A1 |
20170178227 | Gornish | Jun 2017 | A1 |
20170178310 | Gornish | Jun 2017 | A1 |
20170193434 | Shah et al. | Jul 2017 | A1 |
20170219338 | Brown et al. | Aug 2017 | A1 |
20170219353 | Alesiani | Aug 2017 | A1 |
20170227645 | Swope et al. | Aug 2017 | A1 |
20170227647 | Baik | Aug 2017 | A1 |
20170228885 | Baumgartner | Aug 2017 | A1 |
20170261993 | Venable et al. | Sep 2017 | A1 |
20170262724 | Wu et al. | Sep 2017 | A1 |
20170280125 | Brown et al. | Sep 2017 | A1 |
20170286773 | Skaff et al. | Oct 2017 | A1 |
20170286901 | Skaff et al. | Oct 2017 | A1 |
20170297478 | Sherman et al. | Oct 2017 | A1 |
20170323253 | Enssle et al. | Nov 2017 | A1 |
20170323376 | Glaser et al. | Nov 2017 | A1 |
20170337508 | Bogolea et al. | Nov 2017 | A1 |
20180001481 | Shah et al. | Jan 2018 | A1 |
20180005035 | Bogolea et al. | Jan 2018 | A1 |
20180005176 | Williams et al. | Jan 2018 | A1 |
20180020145 | Kotfis et al. | Jan 2018 | A1 |
20180051991 | Hong | Feb 2018 | A1 |
20180053091 | Savvides et al. | Feb 2018 | A1 |
20180053305 | Gu et al. | Feb 2018 | A1 |
20180075403 | Mascorro Medina et al. | Mar 2018 | A1 |
20180089613 | Chen et al. | Mar 2018 | A1 |
20180101813 | Paat et al. | Apr 2018 | A1 |
20180108120 | Venable et al. | Apr 2018 | A1 |
20180108134 | Venable et al. | Apr 2018 | A1 |
20180114183 | Howell | Apr 2018 | A1 |
20180129201 | Douglas et al. | May 2018 | A1 |
20180130011 | Jacobsson | May 2018 | A1 |
20180143003 | Clayton et al. | May 2018 | A1 |
20180174325 | Fu et al. | Jun 2018 | A1 |
20180190160 | Bryan et al. | Jul 2018 | A1 |
20180197139 | Hill | Jul 2018 | A1 |
20180201423 | Drzewiecki et al. | Jul 2018 | A1 |
20180204111 | Zadeh et al. | Jul 2018 | A1 |
20180218218 | Madan et al. | Aug 2018 | A1 |
20180251253 | Taira et al. | Sep 2018 | A1 |
20180276596 | Murthy et al. | Sep 2018 | A1 |
20180281191 | Sinyayskiy et al. | Oct 2018 | A1 |
20180293442 | Fridental et al. | Oct 2018 | A1 |
20180293543 | Tiwari | Oct 2018 | A1 |
20180306958 | Goss et al. | Oct 2018 | A1 |
20180313956 | Rzeszutek et al. | Nov 2018 | A1 |
20180314260 | Jen et al. | Nov 2018 | A1 |
20180314908 | Lam | Nov 2018 | A1 |
20180315007 | Kingsford et al. | Nov 2018 | A1 |
20180315065 | Zhang et al. | Nov 2018 | A1 |
20180315173 | Phan et al. | Nov 2018 | A1 |
20180315865 | Haist et al. | Nov 2018 | A1 |
20180321692 | Castillo-Effen et al. | Nov 2018 | A1 |
20180370727 | Hance et al. | Dec 2018 | A1 |
20190025838 | Artes et al. | Jan 2019 | A1 |
20190049962 | Ouellette et al. | Feb 2019 | A1 |
20190057588 | Savvides et al. | Feb 2019 | A1 |
20190065861 | Savvides et al. | Feb 2019 | A1 |
20190073554 | Rzeszutek | Mar 2019 | A1 |
20190073559 | Rzeszutek et al. | Mar 2019 | A1 |
20190073627 | Nakdimon et al. | Mar 2019 | A1 |
20190075252 | Zhao | Mar 2019 | A1 |
20190077015 | Shibasaki et al. | Mar 2019 | A1 |
20190087663 | Yamazaki et al. | Mar 2019 | A1 |
20190094876 | Moore et al. | Mar 2019 | A1 |
20190108606 | Komiyama | Apr 2019 | A1 |
20190160675 | Paschall II et al. | May 2019 | A1 |
20190178436 | Mao et al. | Jun 2019 | A1 |
20190180150 | Taylor et al. | Jun 2019 | A1 |
20190197439 | Wang | Jun 2019 | A1 |
20190197728 | Yamao | Jun 2019 | A1 |
20190236530 | Cantrell et al. | Aug 2019 | A1 |
20190271984 | Kingsford | Sep 2019 | A1 |
20190304132 | Yoda et al. | Oct 2019 | A1 |
20190392212 | Sawhney et al. | Dec 2019 | A1 |
20200049511 | Sithiravel et al. | Feb 2020 | A1 |
20200053325 | Deyle et al. | Feb 2020 | A1 |
20200111267 | Stauber et al. | Apr 2020 | A1 |
20200192388 | Zhang et al. | Jun 2020 | A1 |
20200314333 | Liang et al. | Oct 2020 | A1 |
20200341151 | Yoshida | Oct 2020 | A1 |
Number | Date | Country |
---|---|---|
2835830 | Nov 2012 | CA |
3028156 | Jan 2018 | CA |
102214343 | Oct 2011 | CN |
104200086 | Dec 2014 | CN |
105989512 | Oct 2016 | CN |
107067382 | Aug 2017 | CN |
206952978 | Feb 2018 | CN |
766098 | Apr 1997 | EP |
1311993 | May 2007 | EP |
2309378 | Apr 2011 | EP |
2439487 | Apr 2012 | EP |
2472475 | Jul 2012 | EP |
2562688 | Feb 2013 | EP |
2662831 | Nov 2013 | EP |
2693362 | Feb 2014 | EP |
3400113 | Nov 2018 | EP |
3001567 | Aug 2014 | FR |
2323238 | Sep 1998 | GB |
2330265 | Apr 1999 | GB |
2014170431 | Sep 2014 | JP |
2016194834 | Nov 2016 | JP |
2017016539 | Jan 2017 | JP |
101234798 | Jan 2009 | KR |
1020190031431 | Mar 2019 | KR |
WO 9923600 | May 1999 | WO |
WO 2003002935 | Jan 2003 | WO |
WO 2003025805 | Mar 2003 | WO |
WO 2006136958 | Dec 2006 | WO |
WO 2007042251 | Apr 2007 | WO |
WO 2008057504 | May 2008 | WO |
WO 2008154611 | Dec 2008 | WO |
WO 2012103199 | Aug 2012 | WO |
WO 2012103202 | Aug 2012 | WO |
WO 2012154801 | Nov 2012 | WO |
WO 2013165674 | Nov 2013 | WO |
WO 2014066422 | May 2014 | WO |
WO 2014092552 | Jun 2014 | WO |
WO 2014181323 | Nov 2014 | WO |
WO 2015127503 | Sep 2015 | WO |
WO 2016020038 | Feb 2016 | WO |
WO 2017175312 | Oct 2017 | WO |
WO 2017187106 | Nov 2017 | WO |
WO 2018018007 | Jan 2018 | WO |
WO 2018204308 | Nov 2018 | WO |
WO 2018204342 | Nov 2018 | WO |
WO 2019023249 | Jan 2019 | WO |
Entry |
---|
Norrlof et al., “Experimental comparison of some classical iterative learning control algorithms”, IEEE Transactions on Robotics and Automation, Jun. 2002, pp. 636-641. |
Notice of allowance for U.S. Appl. No. 13/568,175 dated Sep. 23, 2014. |
Notice of allowance for U.S. Appl. No. 13/693,503 dated Mar. 11, 2016. |
Notice of allowance for U.S. Appl. No. 14/068,495 dated Apr. 25, 2016. |
Notice of allowance for U.S. Appl. No. 14/518,091 dated Apr. 12, 2017. |
Notice of allowance for U.S. Appl. No. 15/211,103 dated Apr. 5, 2017. |
Olson, Clark F., et al. “Wide-Baseline Stereo Vision for terrain Mapping” in Machine Vision and Applications, Aug. 2010. |
Oriolo et al., “An iterative learning controller for nonholonomic mobile Robots”, the international Journal of Robotics Research, Aug. 1997, pp. 954-970. |
Ostafew et al., “Visual Teach and Repeat, Repeat, Repeat: Iterative learning control to improve mobile robot path tracking in challenging outdoor environment”, IEEE/RSJ International Conference on Intelligent robots and Systems, Nov. 2013, pp. 176-. |
Park et al., “Autonomous mobile robot navigation using passive rfid in indoor environment,” IEEE, Transactions on industrial electronics, vol. 56, issue 7, pp. 2366-2373 (Jul. 2009). |
Perveen et al. (An overview of template matching methodologies and its application, International Journal of Research in Computer and Communication Technology, v2n10, Oct. 2013) (Year: 2013). |
Pivtoraiko et al., “Differentially constrained mobile robot motion planning in state lattices”, journal of field robotics, vol. 26, No. 3, 2009, pp. 308-333. |
Pratt W K Ed: “Digital Image processing, 10-image enhancement, 17-image segmentation”, Jan. 1, 2001, Digital Image Processing: PIKS Inside, New York: John Wily & Sons, US, pp. 243-258, 551. |
Puwein, J., et al.“Robust Multi-view camera calibration for wide-baseline camera networks,” in IEEE Workshop on Applications of computer vision (WACV), Jan. 2011. |
Rusu, et al. “How to incrementally register pairs of clouds,” PCL Library, retrieved from internet on Aug. 22, 2016 [http://pointclouds.org/documentation/tutorials/pairwise_incremental_registration.php. |
Rusu, et al. “Spatial Change detection on unorganized point cloud data,” PCL Library, retrieved from internet on Aug. 19, 2016 [http://pointclouds.org/documentation/tutorials/octree_change.php]. |
Schnabel et al. “Efficient RANSAC for Point-Cloud Shape Detection”, vol. 0, No. 0, pp. 1-12 (1981). |
Senthilkumaran, et al., “Edge Detection Techniques for Image Segmentation-A Survey of Soft Computing Approaches”, International Journal of Recent Trends in Engineering, vol. 1, No. 2 (May 2009). |
Szeliski, “Modified Hough Transform”, Computer Vision. Copyright 2011, pp. 251-254. Retrieved on Aug. 17, 2017 [http://szeliski.org/book/drafts/SzeliskiBook_20100903_draft.pdf]. |
Tahir, Rabbani, et al., “Segmentation of point clouds using smoothness constraint,”International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36.5 (Sep. 2006): 248-253. |
Trevor et al., “Tables, Counters, and Shelves: Semantic Mapping of Surfaces in 3D,” Retrieved from Internet Jul. 3, 2018 @ http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.703.5365&rep=rep1&type=p. |
Tseng, et al., “A Cloud Removal Approach for Aerial Image Visualization”, International Journal of Innovative Computing, Information & Control, vol. 9, No. 6, pp. 2421-2440 (Jun. 2013). |
Uchiyama, et al., “Removal of Moving Objects from a Street-View Image by Fusing Multiple Image Sequences”, Pattern Recognition, 2010, 20th International Conference on, IEEE, Piscataway, NJ pp. 3456-3459 (Aug. 23, 2010). |
United Kingdom Intellectual Property Office, “Combined Search and Examination Report” for GB Patent Application No. 1813580.6 dated Feb. 21, 2019. |
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated Jan. 22, 2016 for GB Patent Application No. 1417218.3. |
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated Jan. 22, 2016 for GB Patent Application No. 1521272.3. |
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated Mar. 11, 2015 for GB Patent Application No. 1417218.3. |
United Kingdom Intellectual Property Office, Combined Search and Examination Report mailed May 13, 2020 for GB Patent Application No. 1917864.9. |
Varol Gul et al: “Product placement detection based on image processing”, 2014 22nd Signal Processing and Communication Applications Conference (SIU), IEEE, Apr. 23, 2014. |
Varol Gul et al: “Toward Retail product recognition on Grocery shelves”, Visual Communications and image processing; Jan. 20, 2004; San Jose, (Mar. 4, 2015). |
Weber et al., “Methods for Feature Detection in Point clouds,” visualization of large and unstructured data sets—IRTG Workshop, pp. 90-99 (2010). |
Zhao Zhou et al.: “An Image contrast Enhancement Algorithm Using PLIP-based histogram Modification”, 2017 3rd IEEE International Conference on Cybernetics (Cybcon), IEEE, (Jun. 21, 2017). |
Ziang Xie et al., “Multimodal Blending for High-Accuracy Instance Recognition”, 2013 IEEE RSJ International Conference on Intelligent Robots and Systems, p. 2214-2221. |
Fan Zhang et al., “Parallax-tolerant Image Stitching”, 2014 Computer Vision Foundation, pp. 4321-4328. |
Kaimo Lin et al., “Seagull: Seam-guided Local Alignment for Parallax-tolerant Image Stitching”, Retrieved on Nov. 16, 2020 [http://publish.illinois.edu/visual-modeling-and-analytics/files/2016/08/Seagull.pdf]. |
Julio Zaragoza et al., “As-Projective-as-Possible Image Stitching with Moving DLT”, 2013 Computer Vision Foundation, pp. 2339-2346. |
Zeng et al., Multi-view Self Supervised Deep Learning for 6D Pose Estimation in the Amazon Picking Challenge, May 7, 2017. Retrieved on Nov. 16, 2019 [https://arxiv.org/pdf/1609.09475.pdf]. |
Zhang et al., “Mobile computing and industrial augmented reality for real-time data access”, Emerging Technologies and Factory Automation, 2001, 8th IEEE International Conference on Oct. 15-18, 2001, pp. 583-588, vol. 2. |
Carreira et al., “Enhanced PCA-based localization using depth maps with missing data,” IEEE, pp. 1-8, Apr. 24, 2013. |
Castorena et al., “Autocalibration of lidar and optical cameras via edge alignment”, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (Mar. 20, 2016). |
Chen et al. “Improving Octree-Based Occupancy Maps Using Environment Sparsity with Application to Aerial Robot Navigation” Robotics and Automation (ICRA), 2017 IEEE International Conference on IEEE, pp. 3656-3663, 2017. |
Clark, “Casino to open world's first NFC-enabled supermarket”, (Sep. 19, 2018), pp. 1-7. |
Clark, “Jogtek launches passive NFC shelf-edge labels”, (Sep. 19, 2018), pp. 1-6. |
Cleveland Jonas et al.: “Automated System for Semantic Object Labeling with Soft-Object Recognition and Dynamic Programming Segmentation”, IEEE Transactions on Automation Science and Engineering, IEEE Service Center, New York, NY (Apr. 1, 2017). |
Cook et al., “Distributed Ray Tracing” ACM SIGGRAPH Computer Graphics, vol. 18, No. 3, ACM pp. 137-145, 1984. |
Datta, A., et al. “Accurate camera calibration using iterative refinement of control points,” in Computer Vision Workshops (ICCV Workshops), 2009. |
Deschaud, et al., “A Fast and Accurate Place Detection algoritm for large noisy point clouds using filtered normals and voxel growing,” 3DPVT, May 2010, Paris, France, [hal-01097361]. |
Douillard, Bertrand, et al. “On the segmentation of 3D LIDARpoint clouds.” Robotics and Automation (ICRA), 2011 IEEE International Conference on IEEE, 2011. |
Dubois, M., et al., “A comparison of geometric and energy-based point cloud semantic segmentation methods,” European Conference on Mobile Robots (ECMR), p. 88-93, Sep. 25-27, 2013. |
Duda, et al., “Use of the Hough Transformation to Detect Lines and Curves in Pictures”, Stanford Research Institute, Menlo Park, California, Graphics and Image Processing, Communications of the ACM, vol. 15, No. 1 (Jan. 1972). |
F.C.A. Groen et al., “The smallest box around a package,” Pattern Recognition, vol. 14, No. 1-6, Jan. 1, 1981, pp. 173-176, XP055237156, GB, ISSN: 0031-3203, DOI: 10.1016/0031-3203(81(90059-5 p. 176-p. 178. |
Federico Tombari et al. “Multimodal cue integration through Hypotheses Verification for RGB-D object recognition and 6DOF pose estimation”, IEEE International Conference on Robotics and Automation, Jan. 2013. |
Flores, et al., “Removing Pedestrians from Google Street View Images”, Computer Vision and Pattern Recognition Workshops, 2010 IEEE Computer Society Conference on, IEE, Piscataway, NJ, pp. 53-58 (Jun. 13, 2010). |
Glassner, “Space Subdivision for Fast Ray Tracing.” IEEE Computer Graphics and Applications, 4.10, pp. 15-24, 1984. |
Golovinskiy, Aleksey, et al. “Min-Cut based segmentation of point clouds.” Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on. IEEE, 2009. |
Hackel et al., “Contour Detection in unstructured 3D point clouds,”IEEE, 2016 Conference on Computer vision and Pattern recognition (CVPR), Jun. 27-30, 2016, pp. 1-9. |
Hao et al., “Structure-based object detection from scene point clouds,” Science Direct, v191, pp. 148-160 (2016). |
Hu et al., “An improved method of discrete point cloud filtering based on complex environment,” International Journal of Applied Mathematics and Statistics, v48, i18 (2013). |
International Search Report and Written Opinion for International Patent Application No. PCT/US2013/070996 dated Apr. 2, 2014. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2013/053212 dated Dec. 1, 2014. |
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2016/064110 dated Mar. 20, 2017. |
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2017/024847 dated Jul. 7, 2017. |
International Search Report and Written Opinion for International Application No. PCT/CN2017/083143 dated Feb. 11, 2018. |
International Search Report and Written Opinion for International Application No. PCT/US2018/030419 dated Aug. 31, 2018. |
International Search Report and Written Opinion from International Patent Application No. PCT/US2018/030345 dated Sep. 17, 2018. |
International Search Report and Written Opinion from International Patent Application No. PCT/US2018/030360 dated Jul. 9, 2018. |
International Search Report and Written Opinion from International Patent Application No. PCT/US2018/030363 dated Jul. 9, 2018. |
International Search Report and Written Opinion for International Application No. PCT/US2019/025859 dated Jul. 3, 2019. |
International Search Report and Written Opinion from International Patent Application No. PCT/US2019/025849 dated Jul. 9, 2019. |
International Search Report and Written Opinion from International Patent Application No. PCT/US2019/049761 dated Nov. 15, 2019. |
International Search Report and Written Opinion from International Patent Application No. PCT/US2019/051312 dated Nov. 15, 2019. |
International Search Report and Written Opinion from International Patent Application No. PCT/US2019/054103 dated Jan. 6, 2020. |
International Search Report and Written Opinion from International Patent Application No. PCT/US2019/064020 dated Feb. 19, 2020. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/027948 dated Jul. 16, 2020. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/028133 dated Jul. 24, 2020. |
International Search Report and Written Opinion from International Patent Application No. PCT/US2020/029134 dated Jul. 27, 2020. |
International Search Report and Written Opinion from International Patent Application No. PCT/US2020/028183 dated Jul. 24, 2020. |
International Search Report and Written Opinion from International Patent Application No. PCT/US2020/035285 dated Aug. 27, 2020. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2021/024805 dated Aug. 2, 2021. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2021/057388 dated Feb. 2, 2022. |
Jadhav et al. “Survey on Spatial Domain dynamic template matching technique for scanning linear barcode,” International Journal of science and research v 5 n 3, Mar. 2016)(Year: 2016). |
Jian Fan et al: “Shelf detection via vanishing point and radial projection”, 2014 IEEE International Conference on image processing (ICIP), IEEE, (Oct. 27, 2014), pp. 1575-1578. |
Kaikai Liu et al., “Enabling Context-Aware Indoor Augmented Reality via Smartphone Sensing and Vision Tracking”, ACM Transactions on Multimedia Computing Communications and Applications, Association for Computer Machinery, US, vol. 12, No. |
Kang et al., “Kinematic Path-Tracking of Mobile Robot Using Iterative learning Control”, Journal of Robotic Systems, 2005, pp. 111-121. |
Kay et al. “Ray Tracing Complex Scenes.” ACM SIGGRAPH Computer Graphics, vol. 20, No. 4, ACM, pp. 269-278, 1986. |
Kelly et al., “Reactive Nonholonomic Trajectory Generation via Parametric Optimal Control”, International Journal of Robotics Research, vol. 22, No. 7-8, pp. 583-601 (Jul. 30, 2013). |
Lari, Z., et al., “An adaptive approach for segmentation of 3D laser point cloud.” International Archives of the Photogrammertry, Remote sensing and spatial information Sciences, vol. XXXVIII-5/W12, 2011, ISPRS Calgary 2011 Workshop, Aug. 29-31, 2011, Calgary, Canada. |
Lecking et al.: “Localization in a wide range of industrial environments using relative 3D ceiling features”, IEEE, pp. 333-337 (Sep. 15, 2008). |
Lee et al. “Statistically Optimized Sampling for Distributed Ray Tracing.” ACM SIGGRAPH Computer Graphics, vol. 19, No. 3, ACM, pp. 61-67, 1985. |
Li et al., “An improved RANSAC for 3D Point cloud plane segmentation based on normal distribution transformation cells,” Remote sensing, V9: 433, pp. 1-16 (2017). |
Likhachev, Maxim, and Dave Ferguson. “Planning Long dynamically feasible maneuvers for autonomous vehicles.” The international journal of Robotics Reasearch 28.8 (2009): 933-945. (Year:2009). |
Marder-Eppstein et al., “The Office Marathon: robust navigation in an indoor office environment,” IEEE, 2010 International conference on robotics and automation, May 3-7, 2010, pp. 300-307. |
McNaughton, Matthew, et al. “Motion planning for autonomous driving with a conformal spatiotemporal lattice.” Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE, 2011. (Year: 2011). |
Meyersohn, “Walmart turns to robots and apps in stores”, https://www.cnn.com/2018/12/07/business/walmart-robot-janitors-dotcom-store/index.html, Oct. 29, 2019. |
Mitra et al., “Estimating surface normals in noisy point cloud data,” International Journal of Computational geometry & applications, Jun. 8-10, 2003, pp. 322-328. |
N.D.F. Campbell et al. “Automatic 3D Object Segmentation in Multiple Views using Volumetric Graph-Cuts”, Journal of Image and Vision Computing, vol. 28, Issue 1, Jan. 2010, pp. 14-25. |
Ni et al., “Edge Detection and Feature Line Tracing in 3D-Point Clouds by Analyzing Geometric Properties of Neighborhoods,” Remote Sensing, V8 I9, pp. 1-20 (2016). |
“Fair Billing with Automatic Dimensioning” pp. 1-4, undated, Copyright Mettler-Toledo International Inc. |
“Plane Detection in Point Cloud Data” dated Jan. 25, 2010 by Michael Ying Yang and Wolfgang Forstner, Technical Report 1, 2010, University of Bonn. |
“Swift Dimension” Trademark Omniplanar, Copyright 2014. |
Ajmal S. Mian et al., “Three-Dimensional Model Based Object Recognition and Segmentation in Cluttered Scenes”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, No. 10, Oct. 2006. |
Batalin et al., “Mobile robot navigation using a sensor network,” IEEE, International Conference on robotics and automation, Apr. 26, May 1, 2004, pp. 636-641. |
Bazazian et al., “Fast and Robust Edge Extraction in Unorganized Point clouds,” IEEE, 2015 International Conference on Digital Image Computing: Techniques and Applicatoins (DICTA), Nov. 23-25, 2015, pp. 1-8. |
Boden, “French retail chain to roll out NFC shelf edge labels to six hypermarkets” (Sep. 19, 2018), pp. 1-7. |
Biswas et al. “Depth Camera Based Indoor Mobile Robot Localization and Navigation” Robotics and Automation (ICRA), 2012 IEEE International Conference on IEEE, 2012. |
Bohm, Multi-Image Fusion for Occlusion-Free Faade Texturing, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, pp. 867-872 (Jan. 2004). |
Bristow et al., “A Survey of Iterative Learning Control”, IEEE Control Systems, Jun. 2006, pp. 96-114. |
Buenaposada et al. “Realtime tracking and estimation of plane pose” Proceedings of the ICPR (Aug. 2002) vol. II, IEEE pp. 697-700. |
Number | Date | Country | |
---|---|---|---|
20200379480 A1 | Dec 2020 | US |