Method, system and apparatus for dynamic task sequencing

Information

  • Patent Grant
  • 11960286
  • Patent Number
    11,960,286
  • Date Filed
    Monday, June 3, 2019
    5 years ago
  • Date Issued
    Tuesday, April 16, 2024
    9 months ago
Abstract
A method in a navigational controller includes: obtaining (i) a plurality of task fragments identifying respective sets of sub-regions in a facility, and (ii) an identifier of a task to be performed by a mobile automation apparatus at each of the sets of sub-regions; selecting an active one of the task fragments according to a sequence specifying an order of execution of the task fragments; generating a path including (i) a taxi portion from a current position of the mobile automation apparatus to the sub-regions identified by the active task fragment, and (ii) an execution portion traversing the sub-regions identified by the active task fragment; during travel along the taxi portion, determining, based on a current pose of the mobile automation apparatus, whether to initiate execution of another task fragment; and when the determination is affirmative, updating the sequence to mark the other task fragment as the active task fragment.
Description
BACKGROUND

Environments in which objects are managed, such as retail facilities, warehousing and distribution facilities, and the like, may be complex and fluid. For example, a retail facility may include objects such as products for purchase, and a distribution facility may include objects such as parcels or pallets. Each facility may also contain dynamic obstacles such as people, vehicles and the like. A mobile apparatus may be deployed within such facilities to perform tasks at various locations. For example, a mobile apparatus may be deployed to capture data at various locations in a retail facility. Determining a path for the mobile apparatus to travel efficiently among the above-mentioned locations, however, may be computationally intensive.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The accompanying figures, where like reference numerals refer to identical or functionally similar elements throughout the separate views, together with the detailed description below, are incorporated in and form part of the specification, and serve to further illustrate embodiments of concepts that include the claimed invention, and explain various principles and advantages of those embodiments.



FIG. 1 is a schematic of a mobile automation system.



FIG. 2 depicts a mobile automation apparatus in the system of FIG. 1.



FIG. 3 is a block diagram of certain internal components of the mobile automation apparatus in the system of FIG. 1.



FIG. 4 is a flowchart of a task sequencing method in the system of FIG. 1.



FIG. 5 is a diagram of a retail facility illustrating the generation of execution criteria at block 405 of the method of FIG. 4.



FIG. 6 is a diagram illustrating an example performance of block 415 of the method of FIG. 4.



FIG. 7 is a diagram illustrating a further example performance of block 415 of the method of FIG. 4.



FIG. 8 is a diagram illustrating an example performance of block 435 of the method of FIG. 4.



FIG. 9 is a diagram illustrating an example performance of block 440 of the method of FIG. 4.



FIG. 10 is a diagram illustrating an example performance of blocks 415 and 435 of the method of FIG. 4.



FIG. 11 is a diagram illustrating an example performance of blocks 420 and 425 of the method of FIG. 4.



FIG. 12 is a diagram illustrating another example performance of blocks 420 and 425 of the method of FIG. 4.





Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present invention.


The apparatus and method components have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.


DETAILED DESCRIPTION

Examples disclosed herein are directed to a method in a navigational controller, including: obtaining (i) a plurality of task fragments identifying respective sets of sub-regions in a facility, and (ii) an identifier of a task to be performed by a mobile automation apparatus at each of the sets of sub-regions; selecting an active one of the task fragments according to a sequence specifying an order of execution of the task fragments; generating a path including (i) a taxi portion from a current position of the mobile automation apparatus to the sub-regions identified by the active task fragment, and (ii) an execution portion traversing the sub-regions identified by the active task fragment; during travel along the taxi portion, determining, based on a current pose of the mobile automation apparatus, whether to initiate execution of another task fragment; and when the determination is affirmative, updating the sequence to mark the other task fragment as the active task fragment.


Additional examples disclosed herein are directed to a mobile automation apparatus, comprising: a locomotive assembly; a data capture sensor; and a navigational controller configured to: obtain (i) a plurality of task fragments identifying respective sets of sub-regions in a facility, and (ii) an identifier of a task to be performed at each of the sets of sub-regions; select an active one of the task fragments according to a sequence specifying an order of execution of the task fragments; generate a path including (i) a taxi portion from a current position of the mobile automation apparatus to the sub-regions identified by the active task fragment, and (ii) an execution portion traversing the sub-regions identified by the active task fragment; control the locomotive assembly to travel along the path; during travel along the taxi portion, determine, based on a current pose of the mobile automation apparatus, whether to initiate execution of another task fragment; and when the determination is affirmative, update the sequence to mark the other task fragment as the active task fragment.


Further examples disclosed herein are directed to a method in a navigational controller comprising: obtaining a sequence of task fragments identifying respective sets of sub-regions in a facility; selecting an active one of the task fragments according to the sequence; controlling a mobile automation apparatus to perform a task at the set of sub-regions identified by the active task fragment; responsive to a change in a pose of the mobile automation apparatus during performance of the task, updating the sequence to mark another task fragment as the active task fragment.



FIG. 1 depicts a mobile automation system 100 in accordance with the teachings of this disclosure. The system 100 includes a server 101 in communication with at least one mobile automation apparatus 103 (also referred to herein simply as the apparatus 103) and at least one client computing device 104 via communication links 105, illustrated in the present example as including wireless links. In the present example, the links 105 are provided by a wireless local area network (WLAN) deployed via one or more access points (not shown). In other examples, the server 101, the client device 104, or both, are located remotely (i.e. outside the environment in which the apparatus 103 is deployed), and the links 105 therefore include wide-area networks such as the Internet, mobile networks, and the like. The system 100 also includes a dock 106 for the apparatus 103 in the present example. The dock 106 is in communication with the server 101 via a link 107 that in the present example is a wired link. In other examples, however, the link 107 is a wireless link.


The client computing device 104 is illustrated in FIG. 1 as a mobile computing device, such as a tablet, smart phone or the like. In other examples, the client device 104 is implemented as another type of computing device, such as a desktop computer, a laptop computer, another server, a kiosk, a monitor, and the like. The system 100 can include a plurality of client devices 104 in communication with the server 101 via respective links 105.


The system 100 is deployed, in the illustrated example, in a retail facility including a plurality of support structures such as shelf modules 110-1, 110-2, 110-3 and so on (collectively referred to as shelf modules 110 or shelves 110, and generically referred to as a shelf module 110 or shelf 110—this nomenclature is also employed for other elements discussed herein). Each shelf module 110 supports a plurality of products 112. Each shelf module 110 includes a shelf back 116-1, 116-2, 116-3 and a support surface (e.g. support surface 117-3 as illustrated in FIG. 1) extending from the shelf back 116 to a shelf edge 118-1, 118-2, 118-3.


The shelf modules 110 are typically arranged in a plurality of aisles, each of which includes a plurality of modules 110 aligned end-to-end. In such arrangements, the shelf edges 118 face into the aisles, through which customers in the retail facility as well as the apparatus 103 may travel. As will be apparent from FIG. 1, the term “shelf edge” 118 as employed herein, which may also be referred to as the edge of a support surface (e.g., the support surfaces 117) refers to a surface bounded by adjacent surfaces having different angles of inclination. In the example illustrated in FIG. 1, the shelf edge 118-3 is at an angle of about ninety degrees relative to each of the support surface 117-3 and the underside (not shown) of the support surface 117-3. In other examples, the angles between the shelf edge 118-3 and the adjacent surfaces, such as the support surface 117-3, is more or less than ninety degrees.


The apparatus 103 is equipped with a plurality of navigation and data capture sensors 108, such as image sensors (e.g. one or more digital cameras) and depth sensors (e.g. one or more Light Detection and Ranging (LIDAR) sensors, one or more depth cameras employing structured light patterns, such as infrared light, or the like). The apparatus 103 is deployed within the retail facility and, via communication with the server 101 and use of the sensors 108, navigates autonomously or partially autonomously along a length 119 of at least a portion of the shelves 110. Navigation may be performed according to a frame of reference 102 established within the retail facility. That is, the apparatus 103 tracks its location in the frame of reference 102.


While navigating among the shelves 110, the apparatus 103 can capture images, depth measurements and the like, representing the shelves 110 (generally referred to as shelf data or captured data). As will be discussed in greater detail below, the apparatus 103 receives instructions (e.g. from the server 101) to perform a task such as the above-mentioned data collection with respect to a plurality of shelf modules 110. In addition to navigating among the shelves 110 to perform the specified task, the apparatus 103 can also determine and update a sequence in which the shelf modules 110 are traversed for data capture. Determining and updating the sequence enables the apparatus 103 to traverse the shelf modules 110 in an order that favors travel time spent conducting data capture over travel time spent taxiing (i.e. travelling without capturing data).


The server 101 includes a special purpose controller, such as a processor 120, specifically designed to control and/or assist the mobile automation apparatus 103 to navigate the environment and to capture data. The processor 120 is interconnected with a non-transitory computer readable storage medium, such as a memory 122, having stored thereon computer readable instructions for performing various functionality, including control of the apparatus 103 to navigate the modules 110 and capture shelf data, as well as post-processing of the shelf data. The memory 122 can also store data for use in the above-mentioned control of the apparatus 103, such as a repository 123 containing a map of the retail environment and any other suitable data (e.g. operational constraints used to control the apparatus 103, data captured by the apparatus 103, and the like).


The memory 122 includes a combination of volatile memory (e.g. Random Access Memory or RAM) and non-volatile memory (e.g. read only memory or ROM, Electrically Erasable Programmable Read Only Memory or EEPROM, flash memory). The processor 120 and the memory 122 each comprise one or more integrated circuits. In some embodiments, the processor 120 is implemented as one or more central processing units (CPUs) and/or graphics processing units (GPUs).


The server 101 also includes a communications interface 124 interconnected with the processor 120. The communications interface 124 includes suitable hardware (e.g. transmitters, receivers, network interface controllers and the like) allowing the server 101 to communicate with other computing devices—particularly the apparatus 103, the client device 104 and the dock 106—via the links 105 and 107. The links 105 and 107 may be direct links, or links that traverse one or more networks, including both local and wide-area networks. The specific components of the communications interface 124 are selected based on the type of network or other links that the server 101 is required to communicate over. In the present example, as noted earlier, a wireless local-area network is implemented within the retail facility via the deployment of one or more wireless access points. The links 105 therefore include either or both wireless links between the apparatus 103 and the mobile device 104 and the above-mentioned access points, and a wired link (e.g. an Ethernet-based link) between the server 101 and the access point.


The processor 120 can therefore obtain data captured by the apparatus 103 via the communications interface 124 for storage (e.g. in the repository 123) and subsequent processing (e.g. to detect objects such as shelved products in the captured data, and detect status information corresponding to the objects). The server 101 may also transmit status notifications (e.g. notifications indicating that products are out-of-stock, in low stock or misplaced) to the client device 104 responsive to the determination of product status data. The client device 104 includes one or more controllers (e.g. central processing units (CPUs) and/or field-programmable gate arrays (FPGAs) and the like) configured to process (e.g. to display) notifications received from the server 101.


Turning now to FIG. 2, the mobile automation apparatus 103 is shown in greater detail. The apparatus 103 includes a chassis 201 containing a locomotive mechanism 203 (e.g. one or more electrical motors driving wheels, tracks or the like). The apparatus 103 further includes a sensor mast 205 supported on the chassis 201 and, in the present example, extending upwards (e.g., substantially vertically) from the chassis 201. The mast 205 supports the sensors 108 mentioned earlier. In particular, the sensors 108 include at least one imaging sensor 207, such as a digital camera, as well as at least one depth sensor 209, such as a 3D digital camera capable of capturing both depth data and image data. The apparatus 103 also includes additional depth sensors, such as LIDAR sensors 211. As shown in FIG. 2, the cameras 207 and the LIDAR sensors 211 are arranged on one side of the mast 205, while the depth sensor 209 is arranged on a front of the mast 205. That is, the depth sensor 209 is forward-facing (i.e. captures data in the direction of travel of the apparatus 103), while the cameras 207 and LIDAR sensors 211 are side-facing (i.e. capture data alongside the apparatus 103, in a direction perpendicular to the direction of travel). In other examples, the apparatus 103 includes additional sensors, such as one or more RFID readers, temperature sensors, and the like.


In the present example, the mast 205 supports seven digital cameras 207-1 through 207-7, and two LIDAR sensors 211-1 and 211-2. The mast 205 also supports a plurality of illumination assemblies 213, configured to illuminate the fields of view of the respective cameras 207. That is, the illumination assembly 213-1 illuminates the field of view of the camera 207-1, and so on. The sensors 207 and 211 are oriented on the mast 205 such that the fields of view of each sensor face a shelf 110 along the length 119 of which the apparatus 103 is traveling. The apparatus 103 is configured to track a location of the apparatus 103 (e.g. a location of the center of the chassis 201) in a common frame of reference previously established in the retail facility, permitting data captured by the mobile automation apparatus to be registered to the frame of reference.


Referring to FIG. 3, certain components of the mobile automation apparatus 103 are shown, in addition to the cameras 207, depth sensor 209, lidars 211, and illumination assemblies 213 mentioned above. The apparatus 103 includes a special-purpose controller, such as a processor 300, interconnected with a non-transitory computer readable storage medium, such as a memory 304. The memory 304 includes a suitable combination of volatile memory (e.g. Random Access Memory or RAM) and non-volatile memory (e.g. read only memory or ROM, Electrically Erasable Programmable Read Only Memory or EEPROM, flash memory). The processor 300 and the memory 304 each comprise one or more integrated circuits. The memory 304 stores computer readable instructions for execution by the processor 300. In particular, the memory 304 stores a navigational application 308 which, when executed by the processor 300, configures the processor 300 to perform various functions discussed below in greater detail and related to the navigation of the apparatus 103 (e.g. by controlling the locomotive mechanism 203). The processor 300, when so configured by the execution of the application 308, may also be referred to as a navigational controller 300. Those skilled in the art will appreciate that the functionality implemented by the processor 300 via the execution of the application 308 may also be implemented by one or more specially designed hardware and firmware components, such as FPGAs, ASICs and the like in other embodiments.


The memory 304 may also store a repository 312 containing, for example, a map of the environment in which the apparatus 103 operates, for use during the execution of the application 308. The apparatus 103 also includes a communications interface 316 enabling the apparatus 103 to communicate with the server 101 (e.g. via the link 105 or via the dock 106 and the link 107), for example to receive instructions to navigate to specified locations and initiate data capture operations.



FIG. 3 also illustrates example components of the application 308. As will be apparent to those skilled in the art, the illustrated components may be implemented as a suite of distinct applications in other embodiments. In the present example, the application 308 includes a task manager 320 configured to receive the instructions from the server 101 defining tasks to be performed by the apparatus 103. The instructions include task fragments, each identifying a task (e.g. a data capture task) and a set of sub-regions in the facility. In the present example, the sub-regions correspond to shelf modules 110. Further, the task fragments typically identify contiguous sets of modules 110. The task manager 320, in general, controls the other components of the application 308 to execute the task fragments according to a sequence that may be updated dynamically under certain conditions.


The other components of the application 308 include a navigator 324 that determines an initial sequence for the above-mentioned task fragments (e.g. for returning to the task manager 320). The navigator 324 also receives instructions from the task manager 320 to execute task fragments, and generates paths (for example, based on the map stored in the repository 312) through the retail facility traversing the shelf modules 110 identified by each task fragment. The navigator 324 further controls the locomotive mechanism 203 to travel along the above-mentioned paths.


The application 308 includes a data capture controller 328 that receives instructions from the task manager 320 to execute task fragments, and controls the sensors 108 (e.g. the image sensors 207 and the depth sensors 209) to capture data such as images of the shelf modules 110 while the apparatus 103 travels along the paths under the action of the navigator 324.


The above-mentioned paths include taxi portions, which are portions of the paths that the apparatus 103 travels along without performing tasks (e.g. data capture), and execution portions, which are portions of the paths that traverse modules 110 where the specified task is to be performed. For example, for a data capture task relating to a particular region (also referred to as an aisle, e.g. a set of contiguous shelf modules 110), the apparatus 103 may travel along a taxi portion of a path to arrive at an end of the aisle, and then along an execution portion that traverses the aisle while performing the data capture task. The dynamic updating of the sequence of task fragments noted above is performed by the task manager 320 to reduce the length of the taxi portions (i.e. to reduce the time spent traveling by the apparatus 103 during which the specified task is not being performed).


The functionality of the application 308 to dynamically update the sequence in which task fragments are executed by the apparatus 103 will now be described in greater detail, with reference to FIG. 4. FIG. 4 illustrates a method 400 of dynamic task sequencing, which will be described in conjunction with its performance in the system 100, and in particular by the apparatus 103, with reference to the components illustrated in FIGS. 2 and 3. As will be apparent in the discussion below, in other examples, some or all of the processing performed by the server 101 may be performed by the apparatus 103, and some or all of the processing performed by the apparatus 103 may be performed by the server 101.


At block 405, the apparatus 103, and in particular the task manager 320, receives a plurality of task fragments and a task identifier. The task fragments and the task identifier may be received, for example, from the server 101 via the communications interface 316. The task fragments received at block 405 each include a set of sub-region identifiers. More specifically, in the present example each task fragment identifies a set of contiguous shelf modules 110, and the task identifier indicates a task to be performed by the apparatus 103 with respect to the identified shelf modules 110.



FIG. 5 illustrates an example retail facility including a plurality of shelf modules 110, referred to by alphanumeric identifiers for ease of reference in the discussion below. In particular, six sets of contiguous modules 110 are shown, namely A1-A5, B1-B5, C1-C5, D1-D5, E1-E5 and F1-F5. A current position of the apparatus 103 is also shown, and a current heading direction 500 the apparatus 103 is also illustrated. As will be apparent to those skilled in the art, the location and heading 500 of the apparatus 103 constitute the pose of the apparatus 103. Also shown in FIG. 5 is an obstacle 502 at the end of the aisle containing the “B” and “C” modules. The obstacle 502 can be a dynamic obstacle not represented in the map stored in the repository 312, such as a person, or a fixed obstacle such as a pillar (which may be represented in the map stored in the repository 312).


Table 1 contains example task data received at the apparatus 103 from the server 101 in an example performance of block 405, defining task fragments to be performed by the apparatus 103 in the retail facility shown in FIG. 5. Although the task fragments are shown in a tabular format for ease of illustration, it will be apparent to those skilled in the art that the task fragments and the task identifier can be provided to the apparatus in any of a wide variety of suitable formats.


Table 1 contains a task identifier, indicating that the apparatus 103 is to perform a data capture task with respect to each of the task fragments. In other examples, a plurality of task identifiers may be provided to the apparatus 103, for example specifying different tasks for different task fragments. Table 1 also contains task fragments identifying certain sets of the modules 110 shown in FIG. 5. Specifically, Table 1 lists five task fragments, corresponding respectively to the “A”, “B”, “C”, “D” and “E” modules shown in FIG. 5 (Table 1 does not contain a task fragment corresponding to the “F” modules of FIG. 5).









TABLE 1







Example Task Fragments











Task ID
Fragment ID
Module ID(s)







Data
A
A1, A2, A3, A4, A5



Capture
B
B1, B2, B3, B4, B5




C
C1, C2, C3, C4, C5




D
D1, D2, D3, D4, D5




E
E1, E2, E3, E4, E5










As seen above, each task fragment can include a fragment identifier (which may be omitted in other embodiments), and identifiers of each module to which the fragment relates. The module identifiers enable the apparatus 103 (e.g. the navigator 324) to retrieve locations for the corresponding modules from a map in the repository 312.


Responsive to receiving the task fragments, the task manager 320 stores the task fragments in the memory 304, and also generates execution criteria corresponding to each module identified in the task fragments. As will be discussed in greater detail below, while the apparatus 103 is taxiing, the task manager monitors the current pose (i.e. location and direction 500) of the apparatus 103. When the current pose of the apparatus 103 satisfies the execution criteria corresponding to a given module, the task manager 320 updates the sequence of task fragments to initiate the performance of the specified task for that module. In other words, the task manager 320 interrupts taxiing of the apparatus 103 to begin task execution when the current pose of the apparatus 103 satisfies any of the execution criteria.


The execution criteria for a given module therefore represent physical constraints that are satisfied when the apparatus 103 is in a position favorable to the performance of the task for that module. In the present example, the execution criteria for each module define a proximity criterion and a direction criterion. The proximity criterion defines an area of the facility adjacent to the relevant module, and the direction criterion defines a direction of travel. When the current pose of the apparatus 103 indicates that the apparatus 103 is inside the area defined by the proximity criterion, and is traveling in a direction matching the direction criterion (e.g. within a certain angular threshold), the execution criteria are satisfied.



FIG. 5 illustrates execution criteria 504 for the “C” and “D” modules, superimposed on the facility. The task manager 320 generates execution criteria for every module identified in the task fragments, but criteria 504 are illustrated only for the “C” and “D” modules to preserve legibility, as many of the criteria overlap spatially. Specifically, FIG. 5 illustrates execution criteria 504-C1 through 504-05 for the “C” modules, and execution criteria 504-D1 through 504-D5 for the “D” modules. As illustrated, each execution criterion defines an area 508 within the facility, and a direction 512. The areas 508 can be defined by coordinates, such as a set of four coordinates in the frame of reference 102. Although the areas 508 are shown as rectangular areas in FIG. 5, the areas 508 can also have various other shapes. As will be apparent from FIG. 5, each area 508 is adjacent to at least a portion of the corresponding module. That is, the are 508 of the criteria 504-C1 is adjacent to the module C1 to which the criteria 504-C1 corresponds.


The direction 512 of each of the execution criteria 504 indicates a direction of travel required for the apparatus 103 to perform the data capture task with respect to the corresponding module. The mast 205 and the sensors 108 are fixed to the chassis 201 of the apparatus 103, and therefore the apparatus 103, as shown in the illustrated examples, is required to travel with the target module on the right (i.e. starboard) side of the chassis 201. Therefore, the directions 512 of the execution criteria 504-C1 to 504-C5 are opposite to the directions 512 of the execution criteria 504-D1 to 504-D5.


As will now be apparent, if the apparatus 103 taxis into the region 508 while traveling in the direction 512 (or within a configurable angular threshold of the direction 512) of the execution criteria 504-C1, then the execution criteria 504-C1 are satisfied. The task manager 320, according to a mechanism discussed below, will therefore initiate performance of the data capture task with respect to the module C1, instead of another module towards which the apparatus 103 was taxiing.


Returning to FIG. 4, having received the task identifier and task fragments, and having generated and stored the execution criteria, the apparatus 103 generates a sequence for the task fragments. In the present example, the navigator 324 retrieves the locations of the sub-regions (i.e. modules 110) identified in the task fragments from the map stored in the repository 312. The navigator 324 also retrieves the current location of the apparatus 103 itself in the common frame of reference 102. Based on the locations of the modules 110 identified by the task fragments (e.g., the locations of the end-points of each task fragment, such as the location of the modules A1 and A5 for the task fragment A) and the current location of the apparatus 103, the navigator 324 generates the sequence to optimize the distance that the apparatus 103 must travel to complete the task fragments. That is, the navigator 324 sequences the task fragments to reduce the total distance travelled in the execution of the task fragments, according to a suitable path optimization process.


Responsive to generating the sequence, the navigator 324 returns the sequence to the task manager 320. Table 2 contains an example sequence returned to the task manager 320 by the navigator 324.









TABLE 2







Example Task Fragment Sequence











Fragment ID
Module ID
Status







A
A1
Active




A2




A3




A4




A5



B
B5




B4




B3




B2




B1



C
C1




C2




C3




C4




C5



D
D5




D4




D3




D2




D1



E
E1




E2




E3




E4




E5










As seen above, the sequence generated by the navigator 324 defines an order in which the apparatus 103 will perform the task fragments shown in Table 1. The sequence may specify, as in the illustrated embodiment, not only the order of the task fragments, but also the order of the modules identified by each task fragment. Thus, Table 2 defines a sequence in which the apparatus 103 will first traverse the “A” modules beginning at the module A1 and ending at the module A5. The apparatus 103 will then traverse the “B” modules beginning at the module B5 and ending at the module B1, and so on until the module E5 is reached. As will be apparent from FIG. 5, the order specified for the task fragments (and the modules identified therein) minimizes taxiing between task fragments.


At block 410, the task manager 320 selects an active task fragment according to the sequence. The active task fragment selected is the task fragment nearest the beginning of the sequence that has not yet been completed. Therefore, in the present example, the task fragment A is selected at block 410. The task manager 320 can store an indication of which task fragment is active, as shown in Table 2. The task manager 320 can also, in some examples, store an indication of which module of the active task fragment is currently active.


At block 415, the apparatus 103 generates a path for the active fragment. For example, the task manager 320 can instruct the navigator 324 to generate a path that traverses the modules of the active task fragment (i.e. the modules A1 to A5, in the present example). Turning to FIG. 6, the modules 110 are shown along with the apparatus 103 and a path 600 generated by the navigator 324 at block 415. The generation of a path at block 415 can include generating a path to a starting location for the task fragment (e.g. from the current location of the apparatus 103 to the module A1, in the present example), in addition to generating a path traversing the sub-regions of the task fragment itself. The path 600 therefore includes a taxi portion 604 from the current location of the apparatus 103, and an execution portion 608 that traverses the modules A1 to A5, for performance of the data capture task. In some embodiments, the portions 604 and 608 are generated as distinct paths (e.g. responsive to separate instructions from the task manager 320 to the navigator 324).


Referring again to FIG. 4, following path generation, at block 420 the task manager 320 determines whether a proportion of the modules of the active task fragment that can only be reached from the current location of the apparatus 103 by taxiing (e.g. by taxiing any distance, or in some embodiments by taxiing more than a configurable threshold distance) exceeds a configurable threshold. In other words, for the task fragment A, the task manager 320 determines a proportion of the modules A1-A5 that can only be reached via the taxi portion 604 of the path 600. Those modules are referred to as “inaccessible” modules, although as will be understood, they are simply inaccessible without taxiing, rather than being entirely inaccessible. That proportion is compared to a threshold (e.g. 20%, although a wide variety of other thresholds are also contemplated). As seen in FIG. 6, all of the modules A1-A5 can only be reached via the taxi portion 604 of the path (i.e. the proportion of inaccessible modules is 100%), and the determination at block 420 is therefore negative. When the determination is affirmative, the task manager 320 updates the status of the inaccessible modules at block 425, as will be discussed further below.


In the present example, following a negative determination at block 420, the apparatus 103 proceeds to block 430. At block 430 the task manager 320 initiates the execution of the active task fragment selected at block 410 by sending instructions to the navigator 324 and the data capture controller 328 to travel along the path 600 generated at block 415 and to begin capturing data, respectively. More specifically, the task manager 320 is configured to transmit an instruction to begin navigation for the active task fragment to the navigator 324, and to transmit an instruction to begin data capture for the active task fragment to the data capture controller 328.


The navigator 324 is configured, during the performance of block 430, to control the locomotive mechanism 203 and associated components of the apparatus 103, to travel along the path 600 generated at block 415 for the active task fragment. The navigator 324 achieves such control via one or more navigation sensors (e.g., lidar sensors), the map stored in the repository 312 and the current pose of the apparatus 103, which is periodically updated. During the traverse of the modules 110 corresponding to the active task fragment, the data capture controller 328 is configured to control any one or more of the sensors 108 (e.g. the cameras 207 and depth sensors 209) to capture image data depicting the sub-regions the apparatus 103 is traversing and store the image data in the repository 312.


As the apparatus 103 travels along the sub-regions corresponding to the active task fragment, the navigator 324 is configured to monitor the current pose of the apparatus 103. The current pose is periodically reported to the task manager 320. The navigator 324 also notifies the task manager 320 of each sub-region that has been successfully traversed. Thus, the task manager 320 can update status data corresponding to the modules of the active task fragment.


During travel according to the path 600, at block 435 the task manager 320 determines, based on the current pose of the apparatus 103 received from the navigator 324, whether any of the execution criteria generated at block 405 are satisfied. That is, the task manager 320 compares the current location and direction of the apparatus 103 with the areas 508 and directions 512. In particular, the comparison of current pose to execution criteria 504 at block 435 is performed only during taxiing (i.e. while traveling the taxi portion 604 of the path 600). Further, the execution criteria 504 corresponding to the active task fragment are omitted from the comparison at block 435. Thus, while traveling the taxi portion 604, the task manager 320 does not assess whether the execution criteria for any of the modules A1-A5 are satisfied.


When the determination at block 435 is affirmative, the task manager 320 updates the task fragment sequence at block 440, as will be discussed further below. In the present example, as will be apparent from FIG. 6, the determination at block 435 is negative as the apparatus 103 travels the taxi portion 604, as no execution criteria 504 for non-active modules will be satisfied. The apparatus 103 therefore proceeds to block 445.


At block 445 the navigator 324 determines whether the path 600 is obstructed. When an obstacle is detected, the navigator 324 generates an updated path at block 415 (e.g. for the modules 110 remaining to be traversed). When no obstacle is detected, execution of the path 600 continues. At block 450, when the active task fragment is complete (i.e. when each module 110 of the active task fragment has been traversed or marked incomplete, as will be discussed below), the task manager 320 selects the next task fragment from the sequence. Thus, referring to FIG. 7, in which the apparatus 103 is shown having reached the end of the path 600, the task manager 320 selects the next task fragment from the sequence of Table 2, and performance of the method 400 returns to block 415. Table 3 contains status data indicating that the modules A1-A5 are complete (and the modules A1-A5 are illustrated with shading to indicate completion in FIG. 7). Further, Table 3 indicates that the task fragment B has been selected as the active task fragment.









TABLE 3







Updated Task Fragment Sequence











Fragment ID
Module ID
Status







A
A1
Complete: A1-A5




A2




A3




A4




A5



B
B5
Active




B4




B3




B2




B1



C
C1




C2




C3




C4




C5



D
D5




D4




D3




D2




D1



E
E1




E2




E3




E4




E5










At block 415, the navigator 324 generates a path for the active task fragment, shown as a path 700 in FIG. 7. Of particular note, the obstacle 502 prevents the apparatus 103 from reaching the module B5 without taxiing back towards the module A1 before returning along the next aisle to reach the module B5. Thus, the path 700 includes a lengthy taxi portion 704, followed by an execution portion 708. The determination at block 420 is negative, as none of the “B” modules can be reached without taxiing. Thus at block 430 the apparatus 103 begins traveling along the path 700.


Referring now to FIG. 8, when the apparatus 103 has traveled along part of the taxi portion 704, the current pose of the apparatus 103 satisfies the execution criteria 504-C1 corresponding to the module C1. The determination at block 435 is therefore affirmative. At block 440 the task manager 320 updates the sequence and selects a new active segment based on the updated sequence. In particular, the task manager 320 updates the sequence to place the task fragment C above the task fragment B, as shown below in Table 4, and to select the task fragment C as the active task fragment. Performance of the method 400 then returns to block 415, at which the task manager 320 instructs the navigator 324 to generate a path for the task fragment C.









TABLE 4







Updated Task Fragment Sequence











Fragment ID
Module ID
Status







A
A1
Complete: A1-A5




A2




A3




A4




A5



C
C1
Active




C2




C3




C4




C5



B
B5




B4




B3




B2




B1



D
D5




D4




D3




D2




D1



E
E1




E2




E3




E4




E5










Turning to FIG. 9, a path 900 is shown, including a taxi portion 904 and an execution portion 908, for completing the task fragment C. At block 430, the apparatus 103 travels along the path 900 to complete the data capture task for each of the modules C1-C5. As will be apparent, the determination at block 435 is negative, as is the determination at block 445. When the path 900 is complete, the task manager 320 selects the next task fragment according to the updated sequence (i.e. the task fragment B in the present example). Repeating blocks 415 to 450 for the task fragment B leads to completion of the task fragment B, and the selection of the next task fragment, which in the present example is the task fragment D.



FIG. 10 illustrates the apparatus 103 following the completion of the task fragment B and selection of the task fragment D as the active task fragment. Table 5 illustrates the updated sequence and status of the task fragments.









TABLE 5







Updated Task Fragment Sequence











Fragment ID
Module ID
Status







A
A1
Complete: A1-A5




A2




A3




A4




A5



C
C1
Complete: C1-C5




C2




C3




C4




C5



B
B5
Complete: B1-B5




B4




B3




B2




B1



D
D5
Active




D4




D3




D2




D1



E
E1




E2




E3




E4




E5











FIG. 10 also illustrates a path 1000 generated at block 415 for the task fragment D, including a taxi portion 1004 and an execution portion 1008. As will be apparent from FIG. 10, during travel along the taxi portion 1004 towards the module D5, the apparatus 103 will satisfy the execution criteria 504-E1 corresponding to the module E1. Therefore, following another affirmative determination at block 435, the task manager 320 updates the sequence to place the task fragment E ahead of the task fragment D, and initiates path generation at block 415 for the task fragment E. Table 6 illustrates the further updated sequence









TABLE 6







Updated Task Fragment Sequence











Fragment ID
Module ID
Status







A
A1
Complete: A1-A5




A2




A3




A4




A5



C
C1
Complete: C1-C5




C2




C3




C4




C5



B
B5
Complete: B1-B5




B4




B3




B2




B1



E
E1
Active




E2




E3




E4




E5



D
D5




D4




D3




D2




D1










Turning to FIG. 11, a path 1100 is shown as generated at block 415 for the task fragment E, with the apparatus 103 having traveled along part of the path 1100 and completed the traversal of the modules E1, E2 and E3. FIG. 11 also illustrates that an obstacle 1102, such as a person, has been detected by the apparatus 103. The module E4 is obstructed by the obstacle 1102 (i.e. data capture of the module E4 cannot be completed). Further, the module E5 cannot be reached by continuing to follow the path 1100. Therefore, the determination at block 445 is affirmative, and the apparatus 103 returns to block 415 to generate an updated path to reach the module E5. As seen in FIG. 11, the module E5 can be reached, for example, by traveling back towards the module E1 and then past the modules F1 to F5.


At block 420, the module E5 is considered an inaccessible module, because it can only be reached by taxiing more than a threshold distance. In some embodiments, the assessment at block 420 can be performed in conjunction with path generation at block 415, and includes determining whether a path can be planned to reach the relevant module(s) (i.e. the module E5 in the present example) without leaving the current aisle. In either implementation, the module E5 is inaccessible. Further, the module E5 constitutes only one fifth (20%) of the task fragment E. Therefore, the determination at block 420 is affirmative, and at block 425 the task manager 320 ignores the inaccessible modules, for example by storing status data indicating that the inaccessible modules have been skipped, as shown in Table 7 below.


Following the performance of block 425, the apparatus 103 can return to block 415 to generate a path for the active task fragment that omits the ignored modules from block 425. In the present example, it will be apparent that when the module E5 is ignored, no further modules remain to be completed in the task fragment E, and that further path planning is no longer necessary for the task fragment E. The task manager 320 can therefore also determine, following block 425, whether the active task fragment is complete as a result of the performance of block 425. When the active task fragment is complete, the task manager 320 proceeds to block 450 before returning to block 415. In the present example, therefore the task manager 320 selects the task fragment D as the active task fragment, and returns to block 415. The updated status of the task fragments is shown in Table 7.









TABLE 7







Updated Task Fragment Sequence











Fragment ID
Module ID
Status







A
A1
Complete: A1-A5




A2




A3




A4




A5



C
C1
Complete: C1-C5




C2




C3




C4




C5



B
B5
Complete: B1-B5




B4




B3




B2




B1



E
E1
Complete: E1-E3




E2
Obstructed: E4




E3
Skipped: E5




E4




E5



D
D5
Active




D4




D3




D2




D1










As seen above, the task fragment D is indicated as the active task fragment, and the module E5 is indicated as having been skipped (i.e. ignored), as completing data capture for the module E5 alone would require the apparatus 103 to taxi a substantial distance.


Following selection of the task fragment D as the active task fragment, a path 1200 as illustrated in FIG. 12 is generated for the task fragment D. As shown in FIG. 12, the modules D4 and D5 have been marked as obstructed and skipped, respectively. Specifically, the module D4 cannot be reached as a result of the obstacle 1102, and the module D5 has been ignored following a further affirmative determination at block 420. More specifically, planning a path from the location of the apparatus 103 shown in FIG. 12 to the module D5 requires a substantial taxiing distance (e.g. above the threshold mentioned earlier), while the modules D3, D2 and D1 can be reached with minimal taxiing (e.g. without leaving the aisle the apparatus 103 is currently in). The module D5 is therefore ignored at block 425, and block 415 is repeated to generate the path 1200 shown. Traveling along the path 1200 results in the completion of data capture for the modules D3, D2 and D1.


When the task fragment D is complete, the task fragments received at block 405 will have been completed, with the exception of the modules D4, D5, E4 and E5. The task manager 320 can report the status of the task fragments to the server 101, for example, and the server 101 can generate a further set of task fragments for subsequent execution, incorporating any previously incomplete modules (i.e. the modules D4, D5, E4 and E5).


Through the generation of execution criteria and the performance of block 435, the apparatus 103 may therefore detect conditions in which time spent traveling can instead be used to perform data capture or other tasks, thus reducing the time spent taxiing by the apparatus 103. Further, the determination at block 420 may further avoid suboptimal taxiing by the apparatus to reach isolated modules, instead deferring the performance of tasks for those modules until a later time (e.g. when the obstacle 1102 may no longer be present).


In the foregoing specification, specific embodiments have been described. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present teachings.


The benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential features or elements of any or all the claims. The invention is defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued.


Moreover in this document, relational terms such as first and second, top and bottom, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” “has”, “having,” “includes”, “including,” “contains”, “containing” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises, has, includes, contains a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “comprises . . . a”, “has . . . a”, “includes . . . a”, “contains . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises, has, includes, contains the element. The terms “a” and “an” are defined as one or more unless explicitly stated otherwise herein. The terms “substantially”, “essentially”, “approximately”, “about” or any other version thereof, are defined as being close to as understood by one of ordinary skill in the art, and in one non-limiting embodiment the term is defined to be within 10%, in another embodiment within 5%, in another embodiment within 1% and in another embodiment within 0.5%. The term “coupled” as used herein is defined as connected, although not necessarily directly and not necessarily mechanically. A device or structure that is “configured” in a certain way is configured in at least that way, but may also be configured in ways that are not listed.


It will be appreciated that some embodiments may be comprised of one or more specialized processors (or “processing devices”) such as microprocessors, digital signal processors, customized processors and field programmable gate arrays (FPGAs) and unique stored program instructions (including both software and firmware) that control the one or more processors to implement, in conjunction with certain non-processor circuits, some, most, or all of the functions of the method and/or apparatus described herein. Alternatively, some or all functions could be implemented by a state machine that has no stored program instructions, or in one or more application specific integrated circuits (ASICs), in which each function or some combinations of certain of the functions are implemented as custom logic. Of course, a combination of the two approaches could be used.


Moreover, an embodiment can be implemented as a computer-readable storage medium having computer readable code stored thereon for programming a computer (e.g., comprising a processor) to perform a method as described and claimed herein. Examples of such computer-readable storage mediums include, but are not limited to, a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a ROM (Read Only Memory), a PROM (Programmable Read Only Memory), an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Erasable Programmable Read Only Memory) and a Flash memory. Further, it is expected that one of ordinary skill, notwithstanding possibly significant effort and many design choices motivated by, for example, available time, current technology, and economic considerations, when guided by the concepts and principles disclosed herein will be readily capable of generating such software instructions and programs and ICs with minimal experimentation.


The Abstract of the Disclosure is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in various embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.

Claims
  • 1. A method in a navigational controller, the method comprising: obtaining (i) a plurality of task fragments identifying respective sets of sub-regions in a facility, and (ii) an identifier of a task to be performed by a mobile automation apparatus at each of the sets of sub-regions;selecting a first active one of the task fragments according to a sequence specifying an order of execution of the task fragments;generating a path including (i) a taxi portion from a current position of the mobile automation apparatus to the sub-regions identified by the first active task fragment, and (ii) an execution portion traversing the sub-regions identified by the first active task fragment according to the sequence specifying the order of execution of the task fragments;during travel along the taxi portion to the sub-regions identified by the first active task fragment, determining, based on a current pose of the mobile automation apparatus, whether to initiate execution of another task fragment out of the sequence specifying the order of execution of the task fragments;when the determination is affirmative, interrupting travel along the taxi portion to the sub-regions identified by the first active task fragment, to perform the other task fragment prior to arriving to the sub-regions identified by the first active task fragment;identifying as inaccessible at least one subregion of a task fragment that requires greater than a threshold distance to be reached by taxiing; andperforming the at least one inaccessible subregion after all other task fragments have been performed.
  • 2. The method of claim 1, further comprising: while traveling along the execution portion of the path, performing the identified task.
  • 3. The method of claim 2, wherein the identified task is a data capture task.
  • 4. The method of claim 1, further comprising: responsive to updating the sequence, repeating generating the path and determining whether to initiate execution of another task fragment.
  • 5. The method of claim 1, further comprising: responsive to generating the path, identifying inaccessible ones of the set of sub-regions identified by the first active task fragment;determining a proportion of the set of sub-regions represented by the inaccessible sub-regions; andwhen the proportion is below a threshold, ignoring the inaccessible sub-regions.
  • 6. The method of claim 5, wherein identifying inaccessible ones of the set of sub-regions includes determining that an inaccessible one of the set of sub-regions cannot be reached without taxiing.
  • 7. The method of claim 1, further comprising: for each sub-region identified by each task fragment, generating execution criteria;wherein determining whether to initiate execution of another task fragment includes comparing the current pose of the mobile automation apparatus to the execution criteria.
  • 8. The method of claim 7, wherein the execution criteria include a proximity criterion and a directional criterion.
  • 9. The method of claim 1, wherein obtaining the task fragments includes receiving the task fragments at the mobile automation apparatus from a server.
  • 10. A mobile automation apparatus, comprising: a locomotive assembly;a data capture sensor; anda navigational controller configured to: obtain (i) a plurality of task fragments identifying respective sets of sub-regions in a facility, and (ii) an identifier of a task to be performed at each of the sets of sub-regions;select a first active one of the task fragments according to a sequence specifying an order of execution of the task fragments;generate a path including (i) a taxi portion from a current position of the mobile automation apparatus to the sub-regions identified by the first active task fragment, and (ii) an execution portion traversing the sub-regions identified by the first active task fragment according to the sequence specifying the order of execution of the task fragments;control the locomotive assembly to travel along the path;during travel along the taxi portion to the sub-regions identified by the first active task fragment, determine, based on a current pose of the mobile automation apparatus, whether to initiate execution of another task fragment out of the sequence specifying the order of execution of the task fragments;when the determination is affirmative, interrupt travel along the taxi portion to the sub-regions identified by the first active task fragment, to perform the other active task fragment prior to arriving to the sub-regions identified by the first active task fragment;identify as inaccessible at least one subregion of a task fragment that requires greater than a threshold distance to be reached by taxiing; andperform the at least one inaccessible subregion after all other task fragments have been performed.
  • 11. The mobile automation apparatus of claim 10, wherein the navigational controller is further configured, during travel along the execution portion of the path, perform the identified task.
  • 12. The mobile automation apparatus of claim 11, wherein the identified task is a data capture task, and wherein the navigational controller is configured to control the data capture sensor to perform the data capture task.
  • 13. The mobile automation apparatus of claim 10, wherein the navigational controller is further configured, responsive to updating of the sequence, to repeat the generation of the path and the determination of whether to initiate execution of another task fragment.
  • 14. The mobile automation apparatus of claim 10, wherein the navigational controller is further configured, responsive to generation of the path, to: identify inaccessible ones of the set of sub-regions identified by the first active task fragment;determine a proportion of the set of sub-regions represented by the inaccessible sub-regions; andwhen the proportion is below a threshold, ignore the inaccessible sub-regions.
  • 15. The mobile automation apparatus of claim 14, wherein the navigational controller is further configured, in order to identify the inaccessible ones of the set of sub-regions, to determine that an inaccessible one of the set of sub-regions cannot be reached without taxiing.
  • 16. The mobile automation apparatus of claim 10, wherein the navigational controller is further configured, for each sub-region identified by each task fragment, to generate execution criteria; and wherein the navigational controller is further configured, in order to determine whether to initiate execution of another task fragment, to compare the current pose of the mobile automation apparatus to the execution criteria.
  • 17. The mobile automation apparatus of claim 16, wherein the execution criteria include a proximity criterion and a directional criterion.
  • 18. The mobile automation apparatus of claim 10, wherein the navigational controller is configured, in order to obtain the task fragments, to receive the task fragments from a server.
US Referenced Citations (465)
Number Name Date Kind
5209712 Ferri May 1993 A
5214615 Bauer May 1993 A
5408322 Hsu et al. Apr 1995 A
5414268 McGee May 1995 A
5423617 Marsh et al. Jun 1995 A
5534762 Kim Jul 1996 A
5566280 Fukui et al. Oct 1996 A
5704049 Briechle Dec 1997 A
5953055 Huang et al. Sep 1999 A
5988862 Kacyra et al. Nov 1999 A
6026376 Kenney Feb 2000 A
6034379 Bunte et al. Mar 2000 A
6075905 Herman et al. Jun 2000 A
6115114 Berg et al. Sep 2000 A
6141293 Amorai-Moriya et al. Oct 2000 A
6304855 Burke Oct 2001 B1
6442507 Skidmore et al. Aug 2002 B1
6549825 Kurata Apr 2003 B2
6580441 Schileru-Key Jun 2003 B2
6711293 Lowe Mar 2004 B1
6721723 Gibson et al. Apr 2004 B1
6721769 Rappaport et al. Apr 2004 B1
6836567 Silver et al. Dec 2004 B1
6995762 Pavlidis et al. Feb 2006 B1
7090135 Patel Aug 2006 B2
7137207 Armstrong et al. Nov 2006 B2
7245558 Willins et al. Jul 2007 B2
7248754 Cato Jul 2007 B2
7277187 Smith et al. Oct 2007 B2
7373722 Cooper et al. May 2008 B2
7474389 Greenberg et al. Jan 2009 B2
7487595 Armstrong et al. Feb 2009 B2
7493336 Noonan Feb 2009 B2
7508794 Feather et al. Mar 2009 B2
7527205 Zhu et al. May 2009 B2
7605817 Zhang et al. Oct 2009 B2
7647752 Magnell Jan 2010 B2
7693757 Zimmerman Apr 2010 B2
7726575 Wang et al. Jun 2010 B2
7751928 Antony et al. Jul 2010 B1
7783383 Eliuk et al. Aug 2010 B2
7839531 Sugiyama Nov 2010 B2
7845560 Emanuel et al. Dec 2010 B2
7885865 Benson et al. Feb 2011 B2
7925114 Mai et al. Apr 2011 B2
7957998 Riley et al. Jun 2011 B2
7996179 Lee et al. Aug 2011 B2
8009864 Linaker et al. Aug 2011 B2
8049621 Egan Nov 2011 B1
8091782 Cato et al. Jan 2012 B2
8094902 Crandall et al. Jan 2012 B2
8094937 Teoh et al. Jan 2012 B2
8132728 Dwinell et al. Mar 2012 B2
8134717 Pangrazio et al. Mar 2012 B2
8189855 Opalach et al. May 2012 B2
8199977 Krishnaswamy et al. Jun 2012 B2
8207964 Meadow et al. Jun 2012 B1
8233055 Matsunaga et al. Jul 2012 B2
8260742 Cognigni et al. Sep 2012 B2
8265895 Willins et al. Sep 2012 B2
8277396 Scott et al. Oct 2012 B2
8284988 Sones et al. Oct 2012 B2
8423431 Rouaix et al. Apr 2013 B1
8429004 Hamilton et al. Apr 2013 B2
8463079 Ackley et al. Jun 2013 B2
8479996 Barkan et al. Jul 2013 B2
8520067 Ersue Aug 2013 B2
8542252 Perez et al. Sep 2013 B2
8571314 Tao et al. Oct 2013 B2
8599303 Stettner Dec 2013 B2
8630924 Groenevelt et al. Jan 2014 B2
8660338 Ma et al. Feb 2014 B2
8743176 Stettner et al. Jun 2014 B2
8757479 Clark et al. Jun 2014 B2
8812226 Zeng Aug 2014 B2
8923893 Austin et al. Dec 2014 B2
8939369 Olmstead et al. Jan 2015 B2
8954188 Sullivan et al. Feb 2015 B2
8958911 Wong et al. Feb 2015 B2
8971637 Rivard Mar 2015 B1
8989342 Liesenfelt et al. Mar 2015 B2
9007601 Steffey et al. Apr 2015 B2
9037287 Grauberger et al. May 2015 B1
9064394 Trundle Jun 2015 B1
9070285 Ramu et al. Jun 2015 B1
9072929 Rush et al. Jul 2015 B1
9120622 Elazary et al. Sep 2015 B1
9129277 Macintosh Sep 2015 B2
9135491 Morandi et al. Sep 2015 B2
9159047 Winkel Oct 2015 B2
9171442 Clements Oct 2015 B2
9247211 Zhang et al. Jan 2016 B2
9329269 Zeng May 2016 B2
9349076 Liu et al. May 2016 B1
9367831 Besehanic Jun 2016 B1
9380222 Clayton et al. Jun 2016 B2
9396554 Williams et al. Jul 2016 B2
9400170 Steffey Jul 2016 B2
9424482 Patel et al. Aug 2016 B2
9517767 Kentley et al. Dec 2016 B1
9542746 Wu et al. Jan 2017 B2
9549125 Goyal et al. Jan 2017 B1
9562971 Shenkar et al. Feb 2017 B2
9565400 Curlander et al. Feb 2017 B1
9589353 Mueller-Fischer et al. Mar 2017 B2
9600731 Yasunaga et al. Mar 2017 B2
9600892 Patel et al. Mar 2017 B2
9612123 Levinson et al. Apr 2017 B1
9639935 Douady-Pleven et al. May 2017 B1
9697429 Patel et al. Jul 2017 B2
9766074 Roumeliotis et al. Sep 2017 B2
9778388 Connor Oct 2017 B1
9779205 Namir Oct 2017 B2
9791862 Connor Oct 2017 B1
9805240 Zheng et al. Oct 2017 B1
9811754 Schwartz Nov 2017 B2
9827683 Hance et al. Nov 2017 B1
9880009 Bell Jan 2018 B2
9928708 Lin et al. Mar 2018 B2
9953420 Wolski et al. Apr 2018 B2
9980009 Jiang et al. May 2018 B2
9994339 Colson et al. Jun 2018 B2
9996818 Ren et al. Jun 2018 B1
10019803 Venable et al. Jul 2018 B2
10111646 Nycz et al. Oct 2018 B2
10121072 Kekatpure Nov 2018 B1
10127438 Fisher et al. Nov 2018 B1
10197400 Jesudason et al. Feb 2019 B2
10210603 Venable et al. Feb 2019 B2
10229386 Thomas Mar 2019 B2
10248653 Blassin et al. Apr 2019 B2
10262294 Hahn et al. Apr 2019 B1
10265871 Hance et al. Apr 2019 B2
10289990 Rizzolo et al. May 2019 B2
10336543 Sills et al. Jul 2019 B1
10349031 DeLuca Jul 2019 B2
10352689 Brown et al. Jul 2019 B2
10373116 Medina et al. Aug 2019 B2
10394244 Song et al. Aug 2019 B2
20010031069 Kondo et al. Oct 2001 A1
20010041948 Ross et al. Nov 2001 A1
20020006231 Jayant et al. Jan 2002 A1
20020059202 Hadzikadic et al. May 2002 A1
20020097439 Braica Jul 2002 A1
20020146170 Rom Oct 2002 A1
20020158453 Levine Oct 2002 A1
20020164236 Fukuhara et al. Nov 2002 A1
20030003925 Suzuki Jan 2003 A1
20030094494 Blanford et al. May 2003 A1
20030174891 Wenzel et al. Sep 2003 A1
20040021313 Gardner et al. Feb 2004 A1
20040084527 Bong et al. May 2004 A1
20040131278 Imagawa et al. Jul 2004 A1
20040240754 Smith et al. Dec 2004 A1
20050016004 Armstrong et al. Jan 2005 A1
20050114059 Chang et al. May 2005 A1
20050174351 Chang Aug 2005 A1
20050213082 DiBernardo et al. Sep 2005 A1
20050213109 Schell et al. Sep 2005 A1
20060032915 Schwartz Feb 2006 A1
20060045325 Zavadsky et al. Mar 2006 A1
20060064286 Fink Mar 2006 A1
20060106742 Bochicchio et al. May 2006 A1
20060279527 Zehner et al. Dec 2006 A1
20060285486 Roberts et al. Dec 2006 A1
20070036398 Chen et al. Feb 2007 A1
20070074410 Armstrong et al. Apr 2007 A1
20070272732 Hindmon Nov 2007 A1
20080002866 Fujiwara Jan 2008 A1
20080025565 Zhang et al. Jan 2008 A1
20080027591 Lenser et al. Jan 2008 A1
20080077511 Zimmerman Mar 2008 A1
20080159634 Sharma et al. Jul 2008 A1
20080164310 Dupuy et al. Jul 2008 A1
20080175513 Lai et al. Jul 2008 A1
20080181529 Michel et al. Jul 2008 A1
20080183730 Enga Jul 2008 A1
20080238919 Pack Oct 2008 A1
20080294487 Nasser Nov 2008 A1
20090009123 Skaff Jan 2009 A1
20090024353 Lee et al. Jan 2009 A1
20090057411 Madej et al. Mar 2009 A1
20090059270 Opalach et al. Mar 2009 A1
20090060349 Linaker et al. Mar 2009 A1
20090063306 Fano et al. Mar 2009 A1
20090063307 Groenovelt et al. Mar 2009 A1
20090074303 Filimonova et al. Mar 2009 A1
20090088975 Sato et al. Apr 2009 A1
20090103773 Wheeler et al. Apr 2009 A1
20090125350 Lessing et al. May 2009 A1
20090125535 Basso et al. May 2009 A1
20090152391 McWhirk Jun 2009 A1
20090192921 Hicks Jul 2009 A1
20090206161 Olmstead Aug 2009 A1
20090236155 Skaff Sep 2009 A1
20090252437 Li et al. Oct 2009 A1
20090287587 Bloebaum et al. Nov 2009 A1
20090323121 Valkenburg et al. Dec 2009 A1
20100017407 Beniyama et al. Jan 2010 A1
20100026804 Tanizaki et al. Feb 2010 A1
20100070365 Siotia et al. Mar 2010 A1
20100082194 Yabushita et al. Apr 2010 A1
20100091094 Sekowski Apr 2010 A1
20100118116 Tomasz et al. May 2010 A1
20100131234 Stewart et al. May 2010 A1
20100141806 Uemura et al. Jun 2010 A1
20100161569 Schreter Jun 2010 A1
20100171826 Hamilton et al. Jul 2010 A1
20100208039 Setettner Aug 2010 A1
20100214873 Somasundaram et al. Aug 2010 A1
20100235033 Yamamoto et al. Sep 2010 A1
20100241289 Sandberg Sep 2010 A1
20100257149 Cognigni et al. Oct 2010 A1
20100295850 Katz et al. Nov 2010 A1
20100315412 Sinha et al. Dec 2010 A1
20100326939 Clark et al. Dec 2010 A1
20110047636 Stachon et al. Feb 2011 A1
20110052043 Hyung et al. Mar 2011 A1
20110093306 Nielsen et al. Apr 2011 A1
20110137527 Simon et al. Jun 2011 A1
20110168774 Magal Jul 2011 A1
20110172875 Gibbs Jul 2011 A1
20110216063 Hayes Sep 2011 A1
20110242286 Pace et al. Oct 2011 A1
20110246503 Bender et al. Oct 2011 A1
20110254840 Halstead Oct 2011 A1
20110286007 Pangrazio et al. Nov 2011 A1
20110288816 Thierman Nov 2011 A1
20110310088 Adabala et al. Dec 2011 A1
20120017028 Tsirkin Jan 2012 A1
20120019393 Wolinsky et al. Jan 2012 A1
20120022913 Volkmann et al. Jan 2012 A1
20120051730 Cote et al. Mar 2012 A1
20120069051 Hagbi et al. Mar 2012 A1
20120075342 Choubassi et al. Mar 2012 A1
20120133639 Kopf et al. May 2012 A1
20120169530 Padmanabhan et al. Jul 2012 A1
20120185112 Sung et al. Jul 2012 A1
20120194644 Newcombe et al. Aug 2012 A1
20120197464 Wang et al. Aug 2012 A1
20120201466 Funayama et al. Aug 2012 A1
20120209553 Doytchinov et al. Aug 2012 A1
20120236119 Rhee et al. Sep 2012 A1
20120249802 Taylor Oct 2012 A1
20120250978 Taylor Oct 2012 A1
20120269383 Bobbitt et al. Oct 2012 A1
20120287249 Choo et al. Nov 2012 A1
20120307108 Forutanpour Dec 2012 A1
20120323620 Hofman et al. Dec 2012 A1
20130030700 Miller et al. Jan 2013 A1
20130076586 Karhuketo et al. Mar 2013 A1
20130090881 Janardhanan et al. Apr 2013 A1
20130119138 Winkel May 2013 A1
20130132913 Fu et al. May 2013 A1
20130134178 Lu May 2013 A1
20130138246 Gutmann et al. May 2013 A1
20130142421 Silver et al. Jun 2013 A1
20130144565 Miller et al. Jun 2013 A1
20130154802 O'Haire et al. Jun 2013 A1
20130156292 Chang et al. Jun 2013 A1
20130162806 Ding et al. Jun 2013 A1
20130176398 Bonner et al. Jul 2013 A1
20130178227 Vartanian et al. Jul 2013 A1
20130182114 Zhang et al. Jul 2013 A1
20130226344 Wong et al. Aug 2013 A1
20130228620 Ahem et al. Sep 2013 A1
20130232039 Jackson et al. Sep 2013 A1
20130235165 Gharib et al. Sep 2013 A1
20130235206 Smith et al. Sep 2013 A1
20130236089 Litvak et al. Sep 2013 A1
20130278631 Border et al. Oct 2013 A1
20130299306 Jiang et al. Nov 2013 A1
20130299313 Baek, IV et al. Nov 2013 A1
20130300729 Grimaud Nov 2013 A1
20130303193 Dharwada et al. Nov 2013 A1
20130321418 Kirk Dec 2013 A1
20130329013 Metois et al. Dec 2013 A1
20130341400 Lancaster-Larocque Dec 2013 A1
20130342363 Paek et al. Dec 2013 A1
20140002597 Taguchi et al. Jan 2014 A1
20140003655 Gopalkrishnan et al. Jan 2014 A1
20140003727 Lortz et al. Jan 2014 A1
20140006229 Birch et al. Jan 2014 A1
20140016832 Kong et al. Jan 2014 A1
20140019311 Tanaka Jan 2014 A1
20140025201 Ryu et al. Jan 2014 A1
20140028837 Gao et al. Jan 2014 A1
20140047342 Breternitz et al. Feb 2014 A1
20140049616 Stettner Feb 2014 A1
20140052555 MacIntosh Feb 2014 A1
20140086483 Zhang et al. Mar 2014 A1
20140098094 Neumann et al. Apr 2014 A1
20140100813 Shaowering Apr 2014 A1
20140104413 McCloskey et al. Apr 2014 A1
20140129027 Schnittman May 2014 A1
20140156133 Cullinane et al. Jun 2014 A1
20140161359 Magri et al. Jun 2014 A1
20140192050 Qiu et al. Jul 2014 A1
20140195095 Flohr Jul 2014 A1
20140195374 Bassemir et al. Jul 2014 A1
20140214547 Signorelli et al. Jul 2014 A1
20140214600 Argue et al. Jul 2014 A1
20140267614 Ding et al. Sep 2014 A1
20140267688 Aich et al. Sep 2014 A1
20140277691 Jacobus et al. Sep 2014 A1
20140277692 Buzan et al. Sep 2014 A1
20140279294 Field-Darragh et al. Sep 2014 A1
20140300637 Fan et al. Oct 2014 A1
20140316875 Tkachenko et al. Oct 2014 A1
20140330835 Boyer Nov 2014 A1
20140344401 Varney et al. Nov 2014 A1
20140351073 Murphy et al. Nov 2014 A1
20140369607 Patel et al. Dec 2014 A1
20150015602 Beaudoin Jan 2015 A1
20150019391 Kumar et al. Jan 2015 A1
20150029339 Kobres et al. Jan 2015 A1
20150032304 Nakamura et al. Jan 2015 A1
20150039458 Reid Feb 2015 A1
20150052029 Wu et al. Feb 2015 A1
20150088618 Basir et al. Mar 2015 A1
20150088701 Desmarais et al. Mar 2015 A1
20150088703 Yan Mar 2015 A1
20150092066 Geiss et al. Apr 2015 A1
20150106403 Haverinen et al. Apr 2015 A1
20150117788 Patel et al. Apr 2015 A1
20150139010 Jeong et al. May 2015 A1
20150154467 Feng et al. Jun 2015 A1
20150161793 Takahashi Jun 2015 A1
20150170256 Pettyjohn et al. Jun 2015 A1
20150181198 Baele et al. Jun 2015 A1
20150212521 Pack et al. Jul 2015 A1
20150235157 Avegliano et al. Aug 2015 A1
20150245358 Schmidt Aug 2015 A1
20150262116 Katircioglu et al. Sep 2015 A1
20150279035 Wolski et al. Oct 2015 A1
20150298317 Wang et al. Oct 2015 A1
20150310601 Rodriguez et al. Oct 2015 A1
20150332368 Vartiainen et al. Nov 2015 A1
20150352721 Wicks et al. Dec 2015 A1
20150353280 Brazeau Dec 2015 A1
20150355639 Versteeg Dec 2015 A1
20150363625 Wu et al. Dec 2015 A1
20150363758 Wu et al. Dec 2015 A1
20150365660 Wu et al. Dec 2015 A1
20150379704 Chandrasekar et al. Dec 2015 A1
20160012588 Taguchi et al. Jan 2016 A1
20160026253 Bradski et al. Jan 2016 A1
20160042223 Suh et al. Feb 2016 A1
20160044862 Kocer Feb 2016 A1
20160061591 Pangrazio et al. Mar 2016 A1
20160070981 Sasaki et al. Mar 2016 A1
20160092943 Vigier et al. Mar 2016 A1
20160104041 Bowers et al. Apr 2016 A1
20160107690 Oyama et al. Apr 2016 A1
20160112628 Super et al. Apr 2016 A1
20160114488 Mascorro Medina et al. Apr 2016 A1
20160129592 Saboo et al. May 2016 A1
20160132815 Itoko et al. May 2016 A1
20160150217 Popov May 2016 A1
20160156898 Ren et al. Jun 2016 A1
20160163067 Williams et al. Jun 2016 A1
20160171336 Schwartz Jun 2016 A1
20160171429 Schwartz Jun 2016 A1
20160171707 Schwartz Jun 2016 A1
20160185347 Lefevre et al. Jun 2016 A1
20160191759 Somanath et al. Jun 2016 A1
20160224927 Pettersson Aug 2016 A1
20160253735 Scudillo et al. Sep 2016 A1
20160253844 Petrovskaya et al. Sep 2016 A1
20160259329 High Sep 2016 A1
20160260054 High et al. Sep 2016 A1
20160271795 Vicenti Sep 2016 A1
20160313133 Zeng et al. Oct 2016 A1
20160328618 Patel et al. Nov 2016 A1
20160328767 Bonner et al. Nov 2016 A1
20160353099 Thomson et al. Dec 2016 A1
20160364634 Davis et al. Dec 2016 A1
20170004649 Collet Romea et al. Jan 2017 A1
20170011281 Dijkman et al. Jan 2017 A1
20170011308 Sun et al. Jan 2017 A1
20170032311 Rizzolo et al. Feb 2017 A1
20170041553 Cao et al. Feb 2017 A1
20170054965 Raab et al. Feb 2017 A1
20170066459 Singh Mar 2017 A1
20170074659 Giurgiu et al. Mar 2017 A1
20170083774 Solar et al. Mar 2017 A1
20170109940 Guo et al. Apr 2017 A1
20170147966 Aversa et al. May 2017 A1
20170150129 Pangrazio May 2017 A1
20170178060 Schwartz Jun 2017 A1
20170178227 Gornish Jun 2017 A1
20170178310 Gornish Jun 2017 A1
20170193434 Shah et al. Jul 2017 A1
20170219338 Brown et al. Aug 2017 A1
20170219353 Alesiani Aug 2017 A1
20170227645 Swope et al. Aug 2017 A1
20170227647 Baik Aug 2017 A1
20170228885 Baumgartner Aug 2017 A1
20170261993 Venable et al. Sep 2017 A1
20170262724 Wu et al. Sep 2017 A1
20170280125 Brown et al. Sep 2017 A1
20170286773 Skaff et al. Oct 2017 A1
20170286901 Skaff et al. Oct 2017 A1
20170297478 Sherman et al. Oct 2017 A1
20170323253 Enssle et al. Nov 2017 A1
20170323376 Glaser et al. Nov 2017 A1
20170337508 Bogolea et al. Nov 2017 A1
20180001481 Shah et al. Jan 2018 A1
20180005035 Bogolea et al. Jan 2018 A1
20180005176 Williams et al. Jan 2018 A1
20180020145 Kotfis et al. Jan 2018 A1
20180051991 Hong Feb 2018 A1
20180053091 Savvides et al. Feb 2018 A1
20180053305 Gu et al. Feb 2018 A1
20180075403 Mascorro Medina et al. Mar 2018 A1
20180089613 Chen et al. Mar 2018 A1
20180101813 Paat et al. Apr 2018 A1
20180108120 Venable et al. Apr 2018 A1
20180108134 Venable et al. Apr 2018 A1
20180114183 Howell Apr 2018 A1
20180129201 Douglas May 2018 A1
20180130011 Jacobsson May 2018 A1
20180136648 Su May 2018 A1
20180143003 Clayton et al. May 2018 A1
20180174325 Fu et al. Jun 2018 A1
20180190160 Bryan et al. Jul 2018 A1
20180197139 Hill Jul 2018 A1
20180201423 Drzewiecki et al. Jul 2018 A1
20180204111 Zadeh et al. Jul 2018 A1
20180251253 Taira et al. Sep 2018 A1
20180276596 Murthy et al. Sep 2018 A1
20180281191 Sinyavskiy et al. Oct 2018 A1
20180293442 Fridental et al. Oct 2018 A1
20180293543 Tiwari et al. Oct 2018 A1
20180306958 Goss et al. Oct 2018 A1
20180313956 Rzeszutek et al. Nov 2018 A1
20180314260 Jen et al. Nov 2018 A1
20180314908 Lam Nov 2018 A1
20180315007 Kingsford et al. Nov 2018 A1
20180315065 Zhang et al. Nov 2018 A1
20180315173 Phan et al. Nov 2018 A1
20180315865 Haist et al. Nov 2018 A1
20180321692 Castillo-Effen et al. Nov 2018 A1
20180370727 Hance et al. Dec 2018 A1
20190049962 Ouellette et al. Feb 2019 A1
20190057588 Savvides et al. Feb 2019 A1
20190065861 Savvides et al. Feb 2019 A1
20190073554 Rzeszutek Mar 2019 A1
20190073559 Rzeszutek et al. Mar 2019 A1
20190073627 Nakdimon et al. Mar 2019 A1
20190077015 Shibasaki et al. Mar 2019 A1
20190087663 Yamazaki et al. Mar 2019 A1
20190094876 Moore et al. Mar 2019 A1
20190108606 Komiyama Apr 2019 A1
20190160675 Paschall, II May 2019 A1
20190178436 Mao et al. Jun 2019 A1
20190180150 Taylor et al. Jun 2019 A1
20190197439 Wang Jun 2019 A1
20190197728 Yamao Jun 2019 A1
20190236530 Cantrell et al. Aug 2019 A1
20190304132 Yoda et al. Oct 2019 A1
20190310655 Voorhies Oct 2019 A1
20190392212 Sawhney et al. Dec 2019 A1
20200053325 Deyle et al. Feb 2020 A1
20200314333 Liang et al. Oct 2020 A1
Foreign Referenced Citations (41)
Number Date Country
2835830 Nov 2012 CA
3028156 Jan 2018 CA
104200086 Dec 2014 CN
107067382 Aug 2017 CN
206952978 Feb 2018 CN
766098 Apr 1997 EP
1311993 May 2007 EP
2309378 Apr 2011 EP
2439487 Apr 2012 EP
2472475 Jul 2012 EP
2562688 Feb 2013 EP
2662831 Nov 2013 EP
2693362 Feb 2014 EP
3400113 Nov 2018 EP
2323238 Sep 1998 GB
2330265 Apr 1999 GB
2014170431 Sep 2014 JP
101234798 Jan 2009 KR
1020190031431 Mar 2019 KR
WO 9923600 May 1999 WO
WO 2003002935 Jan 2003 WO
WO 2003025805 Mar 2003 WO
WO 2006136958 Dec 2006 WO
WO 2007042251 Apr 2007 WO
WO 2008057504 May 2008 WO
WO 2008154611 Dec 2008 WO
WO 2012103199 Aug 2012 WO
WO 2012103202 Aug 2012 WO
WO 2012154801 Nov 2012 WO
WO 2013165674 Nov 2013 WO
WO 2014066422 May 2014 WO
WO 2014092552 Jun 2014 WO
WO 2014181323 Nov 2014 WO
WO 2015127503 Sep 2015 WO
WO 2016020038 Feb 2016 WO
WO 2017187106 Nov 2017 WO
WO 2018018007 Jan 2018 WO
2018026631 Feb 2018 WO
WO 2018204308 Nov 2018 WO
WO 2018204342 Nov 2018 WO
WO 2019023249 Jan 2019 WO
Non-Patent Literature Citations (104)
Entry
Dubois, M., et al., A comparison of geometric and energy-based point cloud semantic segmentation methods, European Conference on Mobile Robots (ECMR), p. 88-93, Sep. 25-27, 2013.
Duda, et al., “Use of the Hough Transformation to Detect Lines and Curves in Pictures”, Stanford Research Institute, Menlo Park, California, Graphics and Image Processing, Communications of the ACM, vol. 15, No. 1 (Jan. 1972).
F.C.A. Groen et al., “The smallest box around a package,” Pattern Recognition, vol. 14, No. 1-6, Jan. 1, 1981, pp. 173-176, XP055237156, GB, ISSN: 0031-3203, DOI: 10.1016/0031-3203(81(90059-5 p. 176-p. 178.
Federico Tombari et al. “Multimodal cue integration through Hypotheses Verification for RGB-D object recognition and 6DOF pose estimation”, IEEE International Conference on Robotics and Automation, Jan. 2013.
Flores, et al., “Removing Pedestrians from Google Street View Images”, Computer Vision and Pattern Recognition Workshops, 2010 IEEE Computer Society Conference on, IEE, Piscataway, NJ, pp. 53-58 (Jun. 13, 2010).
Glassner, “Space Subdivision for Fast Ray Tracing.” IEEE Computer Graphics and Applications, 4.10, pp. 15-24, 1984.
Golovinskiy, Aleksey, et al. “Min-Cut based segmentation of point clouds.” Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on. IEEE, 2009.
Hackel et al., “Contour Detection in unstructured 3D point clouds, ”IEEE, 2016 Conference on Computer vision and Pattern recognition (CVPR), Jun. 27-30, 2016, pp. 1-9.
Hao et al., “Structure-based object detection from scene point clouds,” Science Direct, v191, pp. 148-160 (2016).
Hu et al., “An improved method of discrete point cloud filtering based on complex environment,” International Journal of Applied Mathematics and Statistics, v48, i18 (2013).
International Search Report and Written Opinion for International Patent Application No. PCT/US2013/070996 dated Apr. 2, 2014.
International Search Report and Written Opinion for International Patent Application No. PCT/US2013/053212 dated Dec. 1, 2014.
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2016/064110 dated Mar. 20, 2017.
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2017/024847 dated Jul. 7, 2017.
International Search Report and Written Opinion for International Application No. PCT/US2018/030419 dated Aug. 31, 2018.
International Search Report and Written Opinion from International Patent Application No. PCT/US2018/030345 dated Sep. 17, 2018.
International Search Report and Written Opinion from International Patent Application No. PCT/US2018/030360 dated Jul. 9, 2018.
International Search Report and Written Opinion from International Patent Application No. PCT/US2018/030363 dated Jul. 9, 2018.
International Search Report and Written Opinion for International Application No. PCT/US2019/025859 dated Jul. 3, 2019.
International Search Report and Written Opinion from International Patent Application No. PCT/US2019/025849 dated Jul. 9, 2019.
International Search Report and Written Opinion from International Patent Application No. PCT/US2019/049761 dated Nov. 15, 2019.
International Search Report and Written Opinion from International Patent Application No. PCT/US2019/051312 dated Nov. 15, 2019.
International Search Report and Written Opinion from International Patent Application No. PCT/US2019/054103 dated Jan. 6, 2020.
International Search Report and Written Opinion from International Patent Application No. PCT/US2019/064020 dated Feb. 19, 2020.
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/027948 dated Jul. 16, 2020.
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/028133 dated Jul. 24, 2020.
International Search Report and Written Opinion from International Patent Application No. PCT/US2020/029134 dated Jul. 27, 2020.
International Search Report and Written Opinion from International Patent Application No. PCT/US2020/028183 dated Jul. 24, 2020.
International Search Report and Written Opinion from International Patent Application No. PCT/US2020/035285 dated Aug. 27, 2020.
International Search Report and Written Opinion for International Patent Application No. PCT/US2021/024805 dated Aug. 2, 2021.
Jadhav et al. “Survey on Spatial Domain dynamic template matching technique for scanning linear barcode,” International Journal of science and research v 5 n 3, Mar. 2016)(Year: 2016).
Jian Fan et al: “Shelf detection via vanishing point and radial projection”, 2014 IEEE International Conference on image processing (ICIP), IEEE, (Oct. 27, 2014), pp. 1575-1578.
Kang et al., “Kinematic Path-Tracking of Mobile Robot Using Iterative learning Control”, Journal of Robotic Systems, 2005, pp. 111-121.
Kay et al. “Ray Tracing Complex Scenes.” ACM SIGGRAPH Computer Graphics, vol. 20, No. 4, ACM, pp. 269-278, 1986.
Kelly et al., “Reactive Nonholonomic Trajectory Generation via Parametric Optimal Control”, International Journal of Robotics Research, vol. 22, No. 7-8, pp. 583-601 (Jul. 30, 2013).
Lari, Z., et al., “An adaptive approach for segmentation of 3D laser point cloud.” International Archives of the Photogrammertry, Remote sensing and spatial information Sciences, vol. XXXVIII-5/W12, 2011, ISPRS Calgary 2011 Workshop, Aug. 29-31, 2011, Calgary, Canada.
Lecking et al: “Localization in a wide range of industrial environments using relative 3D ceiling features”, IEEE, pp. 333-337 (Sep. 15, 2008).
Lee et al. “Statistically Optimized Sampling for Distributed Ray Tracing.” ACM SIGGRAPH Computer Graphics, vol. 19, No. 3, ACM, pp. 61-67, 1985.
Li et al., “An improved RANSAC for 3D Point cloud plane segmentation based on normal distribution transformation cells,” Remote sensing, V9: 433, pp. 1-16 (2017).
Likhachev, Maxim, and Dave Ferguson. “Planning Long dynamically feasible maneuvers for autonomous vehicles.” The international journal of Robotics Reasearch 28.8 (2009): 933-945. (Year:2009).
Marder-Eppstein et al., “The Office Marathon: robust navigation in an indoor office environment,” IEEE, 2010 International conference on robotics and automation, May 3-7, 2010, pp. 300-307.
McNaughton, Matthew, et al. “Motion planning for autonomous driving with a conformal spatiotemporal lattice.” Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE, 2011. (Year: 2011).
Meyersohn, “Walmart turns to robots and apps in stores”, https://www.cnn.com/2018/12/07/business/walmart-robot-janitors-dotcom-store/index.html, Oct. 29, 2019.
Mitra et al., “Estimating surface normals in noisy point cloud data,” International Journal of Computational geometry & applications, Jun. 8-10, 2003, pp. 322-328.
N.D.F. Campbell et al. “Automatic 3D Object Segmentation in Multiple Views using Volumetric Graph-Cuts”, Journal of Image and Vision Computing, vol. 28, Issue 1, Jan. 2010, pp. 14-25.
Ni et al., “Edge Detection and Feature Line Tracing in 3D-Point Clouds by Analyzing Geometric Properties of Neighborhoods,” Remote Sensing, V8 19, pp. 1-20 (2016).
Norriof et al., “Experimental comparison of some classical iterative learning control algorithms”, IEEE Transactions on Robotics and Automation, Jun. 2002, pp. 636-641.
Notice of allowance for U.S. Appl. No. 13/568,175 dated Sep. 23, 2014.
Notice of allowance for U.S. Appl. No. 13/693,503 dated Mar. 11, 2016.
Notice of allowance for U.S. Appl. No. 14/068,495 dated Apr. 25, 2016.
Notice of allowance for U.S. Appl. No. 14/518,091 dated Apr. 12, 2017.
“Fair Billing with Automatic Dimensioning” pp. 1-4, undated, Copyright Mettler-Toledo International Inc.
“Plane Detection in Point Cloud Data” dated Jan. 25, 2010 by Michael Ying Yang and Wolfgang Forstner, Technical Report 1, 2010, University of Bonn.
“Swift Dimension” Trademark Omniplanar, Copyright 2014.
Ajmal S. Mian et al., “Three-Dimensional Model Based Object Recognition and Segmentation in Cluttered Scenes”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, No. 10, Oct. 2006.
Batalin et al., “Mobile robot navigation using a sensor network,” IEEE, International Conference on robotics and automation, Apr. 26, May 1, 2004, pp. 636-641.
Bazazian et al., “Fast and Robust Edge Extraction in Unorganized Point clouds,” IEEE, 2015 International Conference on Digital Image Computing: Techniques and Applicatoins (DICTA), Nov. 23-25, 2015, pp. 1-8.
Biswas et al. “Depth Camera Based Indoor Mobile Robot Localization and Navigation” Robotics and Automation (ICRA), 2012 IEEE International Conference on IEEE, 2012.
Bohm, Multi-Image Fusion for Occlusion-Free Façade Texturing, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, pp. 867-872 (Jan. 2004).
Bristow et al., “A Survey of Iterative Learning Control”, IEEE Control Systems, Jun. 2006, pp. 96-114.
Buenaposada et al. “Realtime tracking and estimation of plane pose” Proceedings of the ICPR (Aug. 2002) vol. II, IEEE pp. 697-700.
Carreira et al., “Enhanced PCA-based localization using depth maps with missing data,” IEEE, pp. 1-8, Apr. 24, 2013.
Castorena et al., “Autocalibration of lidar and optical cameras via edge alignment”, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (Mar. 20, 2016).
Chen et al. “Improving Octree-Based Occupancy Maps Using Environment Sparsity with Application to Aerial Robot Navigation” Robotics and Automation (ICRA), 2017 IEEE.
Cleveland Jonas et al: “Automated System for Semantic Object Labeling with Soft-Object Recognition and Dynamic Programming Segmentation”, IEEE Transactions on Automation Science and Engineering, IEEE Service Center, New York, NY (Apr. 1, 2017).
Cook et al., “Distributed Ray Tracing” ACM SIGGRAPH Computer Graphics, vol. 18, No. 3, ACM pp. 137-145, 1984.
Datta, A., et al. “Accurate camera calibration using iterative refinement of control points,” in Computer Vision Workshops (ICCV Workshops), 2009.
Deschaud, et al., “A Fast and Accurate Place Detection algoritm for large noisy point clouds using filtered normals and voxel growing,” 3DPVT, May 2010, Paris, France. [hal-01097361].
Douillard, Bertrand, et al. “On the segmentation of 3D LIDAR point clouds.” Robotics and Automation (ICRA), 2011 IEEE International Conference on IEEE, 2011.
Notice of allowance for U.S. Appl. No. 15/211,103 dated Apr. 5, 2017.
Olson, Clark F., et al. “Wide-Baseline Stereo Vision for terrain Mapping” in Machine Vision and Applications, Aug. 2010.
Oriolo et al., “An iterative learning controller for nonholonomic mobile Robots”, the international Journal of Robotics Research, Aug. 1997, pp. 954-970.
Ostafew et al., “Visual Teach and Repeat, Repeat, Repeat: Iterative learning control to improve mobile robot path tracking in challenging outdoor environment”, IEEE/RSJ International Conference on Intelligent robots and Systems, Nov. 2013, p. 176-.
Park et al., “Autonomous mobile robot navigation using passive rfid in indoor environment,” IEEE, Transactions on industrial electronics, vol. 56, issue 7, pp. 2366-2373 (Jul. 2009).
Perveen et al. (An overview of template matching methodologies and its application, International Journal of Research in Computer and Communication Technology, v2n10, Oct. 2013) (Year: 2013).
Pivtoraiko et al., “Differentially constrained mobile robot motion planning in state lattices”, journal of field robotics, vol. 26, No. 3, 2009, pp. 308-333.
Pratt W K Ed: “Digital Image processing, 10-image enhancement, 17-image segmentation”, Jan. 1, 2001, Digital Image Processing: PIKS Inside, New York: John Wily & Sons, US, pp. 243-258, 551.
Puwein, J., et al. “Robust Multi-view camera calibration for wide-baseline camera networks, ”in IEEE Workshop on Applications of computer vision (WACV), Jan. 2011.
Rusu, et al. “How to incrementally register pairs of clouds,” PCL Library, retrieved from internet on Aug. 22, 2016 [http://pointclouds.org/documentation/tutorials/pairwise_incremental_registration.php.
Rusu, et al. “Spatial Change detection on unorganized point cloud data,” PCL Library, retrieved from internet on Aug. 19, 2016 [http://pointclouds.org/documentation/tutorials/octree_change.php].
Schnabel et al. “Efficient RANSAC for Point-Cloud Shape Detection”, vol. 0, No. 0, pp. 1-12 (1981).
Senthilkumaran, et al., “Edge Detection Techniques for Image Segmentation—A Survey of Soft Computing Approaches”, International Journal of Recent Trends in Engineering, vol. 1, No. 2 (May 2009).
Szeliski, “Modified Hough Transform”, Computer Vision. Copyright 2011, pp. 251-254. Retrieved on Aug. 17, 2017 [http://szeliski.org/book/drafts/SzeliskiBook_20100903_draft.pdf].
Tahir, Rabbani, et al., “Segmentation of point clouds using smoothness constraint, ”International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36.5 (Sep. 2006): 248-253.
Trevor et al., “Tables, Counters, and Shelves: Semantic Mapping of Surfaces in 3D,” Retrieved from Internet Jul. 3, 2018 @ http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.703.5365&rep=rep1&type=p.
Tseng, et al., “A Cloud Removal Approach for Aerial Image Visualization”, International Journal of Innovative Computing, Information & Control, vol. 9, No. 6, pp. 2421-2440 (Jun. 2013).
Uchiyama, et al., “Removal of Moving Objects from a Street-View Image by Fusing Multiple Image Sequences”, Pattern Recognition, 2010, 20th International Conference on, IEEE, Piscataway, NJ pp. 3456-3459 (Aug. 23, 2010).
United Kingdom Intellectual Property Office, “Combined Search and Examination Report” for GB Patent Application No. 1813580.6 dated Feb. 21, 2019.
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated Jan. 22, 2016 for GB Patent Application No. 1417218.3.
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated Jan. 22, 2016 for GB Patent Application No. 1521272.3.
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated Mar. 11, 2015 for GB Patent Application No. 1417218.3.
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated May 13, 2020 for GB Patent Application No. 1917864.9.
Varol Gul et al: “Product placement detection based on image processing”, 2014 22nd Signal Processing and Communication Applications Conference (SIU), IEEE, Apr. 23, 2014.
Varol Gul et al: “Toward Retail product recognition on Grocery shelves”, Visual Communications and image processing; Jan. 20, 2004; San Jose, (Mar. 4, 2015).
Weber et al., “Methods for Feature Detection in Point clouds,” visualization of large and unstructured data sets—IRTG Workshop, pp. 90-99 (2010).
Zhao Zhou et al.: “An Image contrast Enhancement Algorithm Using PLIP-based histogram Modification”, 2017 3rd IEEE International Conference on Cybernetics (CYBCON), IEEE, (Jun. 21, 2017).
Ziang Xie et al., “Multimodal Blending for High-Accuracy Instance Recognition”, 2013 IEEE RSJ International Conference on Intelligent Robots and Systems, p. 2214-2221.
Fan Zhang et al., “Parallax-tolerant Image Stitching”, 2014 Computer Vision Foundation, pp. 4321-4328.
Kaimo Lin et al., “Seagull: Seam-guided Local Alignment for Parallax-tolerant Image Stitching”, Retrieved on Nov. 16, 2020 [http://publish.illinois.edu/visual-modeling-and-analytics/files/2016/08/Seagull.pdf].
Julio Zaragoza et al., “As-Projective-As-Possible Image Stitching with Moving DLT”, 2013 Computer Vision Foundation, pp. 2339-2346.
Zeng et al., Multi-view Self Supervised Deep Learning for 6D Pose Estimation in the Amazon Picking Challenge, May 7, 2017. Retrieved on Nov. 16, 2019 [https://arxiv.org/pdf/1609.09475.pdf].
United Kingdom Intellectual Property Office, Examination Report dated Feb. 2, 2023 for GB Patent Application No. 2117122.8.
Canadian Intellectual Property Office, Examination Report dated Dec. 15, 2022 for Canadian Patent Application No. 3135764.
Australian Government, IP Australia, Examination Report dated Jan. 30, 2023 for Australian Application No. 2020289521.
Related Publications (1)
Number Date Country
20200379468 A1 Dec 2020 US