Method, system and apparatus for mobile automation apparatus localization

Information

  • Patent Grant
  • 11327504
  • Patent Number
    11,327,504
  • Date Filed
    Thursday, April 5, 2018
    6 years ago
  • Date Issued
    Tuesday, May 10, 2022
    2 years ago
Abstract
A method of mobile automation apparatus localization in a navigation controller includes: controlling a depth sensor to capture a plurality of depth measurements corresponding to an area containing a navigational structure; selecting a primary subset of the depth measurements; selecting, from the primary subset, a corner candidate subset of the depth measurements; generating, from the corner candidate subset, a corner edge corresponding to the navigational structure; selecting an aisle subset of the depth measurements from the primary subset, according to the corner edge; selecting, from the aisle subset, a local minimum depth measurement for each of a plurality of sampling planes extending from the depth sensor; generating a shelf plane from the local minimum depth measurements; and updating a localization of the mobile automation apparatus based on the corner edge and the shelf plane.
Description
BACKGROUND

Environments in which objects are managed, such as retail facilities, may be complex and fluid. For example, a retail facility may include objects such as products for purchase, a distribution environment may include objects such as parcels or pallets, a manufacturing environment may include objects such as components or assemblies, a healthcare environment may include objects such as medications or medical devices.


A mobile apparatus may be employed to perform tasks within the environment, such as capturing data for use in identifying products that are out of stock, incorrectly located, and the like. To travel within the environment a path is generated extending from a starting location to a destination location, and the apparatus travels the path to the destination. To accurately travel along the above-mentioned path, the apparatus typically tracks its location within the environment. However, such location tracking (also referred to as localization) is subject to various sources of noise and error, which can accumulate to a sufficient degree to affect navigational accuracy and impede the performance of tasks by the apparatus, such as data capture tasks.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The accompanying figures, where like reference numerals refer to identical or functionally similar elements throughout the separate views, together with the detailed description below, are incorporated in and form part of the specification, and serve to further illustrate embodiments of concepts that include the claimed invention, and explain various principles and advantages of those embodiments.



FIG. 1 is a schematic of a mobile automation system.



FIG. 2A depicts a mobile automation apparatus in the system of FIG. 1.



FIG. 2B is a block diagram of certain internal hardware components of the mobile automation apparatus in the system of FIG. 1.



FIG. 3 is a block diagram of certain internal components of the mobile automation apparatus of FIG. 1.



FIG. 4 is a flowchart of a method of localization for the mobile automation apparatus of FIG. 1.



FIG. 5 is an overhead view of an aisle to which the mobile automation apparatus of FIG. 1 is to travel.



FIG. 6 is a partial overhead view of the aisle of FIG. 5, illustrating localization error accumulated when the mobile automation apparatus of FIG. 1 has reached the aisle.



FIG. 7 is a perspective view of a portion of the aisle shown in FIG. 6.



FIGS. 8A and 8B depict depth and image data captured by the mobile automation apparatus of FIG. 1 during the performance of the method of FIG. 4.



FIGS. 9A-9D illustrate an example performance of blocks 410, 415 and 420 of the method of FIG. 4.



FIGS. 10A-10C illustrate an example performance of blocks 425 and 430 of the method of FIG. 4.



FIG. 11 illustrates an updated localization resulting from the performance of the method of FIG. 4.



FIG. 12 is a flowchart of another method of localization for the mobile automation apparatus of FIG. 1.



FIG. 13 illustrates an example performance of the method of FIG. 12.



FIG. 14 illustrates an updated localization resulting from the performance of the method of FIG. 12.





Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present invention.


The apparatus and method components have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.


DETAILED DESCRIPTION

Examples disclosed herein are directed to a method of mobile automation apparatus localization in a navigation controller, the method comprising: controlling a depth sensor to capture a plurality of depth measurements corresponding to an area containing a navigational structure; selecting a primary subset of the depth measurements; selecting, from the primary subset, a corner candidate subset of the depth measurements; generating, from the corner candidate subset, a corner edge corresponding to the navigational structure; selecting an aisle subset of the depth measurements from the primary subset, according to the corner edge; selecting, from the aisle subset, a local minimum depth measurement for each of a plurality of sampling planes extending from the depth sensor; generating a shelf plane from the local minimum depth measurements; and updating a localization of the mobile automation apparatus based on the corner edge and the shelf plane.


Additional examples disclosed herein are directed to a computing device for mobile automation apparatus localization, comprising: a depth sensor; a navigational controller configured to: control the depth sensor to capture a plurality of depth measurements corresponding to an area containing a navigational structure; select a primary subset of the depth measurements; select, from the primary subset, a corner candidate subset of the depth measurements; generate, from the corner candidate subset, a corner edge corresponding to the navigational structure; select an aisle subset of the depth measurements from the primary subset, according to the corner edge; select, from the aisle subset, a local minimum depth measurement for each of a plurality of sampling planes extending from the depth sensor; generate a shelf plane from the local minimum depth measurements; and update a localization of the mobile automation apparatus based on the corner edge and the shelf plane.



FIG. 1 depicts a mobile automation system 100 in accordance with the teachings of this disclosure. The system 100 includes a server 101 in communication with at least one mobile automation apparatus 103 (also referred to herein simply as the apparatus 103) and at least one client computing device 105 via communication links 107, illustrated in the present example as including wireless links. In the present example, the links 107 are provided by a wireless local area network (WLAN) deployed within the retail environment by one or more access points (not shown). In other examples, the server 101, the client device 105, or both, are located outside the retail environment, and the links 107 therefore include wide-area networks such as the Internet, mobile networks, and the like. The system 100 also includes a dock 108 for the apparatus 103 in the present example. The dock 108 is in communication with the server 101 via a link 109 that in the present example is a wired link. In other examples, however, the link 109 is a wireless link.


The client computing device 105 is illustrated in FIG. 1 as a mobile computing device, such as a tablet, smart phone or the like. In other examples, the client device 105 is implemented as another type of computing device, such as a desktop computer, a laptop computer, another server, a kiosk, a monitor, and the like. The system 100 can include a plurality of client devices 105 in communication with the server 101 via respective links 107.


The system 100 is deployed, in the illustrated example, in a retail environment including a plurality of shelf modules 110-1, 110-2, 110-3 and so on (collectively referred to as shelves 110, and generically referred to as a shelf 110—this nomenclature is also employed for other elements discussed herein). Each shelf module 110 supports a plurality of products 112. Each shelf module 110 includes a shelf back 116-1, 116-2, 116-3 and a support surface (e.g. support surface 117-3 as illustrated in FIG. 1) extending from the shelf back 116 to a shelf edge 118-1, 118-2, 118-3.


The shelf modules 110 are typically arranged in a plurality of aisles, each of which includes a plurality of modules 110 aligned end-to-end. In such arrangements, the shelf edges 118 face into the aisles, through which customers in the retail environment as well as the apparatus 103 may travel. At each end of an aisle, one of the modules 110 forms an aisle endcap, with certain ones of the shelf edges 118 of that module 110 facing not into the aisle, but outwards from the end of the aisle. In some examples (not shown), endcap structures are placed at the ends of aisles. The endcap structures may be additional shelf modules 110, for example having reduced lengths relative to the modules 110 within the aisles, and disposed perpendicularly to the modules 110 within the aisles.


As will be apparent from FIG. 1, the term “shelf edge” 118 as employed herein, which may also be referred to as the edge of a support surface (e.g., the support surfaces 117) refers to a surface bounded by adjacent surfaces having different angles of inclination. In the example illustrated in FIG. 1, the shelf edge 118-3 is at an angle of about ninety degrees relative to each of the support surface 117-3 and the underside (not shown) of the support surface 117-3. In other examples, the angles between the shelf edge 118-3 and the adjacent surfaces, such as the support surface 117-3, is more or less than ninety degrees. As those of skill in the art will realize, a support surface is not limited to a shelf support surface. In one embodiment, for example, a support surface may be a table support surface (e.g., a table top). In such an embodiment, a “shelf edge” and a “shelf plane” will correspond, respectively, to an edge of a support surface, such as a table support surface, and a plane containing the edge of the table support surface.


The apparatus 103 is deployed within the retail environment, and communicates with the server 101 (e.g. via the link 107) to navigate, autonomously or partially autonomously, along a length 119 of at least a portion of the shelves 110. The apparatus 103 is configured to navigate among the shelves 110, for example according to a frame of reference 102 established within the retail environment. The frame of reference 102 can also be referred to as a global frame of reference. The apparatus 103 is configured, during such navigation, to track the location of the apparatus 103 relative to the frame of reference 102. In other words, the apparatus 103 is configured to perform localization. As will be described below in greater detail, the apparatus 103 is also configured to update the above-mentioned localization by detecting certain structural features within the retail environment.


The apparatus 103 is equipped with a plurality of navigation and data capture sensors 104, such as image sensors (e.g. one or more digital cameras) and depth sensors (e.g. one or more Light Detection and Ranging (LIDAR) sensors, one or more depth cameras employing structured light patterns, such as infrared light, or the like). The apparatus 103 can be configured to employ the sensors 104 to both navigate among the shelves 110 and to capture shelf data during such navigation.


The server 101 includes a special purpose controller, such as a processor 120, specifically designed to control and/or assist the mobile automation apparatus 103 to navigate the environment and to capture data. To that end, the server 101 is configured to maintain, in a memory 122 connected with the processor 120, a repository 132 containing data for use in navigation by the apparatus 103.


The processor 120 can be further configured to obtain the captured data via a communications interface 124 for subsequent processing (e.g. to detect objects such as shelved products in the captured data, and detect status information corresponding to the objects). The server 101 may also be configured to transmit status notifications (e.g. notifications indicating that products are out-of-stock, low stock or misplaced) to the client device 105 responsive to the determination of product status data. The client device 105 includes one or more controllers (e.g. central processing units (CPUs) and/or field-programmable gate arrays (FPGAs) and the like) configured to process (e.g. to display) notifications received from the server 101.


The processor 120 is interconnected with a non-transitory computer readable storage medium, such as the above-mentioned memory 122, having stored thereon computer readable instructions for performing various functionality, including control of the apparatus 103 to navigate the modules 110 and capture shelf data, as well as post-processing of the shelf data. The memory 122 includes a combination of volatile (e.g. Random Access Memory or RAM) and non-volatile memory (e.g. read only memory or ROM, Electrically Erasable Programmable Read Only Memory or EEPROM, flash memory). The processor 120 and the memory 122 each comprise one or more integrated circuits. In some embodiments, the processor 120 is implemented as one or more central processing units (CPUs) and/or graphics processing units (GPUs).


The server 101 also includes the above-mentioned communications interface 124 interconnected with the processor 120. The communications interface 124 includes suitable hardware (e.g. transmitters, receivers, network interface controllers and the like) allowing the server 101 to communicate with other computing devices—particularly the apparatus 103, the client device 105 and the dock 108—via the links 107 and 109. The links 107 and 109 may be direct links, or links that traverse one or more networks, including both local and wide-area networks. The specific components of the communications interface 124 are selected based on the type of network or other links that the server 101 is required to communicate over. In the present example, as noted earlier, a wireless local-area network is implemented within the retail environment via the deployment of one or more wireless access points. The links 107 therefore include either or both wireless links between the apparatus 103 and the mobile device 105 and the above-mentioned access points, and a wired link (e.g. an Ethernet-based link) between the server 101 and the access point.


The memory 122 stores a plurality of applications, each including a plurality of computer readable instructions executable by the processor 120. The execution of the above-mentioned instructions by the processor 120 configures the server 101 to perform various actions discussed herein. The applications stored in the memory 122 include a control application 128, which may also be implemented as a suite of logically distinct applications. In general, via execution of the application 128 or subcomponents thereof and in conjunction with the other components of the server 101, the processor 120 is configured to implement various functionality. The processor 120, as configured via the execution of the control application 128, is also referred to herein as the controller 120. As will now be apparent, some or all of the functionality implemented by the controller 120 described below may also be performed by preconfigured hardware elements (e.g. one or more FPGAs and/or Application-Specific Integrated Circuits (ASICs)) rather than by execution of the control application 128 by the processor 120.


Turning now to FIGS. 2A and 2B, the mobile automation apparatus 103 is shown in greater detail. The apparatus 103 includes a chassis 201 containing a locomotive mechanism 203 (e.g. one or more electrical motors driving wheels, tracks or the like). The apparatus 103 further includes a sensor mast 205 supported on the chassis 201 and, in the present example, extending upwards (e.g., substantially vertically) from the chassis 201. The mast 205 supports the sensors 104 mentioned earlier. In particular, the sensors 104 include at least one imaging sensor 207, such as a digital camera, as well as at least one depth sensor 209, such as a 3D digital camera capable of capturing both depth data and image data. The apparatus 103 also includes additional depth sensors, such as LIDAR sensors 211. In other examples, the apparatus 103 includes additional sensors, such as one or more RFID readers, temperature sensors, and the like.


In the present example, the mast 205 supports seven digital cameras 207-1 through 207-7, and two LIDAR sensors 211-1 and 211-2. The mast 205 also supports a plurality of illumination assemblies 213, configured to illuminate the fields of view of the respective cameras 207. That is, the illumination assembly 213-1 illuminates the field of view of the camera 207-1, and so on. The sensors 207 and 211 are oriented on the mast 205 such that the fields of view of each sensor face a shelf 110 along the length 119 of which the apparatus 103 is travelling. The apparatus 103 is configured to track a location of the apparatus 103 (e.g. a location of the center of the chassis 201) in a common frame of reference previously established in the retail facility, permitting data captured by the mobile automation apparatus to be registered to the common frame of reference.


The mobile automation apparatus 103 includes a special-purpose controller, such as a processor 220, as shown in FIG. 2B, interconnected with a non-transitory computer readable storage medium, such as a memory 222. The memory 222 includes a combination of volatile (e.g. Random Access Memory or RAM) and non-volatile memory (e.g. read only memory or ROM, Electrically Erasable Programmable Read Only Memory or EEPROM, flash memory). The processor 220 and the memory 222 each comprise one or more integrated circuits. The memory 222 stores computer readable instructions for execution by the processor 220. In particular, the memory 222 stores a control application 228 which, when executed by the processor 220, configures the processor 220 to perform various functions discussed below in greater detail and related to the navigation of the apparatus 103 (e.g. by controlling the locomotive mechanism 203). The application 228 may also be implemented as a suite of distinct applications in other examples.


The processor 220, when so configured by the execution of the application 228, may also be referred to as a controller 220. Those skilled in the art will appreciate that the functionality implemented by the processor 220 via the execution of the application 228 may also be implemented by one or more specially designed hardware and firmware components, such as FPGAs, ASICs and the like in other embodiments.


The memory 222 may also store a repository 232 containing, for example, a map of the environment in which the apparatus 103 operates, for use during the execution of the application 228. The apparatus 103 may communicate with the server 101, for example to receive instructions to navigate to specified locations (e.g. to the end of a given aisle consisting of a set of modules 110) and initiate data capture operations (e.g. to traverse the above-mentioned aisle while capturing image and/or depth data), via a communications interface 224 over the link 107 shown in FIG. 1. The communications interface 224 also enables the apparatus 103 to communicate with the server 101 via the dock 108 and the link 109.


In the present example, as discussed below, the apparatus 103 is configured (via the execution of the application 228 by the processor 220) to maintain a localization representing a location of the apparatus 103 within a frame of reference, such as (but not necessarily limited to) the global frame of reference 102. Maintaining an updated localization enables the apparatus 103 to generate commands for operating the locomotive mechanism 203 to travel to other locations, such as an aisle specified in an instruction received from the server 101. As will be apparent to those skilled in the art, localization based on inertial sensing (e.g. via accelerometers and gyroscopes), as well as localization based on odometry (e.g. via a wheel encoder coupled to the locomotive mechanism 203) may suffer errors that accumulate over time. The apparatus 103 is therefore configured, as discussed below in greater detail, to update localization data by detecting certain navigational structures within the retail environment. In particular, aisle endcaps and shelf planes are employed by the apparatus 103 to update localization data.


As will be apparent in the discussion below, in other examples, some or all of the processing performed by the server 101 may be performed by the apparatus 103, and some or all of the processing performed by the apparatus 103 may be performed by the server 101.


Turning now to FIG. 3, before describing the actions taken by the apparatus 103 to update localization data, certain components of the application 228 will be described in greater detail. As will be apparent to those skilled in the art, in other examples the components of the application 228 may be separated into distinct applications, or combined into other sets of components. Some or all of the components illustrated in FIG. 3 may also be implemented as dedicated hardware components, such as one or more ASICs or FPGAs.


The application 228 includes a preprocessor 300 configured to select a primary subset of depth measurements for further processing to localize the apparatus 103. The application 228 also includes a corner generator 304 configured to detect certain navigational structures upon which to base localization updates. In the present example, the generator 304 is referred to as a corner generator because the navigational structure detected by the corner generator 304 is a corner (e.g. a vertical edge) of a shelf module 110, which may also be referred to as an endcap corner. The application 228 further includes a shelf plane generator 308, configured to generate, based on the captured depth data or a subset thereof, a plane containing the shelf edges 118 within an aisle containing a plurality of modules 110. In some examples, the application 228 also includes an imaging processor 312, configured to detect structural features such as the shelf edges 118 from captured image data (i.e. independent of the captured depth data). The image-based shelf edge detections are employed by the shelf plane generator 308 to validate the generated shelf plane. In other examples, the imaging processor 312 is omitted.


The application 228 also includes a localizer 316, configured to receive one or both of the generated corner edge from the corner generator 304 and a shelf plane from the shelf plane generator 308, and to update the localization of the apparatus 103 in at least one frame of reference based on the above-mentioned information. As will be seen below, the frame of reference can include the global frame of reference 102 mentioned above, as well as a local frame of reference specific to a given aisle of modules 110. The localizer 316 can also include subcomponents configured to generate and execute paths along with the apparatus 103 travels (via control of the locomotive mechanism 203), while maintaining updated localization information.


The functionality of the application 228 will now be described in greater detail, with reference to FIG. 4. FIG. 4 illustrates a method 400 of updating mobile automation apparatus localization, which will be described in conjunction with its performance in the system 100, and in particular by the apparatus 103, with reference to the components illustrated in FIG. 3.


At block 405, the apparatus 103, and in particular the preprocessor 300 of the application 228, is configured to capture a plurality of depth measurements, also referred to as depth data. The depth measurements are captured via the control of one or more depth sensors of the apparatus 103. In the present example, the depth measurements are captured via control of the depth sensor 209 (i.e. the 3D digital camera) mentioned above. The 3D camera is configured to capture both depth measurements and color data, also referred to herein as image data. That is, as will be apparent to those skilled in the art, each frame captured by the 3D camera is a point cloud including both color and depth data for each point. The point cloud is typically defined in a frame of reference centered on the sensor 209 itself. In other examples, the image data is omitted, and the performance of block 405 includes only the capture of depth data.


The apparatus 103 is configured to perform block 405 responsive to arrival of the apparatus 103 at a specified location in the retail environment. In the present example, prior to performing block 405, the apparatus 103 is configured to receive an instruction from the server 101 to travel from a current location of the apparatus 103 to a particular aisle. For example, referring to FIG. 5, the server 101 can be configured to issue an instruction (e.g. via the link 107) to the apparatus 103 to travel from a current location in the frame of reference 102 to an aisle 500 and, upon arrival at the aisle 500, to begin a data capture operation in which the apparatus 103 traverses the length of a plurality of modules 510-1, 510-2, and 510-3 to capture image and/or depth data depicting the modules 510.


Responsive to receiving the instruction, the apparatus 103 is configured (e.g. via execution of the localizer 316) to generate and execute a path from the current location of the apparatus 103 to a location 504 of an endcap corner of the aisle 500. The locations of the modules 510, and thus the location 504, are contained in the map stored in the repository 232. The localizer 316 is therefore configured to retrieve the corner location 504 from the repository 232, to generate and execute a path to the location 504. Turning to FIG. 6, the apparatus 103 is shown following execution of the above-mentioned path. In particular, the actual location and orientation (i.e. the actual pose) of the apparatus 103 are shown in solid lines, while a localization 600 of the apparatus 103 (i.e. a location and orientation in the frame of reference 102 as maintained by the localizer 316) is shown in dashed lines. As seen in FIG. 6, the localization of the apparatus 103 perceived by the localizer 316 is inaccurate. Errors in localization can arise from a variety of sources and may accumulate over time. Error sources include slippage of the locomotive mechanism 203 on the floor of the retail facility, signal noise from inertial sensors, and the like.


Accumulated localization errors can reach, in some examples, about 20 centimeters (as will be apparent, both larger and smaller errors are also possible). That is, the localization 600 of the apparatus 103 in the frame of reference 102 may be at a distance of about 20 cm from the actual, true position of the apparatus 103. For certain tasks, such as the above-mentioned data capture operation, smaller localization errors (e.g. below about 5 cm) may be required. In other words, for data capture operations to produce captured data (e.g. image data depicting the modules 510) of sufficient quality for subsequent processing, the localizer 316 may be required to maintain a localization that is sufficiently accurate to ensure that the true position of the apparatus 103 relative to the module 510 for which data is being captured is within about 5 cm of a target position. The target position may be, for example, about 75 cm from the module 510, and thus the localizer 316 may be required to maintain a localization that ensures that the true distance between the module 510 and the apparatus 103 remains between about 70 cm and about 80 cm.


Therefore, prior to beginning the data capture operation, the apparatus 103 is configured to update the localization stored in the localizer 316 via the performance of the method 400, beginning with the capture of depth and image data at block 405. The performance of block 405 is initiated following the arrival of the apparatus 103 adjacent the location 504, as shown in FIG. 6.



FIG. 7 illustrates a portion of the module 510-3 adjacent to the location 504, following arrival of the apparatus 103 at the location shown in the overhead view of FIG. 6. The module 510-3 includes a pair of support surfaces 717-1 and 717-2 extending from a shelf back 716 to respective shelf edges 718-1 and 718-2. The support surface 717-2 supports products 712 thereon, while the support surface 717-1 does not directly support products 712 itself. Instead, the shelf back 716 supports pegs 720 on which additional products 712 are supported. A portion of a ground surface 724, along which the apparatus 103 travels and corresponding to the X-Y plane (i.e. having a height of zero on the Z axis of the frame of reference 102) in the frame of reference 102, is also illustrated.



FIGS. 8A and 8B illustrate an example of the data captured at block 405. In particular, FIG. 8A illustrates a set of depth measurements corresponding to the module 510-3, in the form of a point cloud 800, while FIG. 8B illustrates image data 850. In the present example, the sensor 209 is configured to capture depth and image data substantially simultaneously, and the depth and image data are stored in a single file (e.g. each point in the point cloud 800 also includes color data corresponding to the image data 850). The depth data 800 and the image data 850 are therefore shown separately for illustrative purposes in FIGS. 8A and 8B.


Returning to FIG. 4, at block 410 the preprocessor 300 is configured to select a primary subset of the depth data captured at block 405. The primary subset of depth measurements is selected to reduce the volume of depth measurements to be processed through the remainder of the method 400, while containing structural features upon which the apparatus 103 is configured to base localization updates. In the present example, the primary subset is selected at block 410 by selecting depth measurements within a predefined threshold distance of the sensor 209 (i.e. excluding depth measurements at a greater distance from the sensor than the threshold).


More specifically, in the present example the preprocessor 300 is configured to select the primary subset by selecting any depth measurements from the point cloud 800 that fall within a primary selection region, such as a cylindrical region of predefined dimensions and position relative to the sensor 209. Turning to FIG. 9A, an example cylindrical selection region 900 is illustrated, centered on the location 904 of the sensor 209, which is typically the origin of the frame of reference in which the point cloud 800 is captured. The region 900 has a predefined diameter that is sufficiently large to contain the corner of the endcap module 510-3 despite the potentially inaccurate localization 600 of the apparatus 103 shown in FIG. 6. The region 900 also has a base located at a predefined height relative to the sensor 209 (e.g. to place the base of the region 900 about 2 cm above the ground surface 724). The region 900 also has a predefined height (i.e. a distance from the base to the top of the cylinder) selected to encompass substantially the entire height of the modules 510 (e.g. about 2 meters). In some examples, at block 410 the preprocessor 300 is also configured to select a ground plane subset of depth measurements, for example by applying a pass filter to select only the points within a predefined distance of the X-Y plane in the frame of reference 102 (e.g. above a height of −2 cm and below a height of 2 cm). The ground plane subset can be employed to generate (e.g. by application of a suitable plane fitting operation) a ground plane for use in validating subsequent processing outputs of the method 400, as will be discussed below.


Returning to FIG. 4, at block 415, the corner generator 304 is configured to select, from the primary subset of depth data, a corner candidate subset of depth measurements and to generate a corner edge from the corner candidate subset. The performance of block 415 serves to further restrict the set of depth measurements within which the endcap corner of the module 510-3 is present. Referring to FIG. 9B, the corner generator 304 is configured to select the corner candidate subset, in the present example, by identifying the depth measurement within the primary subset that is closest to the sensor location 904. In particular, FIG. 9B depicts an overhead view of the primary subset of depth measurements. The primary subset is depicted as a wedge rather than as an entire cylinder because the sensor 209 has a field of view of less than 360 degrees (e.g. of about 130 degrees in the illustrated example). As seen in FIG. 9B, only a subset of the depth measurements (the primary subset referred to above) in the point cloud 800 are shown. In particular, no depth measurements corresponding to the ground surface 724 are present in the primary subset.


The corner generator 304 is configured to identify the point 908 in the primary subset as the point closest to the location 904 (i.e. the location of the sensor 209). The point 908 is assumed to correspond to a portion of the endcap corner of the module 510-3. The corner generator 304 is therefore configured, responsive to identifying the point 908, to select the above-mentioned corner candidate subset by generating a corner candidate selection region based on the point 908. In the present example, the corner candidate selection region is a further cylinder, having a smaller predefined diameter than the cylinder 900 mentioned earlier, and having a longitudinal axis that contains the point 908. An example corner candidate selection region 912 is shown in FIG. 9A. The region 912 can be positioned at the same height (e.g. 2 cm above the ground surface 724) as the region 900, and can have the same height as the region 900.


Having selected the corner candidate selection region 912, the corner generator 304 is configured to fit an edge (i.e. a line) to the points contained in the region 912. Referring to FIG. 9C, the region 912 and the corner candidate subset of depth measurements contained therein are shown in isolation. A corner edge 916 is also shown in FIG. 9C, having been fitted to the points of the corner candidate subset. The corner edge 916 is generated according to a suitable line-fitting operation, such as a random sample consensus (RANSAC) line-fitting operation. Constraints may also be applied to the line-fitting operation. For example, the corner generator 304 can be configured to fit a substantially vertical line to the points of the corner candidate subset by imposing a constraint that the resulting corner edge 916 be substantially perpendicular to the above-mentioned ground plane.


Returning to FIG. 4, at block 420, responsive to generating the corner edge 916, the corner generator 304 is configured to select an aisle subset of depth measurements from the primary subset (shown in FIG. 9B), based on the corner edge 916. In particular, referring to FIG. 9D, an aisle subset 924 is selected from the primary subset, excluding a remainder 928 of the primary subset, by selecting only the depth measurements of the primary subset that lie on a predefined side of the corner edge 916 relative to the center location 904. For example, the corner generator 304 is configured to divide the primary subset with a plane 920 extending through the corner edge 916 and intersecting the center 904. The aisle subset 924 is the subset of points on the side of the plane 920 that corresponds to the interior of the aisle 500.


In other examples, at block 420 the corner generator 304 is also configured to select an endcap subset, corresponding to the remainder 928 of the primary subset as shown in FIG. 9D. As will now be apparent, the endcap subset is assumed to contain the edges 718 that extend perpendicularly to the aisle 500.


At block 425, the shelf plane generator 308 is configured to select local minima from the aisle subset, for use in the generation of a shelf plane at block 430. More specifically, turning to FIG. 10A, in the present example the shelf plane generator 308 is configured to generate a plurality of sampling planes 1000-1, 1000-2, 100-3 and so on, extending from the center location 904 at predefined angles through the aisle subset of depth measurements. For each sampling plane 1000, any depth measurements within a threshold distance of the sampling plane 1000 are projected onto the sampling plane. A plurality of depth measurements 1004 are shown in FIG. 10A as being within the above-mentioned threshold distance of the planes 1000. Further, as shown in FIG. 10B, for each sampling plane a single one of the measurements 1004 is selected, located closest to the location 904. Thus, three local minimum points 1008-1, 1008-2 and 1008-3 are shown as having been selected in FIG. 10B, with the remaining points in the aisle subset having been discarded.


The shelf plane generator 308 is then configured to generate a shelf plane for the aisle 500 at block 430, by performing a suitable plane-fitting operation (e.g. a RANSAC operation) on the local minima selected at block 425. FIG. 10C illustrates the result of such a plane-fitting operation in the form of a shelf or aisle plane 1012 (the local minima 1008 noted above are also shown for illustrative purposes). The generation of the aisle plane at block 430 can include one or more validation operations. For example, constraints can be imposed on the plane-fitting operation, such as a requirement that the resulting aisle plane be substantially perpendicular to the ground plane mentioned earlier.


In some examples, constraints for use at block 430 can be generated from the image data 850 (i.e. independent of the depth measurements 800). In particular, in some examples the preprocessor 300 is configured, following data capture at block 405, to perform block 435. At block 435, the preprocessor 300 is configured to generate one or more shelf edges from the image data 850 according to a suitable edge-detection operation. An example of the above-mentioned edge-detection operation includes the conversion of the image data 850 to grayscale image data, and optionally the down-sampling of the image data 850. The preprocessor 300 can then be configured to apply, for example, a Sobel filter to the image data 850 to extract gradients (e.g. vertical gradients denoting horizontal edges) from the image data. The preprocessor 300 can then be configured to apply a Hough transform to the resulting gradients, to generate candidate shelf edge lines. As will be apparent to those skilled in the art, other shelf edge detection operations may also be employed at block 435, such as a Canny edge detector.


Having generated shelf edges (e.g. corresponding to the shelf edges 718-1 and 718-2 shown in FIG. 7), the preprocessor 300 can be configured to retrieve the positions (in the point cloud 800) of pixels in the image data 850 that lie on the shelf edges. The above-mentioned positions are then employed at block 430 to validate the aisle plane generated by the shelf plane generator 308. For example, the shelf plane generator 308 can be configured to verify that the aisle plane 1012 contains the points that lie on the shelf edges, or that such points lie within a threshold distance of the aisle plane 1012. In other examples, the preprocessor 300 is configured to fit a validation plane to the shelf edge points, and the shelf plane generator 308 is configured to apply the validation plane as a constraint during the generation of the aisle plane 1012 (e.g. as a requirement that the aisle plane 1012 must have an angle with the validation plane that is no greater than a predefined threshold). In further examples, the preprocessor 300 can be configured to validate the aisle plane by determining whether angles between the shelf edges themselves (e.g. the candidate shelf lines mentioned above) and the aisle plane 1012 exceed a threshold angle.


Returning to FIG. 4, at block 440 the localizer 316 is configured to update the localization of the apparatus 103 according to the corner edge 916 and the aisle plane 1012. As will now be apparent, the position and orientation of the apparatus 103 relative to the corner edge 916 and the aisle plane 1012 can be determined from the point cloud 800, without being subject to certain sources of error (e.g. inertial sensor drift, wheel slippage and the like) responsible for a portion of the deviation between the previous localization 600 and the true position of the apparatus 103. Therefore,


Updating the localization of the apparatus 103 at block 440 includes, in the present example, initiating a local frame of reference having an origin that the intersection between the corner edge 916, the aisle plane 1012, and the above-mentioned ground plane. FIG. 10C illustrates a local frame of reference 1016, in which the aisle plane 1012 is the X-Z plane and the ground plane is the X-Y plane. The localizer 316 can therefore be configured to determine a position of the apparatus 103 in the frame of reference 1016. In further examples, the localizer 316 is configured to update the localization of the apparatus 103 by retrieving (e.g. from the map in the repository 232) a predefined true location of the endcap corner of the module 510-3 in the global frame of reference 102. The position and orientation of the apparatus 103 can then be determined in the global frame of reference 102 with the true location of the endcap corner of the module 510-3 and the position and orientation of the apparatus 103 relative to the corner edge 916 and aisle plane 1012.


Turning to FIG. 11, the previous localization 600 is illustrated, along with the true position of the apparatus 103 and an updated localization 1100 obtained via the performance of the method 400. The updated localization can also be configured to initialize or update a Kalman filter configured to accept as inputs inertial sensor data, wheel odometry, lidar odometry and the like, and to generate pose estimates for the apparatus 103.


Following the completion of the method 400, the apparatus 103 is configured to traverse the aisle 500, according to the data capture instruction noted above (received from the server 101). As will be apparent, during the traversal, additional error may accumulate in the localization obtained at block 440. The apparatus 103 is therefore configured to repeat the localization update process detailed above in connection with FIG. 4, with certain differences noted below.



FIG. 12 illustrates a method 1200 of updating localization during travel through an aisle (e.g. the aisle 500). The method 1200 may therefore be initiated following a performance of the method 400 at an entry to the aisle 500, as discussed above. Performance of the method 1200 includes the capture of depth and (optionally) image data at block 1205, the selection of a primary subset of the depth measurements at block 1210, and the selection of local minima from the primary subset at block 1225. The performance of blocks 1205, 1210 and 1225 are as described above in connection with blocks 405, 410 and 425 respectively. As will now be apparent, the detection of a corner via the generation of a corner edge is omitted in FIG. 12. The local minima selected at block 1225 are therefore selected from the entirety of the primary subset rather than from a portion of the primary subset as illustrated in FIG. 9D.


Following the selection of local minima at block 1225, the apparatus 103 (and particularly the shelf plane generator 308) is configured to generate a pose filter plane and select an aisle subset of depth measurements based on the pose filter plane. Turning to FIG. 13, an example performance of block 1227 is discussed.



FIG. 13 depicts the true position of the apparatus 103 in solid lines, and the current localization 1300 of the apparatus 103. As will be apparent a certain amount of error has accumulated in the localization 1300. FIG. 13 also illustrates a plurality of local minimum points 1304 obtained via the performance of block 1225. Certain local minima may represent sensor noise, or depth measurements corresponding to products 712 on the shelf support surfaces 717. Therefore, the shelf plane generator 308 is configured to generate a pose filter plane 1308, and to select an aisle subset of the points 1304, containing the subset of the points 1304 that are located between the pose filter plane 1308 and a pose plane 1312 corresponding to the current (per the localization 1300) pose of the apparatus 103. The position of the pose filter plane 1308 is set according to a distance 1316 from the pose plane 1312. The distance 1316 can be predefined, or can be determined as a multiple (typically greater than one) of a distance 1320 between the closest point in the primary subset and the pose plane 1312. The factor itself may also be predetermined, or may be dynamically determined based on the angle of orientation of the apparatus 103 relative to the X axis of the local frame of reference 1016. For example, the factor can be configured to increase as the angle of orientation diverges from an angle of zero degrees.


Having generated the pose filter plane 1308 and selected the aisle subset of points at block 1227, the shelf plane generator 308 is configured to generate a shelf plane (also referred to herein as an aisle plane, as noted earlier) at block 1230 based on the aisle subset of the depth measurements. The performance of block 1230 is as described above in connection with block 430, and can include the use of image-derived shelf edges from block 1235 (which is as described in connection with block 435). Referring again to FIG. 13, two candidate aisle planes 1324 and 1328 are illustrated.


At block 1232, the shelf plane generator is configured select one of the planes 1324 and 1328 and to determine whether the angle of the selected plane relative to the pose filter plane 1308 (or the pose plane 1312, as the planes 1308 and 1312 are parallel to each other) exceeds a predetermined threshold. The determination at block 1232 reflects an assumption that although the localization 1300 may contain a certain degree of error, that error is not unbounded, and certain plane angles are therefore unlikely to correspond to true shelf planes. More specifically, the apparatus 103 is configured to traverse the aisle 500 remaining substantially parallel to the shelf edges 718 of the modules 510. Therefore, a plane generated at block 1230 that indicates that the apparatus 103 has deviated from the parallel orientation noted above beyond a threshold is unlikely to be a correctly fitted plane. The angular threshold can be, for example, about ten degrees. In the present example, therefore, the determination at block 1232 is affirmative for the plane 1324, and the performance of the method 1200 therefore proceeds to block 1233 to determine whether any planes remain to be assessed. If the determination is negative, the performance of the method 1200 begins again at block 1205.


When additional planes remain to be assessed, the performance of block 1232 is repeated for the next plane (in the present example, the plane 1328). As is evident from FIG. 13, the plane 1328 is substantially parallel to the pose plane 1312, and the determination at block 1232 is therefore negative. The plane 1328 is therefore selected as the aisle plane, and the localizer 316 is configured to update the localization of the apparatus 103 based on the aisle plane 1328. As will now be apparent, the aisle plane 1328 represents the detected location of the X-Z plane of the frame of reference 1016. Therefore, at block 1240 the localizer 316 can be configured to update the perceived orientation of the apparatus 103 relative to the X-Z plane based on the orientation of the aisle plane 1328 in the point cloud captured at block 1205. FIG. 14 illustrates an updated localization 1400 generated at block 1240, in which the orientation has been corrected relative to the localization 1300. As noted above in connection with block 440, the localizer 316 can also be configured to update the Kalman filter with the updated localization 1400.


Returning to FIG. 12, at block 1245, the apparatus 103 is configured to determine whether the aisle 500 has been fully traversed, based on the updated localization. The determination at block 1245 can be based on either the local frame of reference 1016 or the global frame of reference 102, as the length of the aisle 500 is known from the map. When the determination at block 1245 is negative, the performance of the method 1200 is repeated as the apparatus 103 continues to traverse the aisle 500. When the determination at block 1245 is affirmative, the performance of the method 1200 terminates.


In the foregoing specification, specific embodiments have been described. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present teachings.


The benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential features or elements of any or all the claims. The invention is defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued.


Moreover in this document, relational terms such as first and second, top and bottom, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” “has”, “having,” “includes”, “including,” “contains”, “containing” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises, has, includes, contains a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “comprises . . . a”, “has . . . a”, “includes . . . a”, “contains . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises, has, includes, contains the element. The terms “a” and “an” are defined as one or more unless explicitly stated otherwise herein. The terms “substantially”, “essentially”, “approximately”, “about” or any other version thereof, are defined as being close to as understood by one of ordinary skill in the art, and in one non-limiting embodiment the term is defined to be within 10%, in another embodiment within 5%, in another embodiment within 1% and in another embodiment within 0.5%. The term “coupled” as used herein is defined as connected, although not necessarily directly and not necessarily mechanically. A device or structure that is “configured” in a certain way is configured in at least that way, but may also be configured in ways that are not listed.


It will be appreciated that some embodiments may be comprised of one or more generic or specialized processors (or “processing devices”) such as microprocessors, digital signal processors, customized processors and field programmable gate arrays (FPGAs) and unique stored program instructions (including both software and firmware) that control the one or more processors to implement, in conjunction with certain non-processor circuits, some, most, or all of the functions of the method and/or apparatus described herein. Alternatively, some or all functions could be implemented by a state machine that has no stored program instructions, or in one or more application specific integrated circuits (ASICs), in which each function or some combinations of certain of the functions are implemented as custom logic. Of course, a combination of the two approaches could be used.


Moreover, an embodiment can be implemented as a computer-readable storage medium having computer readable code stored thereon for programming a computer (e.g., comprising a processor) to perform a method as described and claimed herein. Examples of such computer-readable storage mediums include, but are not limited to, a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a ROM (Read Only Memory), a PROM (Programmable Read Only Memory), an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Erasable Programmable Read Only Memory) and a Flash memory. Further, it is expected that one of ordinary skill, notwithstanding possibly significant effort and many design choices motivated by, for example, available time, current technology, and economic considerations, when guided by the concepts and principles disclosed herein will be readily capable of generating such software instructions and programs and ICs with minimal experimentation.


The Abstract of the Disclosure is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in various embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.

Claims
  • 1. A method of mobile automation apparatus localization in a navigation controller, the method comprising: controlling a depth sensor to capture a plurality of depth measurements corresponding to an area containing a navigational structure;selecting a primary subset of the depth measurements;selecting, from the primary subset, a corner candidate subset of the depth measurements;generating, from the corner candidate subset, a corner edge corresponding to the navigational structure;selecting an aisle subset of the depth measurements from the primary subset, according to the corner edge;selecting, from the aisle subset, a local minimum depth measurement for each of a plurality of sampling planes extending from the depth sensor;generating a shelf plane from the local minimum depth measurements; andupdating a localization of the mobile automation apparatus based on the corner edge and the shelf plane.
  • 2. The method of claim 1, further comprising, prior to capturing the depth measurements: receiving an instruction to traverse an aisle associated with the navigational structure;retrieving a location of the navigational structure in a global frame of reference; andcontrolling a locomotive mechanism of the mobile automation apparatus to travel to the location.
  • 3. The method of claim 1, wherein selecting the primary subset comprises generating a primary selection region centered on the depth sensor, and selecting the depth measurements within the primary selection region.
  • 4. The method of claim 3, wherein the primary selection region is a cylinder.
  • 5. The method of claim 1, wherein selecting the aisle subset comprises dividing the primary subset into two portions according to the corner edge, and selecting one of the portions.
  • 6. The method of claim 1, wherein updating the localization includes initializing a local frame of reference having an origin based on the corner edge and the shelf plane.
  • 7. The method of claim 1, further comprising: providing the updated localization to a Kalman filter.
  • 8. The method of claim 1, further comprising: capturing image data with the depth measurements;detecting a shelf edge in the image data; andvalidating the shelf plane according to the shelf edge.
  • 9. The method of claim 2, further comprising: initiating a traversal of the aisle;controlling the depth sensor to capture a further plurality of depth measurements;selecting a further primary subset of depth measurements from the further plurality of depth measurements;selecting a further aisle subset of the depth measurements from the further primary subset;generating a further shelf plane based on the further aisle subset; andfurther updating the localization based on the further shelf plane.
  • 10. The method of claim 9, further comprising: determining an angle of the further shelf plane relative to a pose plane of the mobile automation apparatus; anddiscarding the further shelf plane if the angle exceeds a threshold.
  • 11. A computing device for mobile automation apparatus localization, comprising: a depth sensor;a navigational controller configured to: control the depth sensor to capture a plurality of depth measurements corresponding to an area containing a navigational structure;select a primary subset of the depth measurements;select, from the primary subset, a corner candidate subset of the depth measurements;generate, from the corner candidate subset, a corner edge corresponding to the navigational structure;select an aisle subset of the depth measurements from the primary subset, according to the corner edge;select, from the aisle subset, a local minimum depth measurement for each of a plurality of sampling planes extending from the depth sensor;generate a shelf plane from the local minimum depth measurements; andupdate a localization of the mobile automation apparatus based on the corner edge and the shelf plane.
  • 12. The computing device of claim 11, wherein the navigational controller is further configured, prior to controlling the depth sensor to capture the depth measurements: receive an instruction to traverse an aisle associated with the navigational structure;retrieve a location of the navigational structure in a global frame of reference; andcontrol a locomotive mechanism of the mobile automation apparatus to travel to the location.
  • 13. The computing device of claim 11, wherein the navigational controller is further configured to select the primary subset by: generating a primary selection region centered on the depth sensor; andselecting the depth measurements within the primary selection region.
  • 14. The computing device of claim 13, wherein the primary selection region is a cylinder.
  • 15. The computing device of claim 11, wherein the navigational controller is further configured to select the aisle subset by dividing the primary subset into two portions according to the corner edge, and selecting one of the portions.
  • 16. The computing device of claim 11, wherein the navigational controller is further configured to update the localization by initializing a local frame of reference having an origin based on the corner edge and the shelf plane.
  • 17. The computing device of claim 11, wherein the navigational controller is further configured to provide the updated localization to a Kalman filter.
  • 18. The computing device of claim 11, wherein the navigational controller is further configured to: control the image sensor to capture image data with the depth measurements;detect a shelf edge in the image data; andvalidate the shelf plane according to the shelf edge.
  • 19. The computing device of claim 12, wherein the navigational controller is further configured to: initiate a traversal of the aisle;control the depth sensor to capture a further plurality of depth measurements;select a further primary subset of depth measurements from the further plurality of depth measurements;select a further aisle subset of the depth measurements from the further primary subset;generate a further shelf plane based on the further aisle subset; andfurther update the localization based on the further shelf plane.
  • 20. The computing device of claim 19, wherein the navigational controller is further configured to: determine an angle of the further shelf plane relative to a pose plane of the mobile automation apparatus; anddiscard the further shelf plane if the angle exceeds a threshold.
US Referenced Citations (378)
Number Name Date Kind
5209712 Ferri May 1993 A
5214615 Bauer May 1993 A
5408322 Hsu et al. Apr 1995 A
5414268 McGee May 1995 A
5534762 Kim Jul 1996 A
5566280 Fukui et al. Oct 1996 A
5953055 Huang et al. Sep 1999 A
5988862 Kacyra et al. Nov 1999 A
6026376 Kenney Feb 2000 A
6034379 Bunte et al. Mar 2000 A
6075905 Herman et al. Jun 2000 A
6115114 Berg et al. Sep 2000 A
6141293 Amorai-Moriya et al. Oct 2000 A
6304855 Burke Oct 2001 B1
6442507 Skidmore et al. Aug 2002 B1
6549825 Kurata Apr 2003 B2
6580441 Schileru-Key Jun 2003 B2
6711293 Lowe Mar 2004 B1
6721769 Rappaport et al. Apr 2004 B1
6836567 Silver et al. Dec 2004 B1
6995762 Pavlidis et al. Feb 2006 B1
7090135 Patel Aug 2006 B2
7137207 Armstrong et al. Nov 2006 B2
7245558 Willins et al. Jul 2007 B2
7248754 Cato Jul 2007 B2
7277187 Smith et al. Oct 2007 B2
7373722 Cooper et al. May 2008 B2
7474389 Greenberg et al. Jan 2009 B2
7487595 Armstrong et al. Feb 2009 B2
7493336 Noonan Feb 2009 B2
7508794 Feather et al. Mar 2009 B2
7527205 Zhu et al. May 2009 B2
7605817 Zhang et al. Oct 2009 B2
7647752 Magnell Jan 2010 B2
7693757 Zimmerman Apr 2010 B2
7726575 Wang et al. Jun 2010 B2
7751928 Antony et al. Jul 2010 B1
7783383 Eliuk et al. Aug 2010 B2
7839531 Sugiyama Nov 2010 B2
7845560 Emanuel et al. Dec 2010 B2
7885865 Benson et al. Feb 2011 B2
7925114 Mai et al. Apr 2011 B2
7957998 Riley et al. Jun 2011 B2
7996179 Lee et al. Aug 2011 B2
8009864 Linaker et al. Aug 2011 B2
8049621 Egan Nov 2011 B1
8072470 Marks Dec 2011 B2
8091782 Cato et al. Jan 2012 B2
8094902 Crandall et al. Jan 2012 B2
8094937 Teoh et al. Jan 2012 B2
8132728 Dwinell et al. Mar 2012 B2
8134717 Pangrazio et al. Mar 2012 B2
8189855 Opalach et al. May 2012 B2
8199977 Krishnaswamy et al. Jun 2012 B2
8207964 Meadow et al. Jun 2012 B1
8233055 Matsunaga et al. Jul 2012 B2
8265895 Willins et al. Sep 2012 B2
8277396 Scott et al. Oct 2012 B2
8284988 Sones et al. Oct 2012 B2
8423431 Rouaix et al. Apr 2013 B1
8429004 Hamilton et al. Apr 2013 B2
8463079 Ackley et al. Jun 2013 B2
8479996 Barkan et al. Jul 2013 B2
8520067 Ersue Aug 2013 B2
8542252 Perez et al. Sep 2013 B2
8599303 Stettner Dec 2013 B2
8630924 Groenevelt et al. Jan 2014 B2
8660338 Ma et al. Feb 2014 B2
8743176 Stettner et al. Jun 2014 B2
8757479 Clark et al. Jun 2014 B2
8812226 Zeng Aug 2014 B2
8923893 Austin et al. Dec 2014 B2
8939369 Olmstead et al. Jan 2015 B2
8954188 Sullivan et al. Feb 2015 B2
8958911 Wong et al. Feb 2015 B2
8971637 Rivard Mar 2015 B1
8989342 Liesenfelt et al. Mar 2015 B2
9007601 Steffey et al. Apr 2015 B2
9037287 Grauberger et al. May 2015 B1
9064394 Trundle Jun 2015 B1
9070285 Ramu et al. Jun 2015 B1
9129277 Macintosh Sep 2015 B2
9135491 Morandi et al. Sep 2015 B2
9159047 Winkel Oct 2015 B2
9171442 Clements Oct 2015 B2
9205562 Konolige Dec 2015 B1
9247211 Zhang et al. Jan 2016 B2
9329269 Zeng May 2016 B2
9349076 Liu et al. May 2016 B1
9367831 Besehanic Jun 2016 B1
9380222 Clayton et al. Jun 2016 B2
9396554 Williams et al. Jul 2016 B2
9400170 Steffey Jul 2016 B2
9424482 Patel et al. Aug 2016 B2
9517767 Kentley et al. Dec 2016 B1
9542746 Wu et al. Jan 2017 B2
9549125 Goyal et al. Jan 2017 B1
9562971 Shenkar et al. Feb 2017 B2
9565400 Curlander et al. Feb 2017 B1
9600731 Yasunaga et al. Mar 2017 B2
9600892 Patel et al. Mar 2017 B2
9612123 Levinson et al. Apr 2017 B1
9639935 Douady-Pleven et al. May 2017 B1
9697429 Patel et al. Jul 2017 B2
9766074 Roumeliotis et al. Sep 2017 B2
9778388 Connor Oct 2017 B1
9791862 Connor Oct 2017 B1
9805240 Zheng et al. Oct 2017 B1
9811754 Schwartz Nov 2017 B2
9827683 Hance et al. Nov 2017 B1
9880009 Bell Jan 2018 B2
9928708 Lin et al. Mar 2018 B2
9980009 Jiang et al. May 2018 B2
9994339 Colson et al. Jun 2018 B2
10019803 Venable et al. Jul 2018 B2
10111646 Nycz et al. Oct 2018 B2
10121072 Kekatpure Nov 2018 B1
10127438 Fisher et al. Nov 2018 B1
10197400 Jesudason et al. Feb 2019 B2
10210603 Venable et al. Feb 2019 B2
10229386 Thomas Mar 2019 B2
10248653 Blassin et al. Apr 2019 B2
10265871 Hance et al. Apr 2019 B2
10289990 Rizzolo et al. May 2019 B2
10336543 Sills et al. Jul 2019 B1
10349031 DeLuca Jul 2019 B2
10352689 Brown et al. Jul 2019 B2
10394244 Song et al. Aug 2019 B2
20010041948 Ross et al. Nov 2001 A1
20020006231 Jayant et al. Jan 2002 A1
20020097439 Braica Jul 2002 A1
20020146170 Rom Oct 2002 A1
20020158453 Levine Oct 2002 A1
20020164236 Fukuhara et al. Nov 2002 A1
20030003925 Suzuki Jan 2003 A1
20030094494 Blanford et al. May 2003 A1
20030174891 Wenzel et al. Sep 2003 A1
20040021313 Gardner et al. Feb 2004 A1
20040131278 Imagawa et al. Jul 2004 A1
20040240754 Smith et al. Dec 2004 A1
20050016004 Armstrong et al. Jan 2005 A1
20050114059 Chang et al. May 2005 A1
20050213082 DiBernardo et al. Sep 2005 A1
20050213109 Schell et al. Sep 2005 A1
20060032915 Schwartz Feb 2006 A1
20060045325 Zavadsky et al. Mar 2006 A1
20060106742 Bochicchio et al. May 2006 A1
20060285486 Roberts et al. Dec 2006 A1
20070036398 Chen Feb 2007 A1
20070074410 Armstrong et al. Apr 2007 A1
20070272732 Hindmon Nov 2007 A1
20080002866 Fujiwara Jan 2008 A1
20080025565 Zhang et al. Jan 2008 A1
20080027591 Lenser et al. Jan 2008 A1
20080077511 Zimmerman Mar 2008 A1
20080159634 Sharma et al. Jul 2008 A1
20080164310 Dupuy et al. Jul 2008 A1
20080175513 Lai et al. Jul 2008 A1
20080181529 Michel et al. Jul 2008 A1
20080238919 Pack Oct 2008 A1
20080294487 Nasser Nov 2008 A1
20090009123 Skaff Jan 2009 A1
20090024353 Lee et al. Jan 2009 A1
20090057411 Madej et al. Mar 2009 A1
20090059270 Opalach et al. Mar 2009 A1
20090060349 Linaker et al. Mar 2009 A1
20090063306 Fano et al. Mar 2009 A1
20090063307 Groenovelt et al. Mar 2009 A1
20090074303 Filimonova et al. Mar 2009 A1
20090088975 Sato et al. Apr 2009 A1
20090103773 Wheeler et al. Apr 2009 A1
20090125350 Lessing et al. May 2009 A1
20090125535 Basso et al. May 2009 A1
20090152391 McWhirk Jun 2009 A1
20090160975 Kwan Jun 2009 A1
20090192921 Hicks Jul 2009 A1
20090206161 Olmstead Aug 2009 A1
20090236155 Skaff Sep 2009 A1
20090252437 Li et al. Oct 2009 A1
20090323121 Valkenburg et al. Dec 2009 A1
20100026804 Tanizaki et al. Feb 2010 A1
20100070365 Siotia et al. Mar 2010 A1
20100082194 Yabushita et al. Apr 2010 A1
20100091094 Sekowski Apr 2010 A1
20100118116 Tomasz et al. May 2010 A1
20100131234 Stewart et al. May 2010 A1
20100141806 Uemura et al. Jun 2010 A1
20100171826 Hamilton et al. Jul 2010 A1
20100208039 Setettner Aug 2010 A1
20100214873 Somasundaram et al. Aug 2010 A1
20100241289 Sandberg Sep 2010 A1
20100295850 Katz et al. Nov 2010 A1
20100315412 Sinha et al. Dec 2010 A1
20100326939 Clark et al. Dec 2010 A1
20110047636 Stachon et al. Feb 2011 A1
20110052043 Hyung et al. Mar 2011 A1
20110093306 Nielsen et al. Apr 2011 A1
20110137527 Simon et al. Jun 2011 A1
20110168774 Magal Jul 2011 A1
20110172875 Gibbs Jul 2011 A1
20110216063 Hayes Sep 2011 A1
20110242286 Pace et al. Oct 2011 A1
20110254840 Halstead Oct 2011 A1
20110286007 Pangrazio et al. Nov 2011 A1
20110288816 Thierman Nov 2011 A1
20110310088 Adabala et al. Dec 2011 A1
20120019393 Wolinsky et al. Jan 2012 A1
20120022913 VolKmann et al. Jan 2012 A1
20120069051 Hagbi et al. Mar 2012 A1
20120075342 Choubassi et al. Mar 2012 A1
20120133639 Kopf et al. May 2012 A1
20120307108 Forutanpour Jun 2012 A1
20120169530 Padmanabhan et al. Jul 2012 A1
20120179621 Moir et al. Jul 2012 A1
20120185112 Sung et al. Jul 2012 A1
20120194644 Newcombe et al. Aug 2012 A1
20120197464 Wang Aug 2012 A1
20120201466 Funayama et al. Aug 2012 A1
20120209553 Doytchinov et al. Aug 2012 A1
20120236119 Rhee et al. Sep 2012 A1
20120249802 Taylor Oct 2012 A1
20120250978 Taylor Oct 2012 A1
20120269383 Bobbitt et al. Oct 2012 A1
20120287249 Choo et al. Nov 2012 A1
20120323620 Hofman et al. Dec 2012 A1
20130030700 Miller et al. Jan 2013 A1
20130119138 Winkel May 2013 A1
20130132913 Fu et al. May 2013 A1
20130134178 Lu May 2013 A1
20130138246 Gutmann et al. May 2013 A1
20130142421 Silver et al. Jun 2013 A1
20130144565 Miller et al. Jun 2013 A1
20130154802 O'Haire et al. Jun 2013 A1
20130156292 Chang et al. Jun 2013 A1
20130162806 Ding et al. Jun 2013 A1
20130176398 Bonner et al. Jul 2013 A1
20130178227 Vartanian et al. Jul 2013 A1
20130182114 Zhang et al. Jul 2013 A1
20130226344 Wong et al. Aug 2013 A1
20130228620 Ahem et al. Sep 2013 A1
20130235165 Gharib et al. Sep 2013 A1
20130236089 Litvak et al. Sep 2013 A1
20130278631 Border et al. Oct 2013 A1
20130299306 Jiang et al. Nov 2013 A1
20130299313 Baek, IV et al. Nov 2013 A1
20130300729 Grimaud Nov 2013 A1
20130303193 Dharwada et al. Nov 2013 A1
20130321418 Kirk Dec 2013 A1
20130329013 Metois et al. Dec 2013 A1
20130341400 Lancaster-Larocque Dec 2013 A1
20140002597 Taguchi et al. Jan 2014 A1
20140003655 Gopalakrishnan et al. Jan 2014 A1
20140003727 Lortz et al. Jan 2014 A1
20140016832 Kong et al. Jan 2014 A1
20140019311 Tanaka Jan 2014 A1
20140025201 Ryu et al. Jan 2014 A1
20140028837 Gao et al. Jan 2014 A1
20140047342 Breternitz et al. Feb 2014 A1
20140049616 Stettner Feb 2014 A1
20140052555 MacIntosh Feb 2014 A1
20140086483 Zhang et al. Mar 2014 A1
20140098094 Neumann et al. Apr 2014 A1
20140100813 Shaowering Apr 2014 A1
20140104413 McCloskey et al. Apr 2014 A1
20140129027 Schnittman May 2014 A1
20140156133 Cullinane et al. Jun 2014 A1
20140192050 Qiu et al. Jul 2014 A1
20140195374 Bassemir et al. Jul 2014 A1
20140214547 Signorelli et al. Jul 2014 A1
20140267614 Ding et al. Sep 2014 A1
20140267688 Aich et al. Sep 2014 A1
20140277691 Jacobus et al. Sep 2014 A1
20140277692 Buzan et al. Sep 2014 A1
20140300637 Fan et al. Oct 2014 A1
20140344401 Varney et al. Nov 2014 A1
20140351073 Murphy et al. Nov 2014 A1
20140369607 Patel et al. Dec 2014 A1
20150015602 Beaudoin Jan 2015 A1
20150019391 Kumar et al. Jan 2015 A1
20150029339 Kobres et al. Jan 2015 A1
20150032252 Galluzzo Jan 2015 A1
20150039458 Reid Feb 2015 A1
20150088618 Basir et al. Mar 2015 A1
20150088703 Yan Mar 2015 A1
20150092066 Geiss et al. Apr 2015 A1
20150106403 Haverinen et al. Apr 2015 A1
20150117788 Patel et al. Apr 2015 A1
20150139010 Jeong et al. May 2015 A1
20150154467 Feng et al. Jun 2015 A1
20150161793 Takahashi Jun 2015 A1
20150170256 Pettyjohn Jun 2015 A1
20150181198 Baele et al. Jun 2015 A1
20150212521 Pack et al. Jul 2015 A1
20150245358 Schmidt Aug 2015 A1
20150262116 Katircioglu et al. Sep 2015 A1
20150279035 Wolski et al. Oct 2015 A1
20150298317 Wang et al. Oct 2015 A1
20150352721 Wicks et al. Dec 2015 A1
20150363625 Wu et al. Dec 2015 A1
20150363758 Wu et al. Dec 2015 A1
20150379704 Chandrasekar et al. Dec 2015 A1
20160026253 Bradski et al. Jan 2016 A1
20160044862 Kocer Feb 2016 A1
20160061591 Pangrazio et al. Mar 2016 A1
20160070981 Sasaki et al. Mar 2016 A1
20160092943 Vigier et al. Mar 2016 A1
20160012588 Taguchi et al. Apr 2016 A1
20160104041 Bowers et al. Apr 2016 A1
20160107690 Oyama et al. Apr 2016 A1
20160112628 Super et al. Apr 2016 A1
20160114488 Mascorro Medina et al. Apr 2016 A1
20160129592 Saboo et al. May 2016 A1
20160132815 Itoko et al. May 2016 A1
20160150217 Popov May 2016 A1
20160156898 Ren et al. Jun 2016 A1
20160163067 Williams et al. Jun 2016 A1
20160171336 Schwartz Jun 2016 A1
20160171429 Schwartz Jun 2016 A1
20160171707 Schwartz Jun 2016 A1
20160185347 Lefevre et al. Jun 2016 A1
20160191759 Somanath et al. Jun 2016 A1
20160253735 Scudillo et al. Sep 2016 A1
20160253844 Petrovskaya et al. Sep 2016 A1
20160271795 Vicenti Sep 2016 A1
20160313133 Zeng et al. Oct 2016 A1
20160328618 Patel et al. Nov 2016 A1
20160353099 Thomson et al. Dec 2016 A1
20160364634 Davis et al. Dec 2016 A1
20170004649 Collet Romea et al. Jan 2017 A1
20170011281 Dijkman et al. Jan 2017 A1
20170011308 Sun et al. Jan 2017 A1
20170032311 Rizzolo et al. Feb 2017 A1
20170041553 Cao et al. Feb 2017 A1
20170066459 Singh Mar 2017 A1
20170074659 Giurgiu et al. Mar 2017 A1
20170150129 Pangrazio May 2017 A1
20170193434 Shah et al. Jul 2017 A1
20170219338 Brown et al. Aug 2017 A1
20170219353 Alesiani Aug 2017 A1
20170227645 Swope et al. Aug 2017 A1
20170227647 Baik Aug 2017 A1
20170228885 Baumgartner Aug 2017 A1
20170261993 Venable et al. Sep 2017 A1
20170262724 Wu et al. Sep 2017 A1
20170280125 Brown et al. Sep 2017 A1
20170286773 Skaff et al. Oct 2017 A1
20170286901 Skaff et al. Oct 2017 A1
20170323376 Glaser et al. Nov 2017 A1
20170325082 Rowe Nov 2017 A1
20180001481 Shah et al. Jan 2018 A1
20180005035 Bogolea et al. Jan 2018 A1
20180005176 Williams et al. Jan 2018 A1
20180020145 Kotfis et al. Jan 2018 A1
20180051991 Hong Feb 2018 A1
20180053091 Savvides et al. Feb 2018 A1
20180053305 Gu et al. Feb 2018 A1
20180101813 Paat et al. Apr 2018 A1
20180114183 Howell Apr 2018 A1
20180143003 Clayton et al. May 2018 A1
20180174325 Fu et al. Jun 2018 A1
20180201423 Drzewiecki et al. Jul 2018 A1
20180204111 Zadeh et al. Jul 2018 A1
20180281191 Sinyavskiy et al. Oct 2018 A1
20180293442 Fridental et al. Oct 2018 A1
20180313956 Rzeszutek et al. Nov 2018 A1
20180314260 Jen et al. Nov 2018 A1
20180314908 Lam Nov 2018 A1
20180315007 Kingsford et al. Nov 2018 A1
20180315065 Zhang et al. Nov 2018 A1
20180315173 Phan et al. Nov 2018 A1
20180315865 Haist et al. Nov 2018 A1
20190057588 Savvides et al. Feb 2019 A1
20190065861 Savvides et al. Feb 2019 A1
20190073554 Rzeszutek Mar 2019 A1
20190149725 Adato May 2019 A1
20190180150 Taylor et al. Jun 2019 A1
20190197728 Yamao Jun 2019 A1
20190392212 Sawhney et al. Dec 2019 A1
Foreign Referenced Citations (34)
Number Date Country
2835830 Nov 2012 CA
3028156 Jan 2018 CA
104200086 Dec 2014 CN
107067382 Aug 2017 CN
766098 Apr 1997 EP
1311993 May 2007 EP
2309378 Apr 2011 EP
2439487 Apr 2012 EP
2472475 Jul 2012 EP
2562688 Feb 2013 EP
2662831 Nov 2013 EP
2693362 Feb 2014 EP
2323238 Sep 1998 GB
2330265 Apr 1999 GB
101234798 Jan 2009 KR
1020190031431 Mar 2019 KR
WO 9923600 May 1999 WO
WO 2003002935 Jan 2003 WO
WO 2003025805 Mar 2003 WO
WO 2006136958 Dec 2006 WO
WO 2007042251 Apr 2007 WO
WO 2008057504 May 2008 WO
WO 2008154611 Dec 2008 WO
WO 2012103199 Aug 2012 WO
WO 2012103202 Aug 2012 WO
WO 2012154801 Nov 2012 WO
WO 2013165674 Nov 2013 WO
WO 2014066422 May 2014 WO
WO 2014092552 Jun 2014 WO
WO 2014181323 Nov 2014 WO
WO 2015127503 Sep 2015 WO
WO 2016020038 Feb 2016 WO
WO 2018018007 Jan 2018 WO
WO 2019023249 Jan 2019 WO
Non-Patent Literature Citations (86)
Entry
Bazazian et al., “Fast and Robust Edge Extraction in Unorganized Point Clouds,” IEEE, 2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Nov. 23-25, 2015, pp. 1-8.
Ni et al., “Edge Detection and Feature Line Tracing in 3D-Point Clouds by Analyzing Geometric Properties of Neighborhoods,” Remote Sensing, vol. 8, Issue 9, pp. 1-20 (2016).
Hackel et al., “Contour detection in unstructured 3D point clouds,” IEEE, 2016 Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 27-30, 2016, pp. 1-9.
Li et al., “An Improved RANSAC for 3D Point Cloud Plane Segmentation Based on Normal Distribution Transformation Cells,” Remote Sensing, vol. 9: 433, pp. 1-16 (2017).
Weber et al., “Methods for Feature Detection in Point Clouds,” Visualization of Large and Unstructured Data Sets—IRTG Workshop, pp. 90-99 (2010).
Trevor et al., “Tables, Counters, and Shelves: Semantic Mapping of Surfaces in 3D,” Retrieved from Internet Jul. 3, 2018 @ http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.703.5365&rep=rep1&type=pdf, pp. 1-6.
Hao et al., “Structure-based object detection from scene point clouds,” Science Direct, vol. 191, pp. 148-160 (2016).
Hu et al., “An Improved Method of Discrete Point Cloud Filtering based on Complex Environment,” International Journal of Applied Mathematics and Statistics, vol. 48, Issue 18 (2013).
Deschaud, et al., “A Fast and Accurate Plane Detection Algorithm for Large Noisy Point Clouds Using Filtered Normals and Voxel Growing,” 3DPVT, May 2010, Paris, France, [hal-01097361].
Mitra et al., “Estimating Surface Normals in Noisy Point Cloud Data,” International Journal of Computational Geometry & Applications, Jun. 8-10, 2003, pp. 322-328.
Park et al., “Autonomous Mobile Robot Navigation Using Passive RFID in Indoor Environment,” IEEE, Transactions on Industrial Electronics, vol. 56, Issue 7, pp. 2366-2373 (Jul. 2009).
Batalin et al., “Mobile robot navigation using a sensor network,” IEEE, International Conference on Robotics and Automation, Apr. 26-May 1, 2004, pp. 636-641.
Marder-Eppstein et al., “The Office Marathon: Robust navigation in an indoor office environment,” IEEE, 2010 International Conference on Robotics and Automation, May 3-7, 2010, pp. 300-307.
International Search Report and Written Opinion for International Application No. PCT/US2019/025859 dated Jul. 3, 2019.
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2016/064110 dated Mar. 20, 2017.
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2017/024847 dated Jul. 7, 2017.
International Search Report and Written Opinion from International Patent Application No. PCT/US2018/030345 dated Sep. 17, 2018.
International Search Report and Written Opinion from International Patent Application No. PCT/US2018/030360 dated Jul. 9, 2018.
International Search Report and Written Opinion from International Patent Application No. PCT/US2018/030363 dated Jul. 9, 2018.
International Search Report and Written Opinion from International Patent Application No. PCT/US2019/025849 dated Jul. 9, 2019.
International Search Report and Written Opinion for International Patent Application No. PCT/US2013/053212 dated Dec. 1, 2014.
International Search Report and Written Opinion for International Patent Application No. PCT/US2013/070996 dated Apr. 2, 2014.
Jadhav et al. “Survey on Spatial Domain dynamic template matching technique for scanning linear barcode,” International Journal of scieve and research v 5 n 3, Mar. 2016)(Year: 2016).
Jian Fan et al: “Shelf detection via vanishing point and radial projection”, 2014 IEEE International Conference on image processing (ICIP), IEEE, (Oct. 27, 2014), pp. 1575-1578.
Kang et al., “Kinematic Path-Tracking of Mobile Robot Using Iterative learning Control”, Journal of Robotic Systems, 2005, pp. 111-121.
Kay et al. “Ray Tracing Complex Scenes.” ACM SIGGRAPH Computer Graphics, vol. 20, No. 4, ACM, pp. 269-278, 1986.
Kelly et al., “Reactive Nonholonomic Trajectory Generation via Parametric Optimal Control”, International Journal of Robotics Research, vol. 22, No. 7-8, pp. 583-601 (Jul. 30, 2013).
Lari, Z., et al., “An adaptive approach for segmentation of 3D laser point cloud.” International Archives of the Photogrammertry, Remote sensing and spatial information Sciences, vol. XXXVIII-5/W12, 2011, ISPRS Calgary 2011 Workshop, Aug. 29-31.
Lecking et al: “Localization in a wide range of industrial environments using relative 3D ceiling features”, IEEE, pp. 333-337 (Sep. 15, 2008).
Lee et al. “Statistically Optimized Sampling for Distributed Ray Tracing.” ACM SIGGRAPH Computer Graphics, vol. 19, No. 3, ACM, pp. 61-67, 1985.
Likhachev, Maxim, and Dave Ferguson. “Planning Long dynamically feasible maneuvers for autonomous vehicles.” The international journal of Robotics Reasearch 28.8 (2009): 933-945. (Year:2009).
McNaughton, Matthew, et al. “Motion planning for autonomous driving with a conformal spatiotemporal lattice.” Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE, 2011. (Year: 2011).
N.D.F. Campbell et al. “Automatic 3D Object Segmentation in Multiple Views using Volumetric Graph-Cuts”, Journal of Image and Vision Computing, vol. 28, Issue 1, Jan. 2010, pp. 14-25.
Norriof et al., “Experimental comparison of some classical iterative learning control algorithms”, IEEE Transactions on Robotics and Automation, Jun. 2002, pp. 636-641.
Notice of allowance for U.S. Appl. No. 13/568,175 dated Sep. 23, 2014.
Notice of allowance for U.S. Appl. No. 13/693,503 dated Mar. 11, 2016.
Notice of allowance for U.S. Appl. No. 14/068,495 dated Apr. 25, 2016.
Notice of allowance for U.S. Appl. No. 14/518,091 dated Apr. 12, 2017.
Notice of allowance for U.S. Appl. No. 15/211,103 dated Apr. 5, 2017.
Olson, Clark F., etal. “Wide-Baseline Stereo Vision for terrain Mapping” in Machine Vision and Applications, Aug. 2010.
Oriolo et al., “An iterative learning controller for nonholonomic mobile Robots”, the international Journal of Robotics Research, Aug. 1997, pp. 954-970.
Ostafew et al., “Visual Teach and Repeat, Repeat, Repeat: Iterative learning control to improve mobile robot path tracking in challenging outdoor environment”, IEEE/RSJ International Conference on Intelligent robots and Systems, Nov. 2013, pp. 176-181.
Perveen et al. (An overview of template matching methodologies and its application, International Journal of Research in Computer and Communication Technology, v2n10, Oct. 2013) (Year: 2013).
Pivtoraiko et al., “Differentially constrained mobile robot motion planning in state lattices”, journal of field robotics, vol. 26, No. 3, 2009, pp. 308-333.
Pratt W K Ed: “Digital Image processing, 10-image enhancement, 17-image segmentation”, Jan. 1, 2001, Digital Image Processing: PIKS Inside, New York: John Wily & Sons, US, pp. 243-258, 551.
Puwein, J., et al.“Robust Multi-view camera calibration for wide-baseline camera networks,” in IEEE Workshop on Applications of computer vision (WACV), Jan. 2011.
Rusu, et al. “How to incrementally register pairs of clouds,” PCL Library, retrieved from internet on Aug. 22, 2016 [http://pointclouds.org/documentation/tutorials/pairwise_incremental_registration.php.
Rusu, et al. “Spatial Change detection on unorganized point cloud data,” PCL Library, retrieved from internet on Aug. 19, 2016 [http://pointclouds.org/documentation/tutorials/octree_change.php].
Schnabel et al. “Efficient RANSAC for Point-Cloud Shape Detection”, vol. 0, No. 0, pp. 1-12 (1981).
Senthilkumaran, et al., “Edge Detection Techniques for Image Segmentation—A Survey of Soft Computing Approaches”, International Journal of Recent Trends in Engineering, vol. 1, No. 2 (May 2009).
Szeliski, “Modified Hough Transform”, Computer Vision. Copyright 2011, pp. 251-254. Retrieved on Aug. 17, 2017 [http://szeliski.org/book/drafts/SzeliskiBook_20100903_draft.pdf].
Tahir, Rabbani, et al., “Segmentation of point clouds using smoothness constraint,” International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36.5 (Sep. 2006): 248-253.
Tseng, et al., “A Cloud Removal Approach for Aerial Image Visualization”, International Journal of Innovative Computing, Information & Control, vol. 9, No. 6, pp. 2421-2440 (Jun. 2013).
Uchiyama, et al., “Removal of Moving Objects from a Street-View Image by Fusing Multiple Image Sequences”, Pattern Recognition, 2010, 20th International Conference on, IEEE, Piscataway, NJ pp. 3456-3459 (Aug. 23, 2010).
United Kingdom Intellectual Property Office, “Combined Search and Examination Report” for GB Patent Application No. 1813580.6 dated Feb. 21, 2019.
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated Jan. 22, 2016 for GB Patent Application No. 1417218.3.
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated Jan. 22, 2016 for GB Patent Application No. 1521272.3.
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated Mar. 11, 2015 for GB Patent Application No. 1417218.3.
Varol Gul et al: “Product placement detection based on image processing”, 2014 22nd Signal Processing and Communication Applications Conference (SIU), IEEE, Apr. 23, 2014.
Varol Gul et al: “Toward Retail product recognition on Grocery shelves”, Visual Communications and image processing; Jan. 20, 2004; San Jose, (Mar. 4, 2015).
Zhao Zhou et al.: “An Image contrast Enhancement Algorithm Using PLIP-based histogram Modification”, 2017 3rd IEEE International Conference on Cybernetics (CYBCON), IEEE, (Jun. 21, 2017).
Ziang Xie et al., “Multimodal Blending for High-Accuracy Instance Recognition”, 2013 IEEE RSJ International Conference on Intelligent Robots and Systems, p. 2214-2221.
“Fair Billing with Automatic Dimensioning” pp. 1-4, undated, Copyright Mettler-Toledo International Inc.
“Plane Detection in Point Cloud Data” dated Jan. 25, 2010 by Michael Ying Yang and Wolfgang Forstner, Technical Report 1, 2010, University of Bonn.
“Swift Dimension” Trademark Omniplanar, Copyright 2014.
Ajmal S. Mian et al., “Three-Dimensional Model Based Object Recognition and Segmentation in Cluttered Scenes”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, No. 10, Oct. 2006.
Biswas et al. “Depth Camera Based Indoor Mobile Robot Localization and Navigation” Robotics and Automation (ICRA), 2012 IEEE International Conference on IEEE, 2012.
Bohm, Multi-Image Fusion for Occlusion-Free Façade Texturing, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, pp. 867-872 (Jan. 2004).
Bristow et al., “A Survey of Iterative Learning Control”, IEEE Control Systems, Jun. 2006, pp. 96-114.
Buenaposada et al. “Realtime tracking and estimation of plane pose” Proceedings of the ICPR (Aug. 2002) vol. II, IEEE pp. 697-700.
Carreira et al., “Enhanced PCA-based localization using depth maps with missing data,” IEEE, pp. 1-8, Apr. 24, 2013.
Chen et al. “Improving Octree-Based Occupancy Maps Using Environment Sparsity with Application to Aerial Robot Navigation” Robotics and Automation (ICRA), 2017 IEEE International Conference on IEEE, pp. 3656-3663, 2017.
Cleveland Jonas et al: “Automated System for Semantic Object Labeling with Soft-Object Recognition and Dynamic Programming Segmentation”, IEEE Transactions on Automation Science and Engineering, IEEE Service Center, New York, NY (Apr. 1, 2017).
Cook et al., “Distributed Ray Tracing” ACM SIGGRAPH Computer Graphics, vol. 18, No. 3, ACM pp. 137-145, 1984.
Datta, A., et al. “Accurate camera calibration using iterative refinement of control points,” in Computer Vision Workshops (ICCV Workshops), 2009.
Douillard, Bertrand, et al. “On the segmentation of 3D LIDAR point clouds.” Robotics and Automation (ICRA), 2011 IEEE International Conference on IEEE, 2011.
Dubois, M., et al., A comparison of geometric and energy-based point cloud semantic segmentation methods, European Conference on Mobile Robots (ECMR), p. 88-93, 25-27, Sep. 2013.
Duda, et al., “Use of the Hough Transformation to Detect Lines and Curves in Pictures”, Stanford Research Institute, Menlo Park, California, Graphics and Image Processing, Communications of the ACM, vol. 15, No. 1 (Jan. 1972).
F.C.A. Groen et al., “The smallest box around a package,” Pattern Recognition, vol. 14, No. 1-6, Jan. 1, 1981, pp. 173-176, XP055237156, GB, ISSN: 0031-3203, DOI: 10.1016/0031-3203(81(90059-5 p. 176-p. 178.
Federico Tombari et al. “Multimodal cue integration through Hypotheses Verification for RGB-D object recognition and 6DOF pose estimation”, IEEE International Conference on Robotics and Automation, Jan. 2013.
Flores, et al., “Removing Pedestrians from Google Street View Images”, Computer Vision and Pattern Recognition Workshops, 2010 IEEE Computer Society Conference on, IEE, Piscataway, NJ, pp. 53-58 (Jun. 13, 2010).
Glassner, “Space Subdivision for Fast Ray Tracing.” IEEE Computer Graphics and Applications, 4.10, pp. 15-24, 1984.
Golovinskiy, Aleksey, et al. “Min-Cut based segmentation of point clouds.” Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on. IEEE, 2009.
International Search Report and Written Opinion from International Patent Application No. PCT/US2019/064020 dated Feb. 19, 2020.
International Search Report and Written Opinion for International Application No. PCT/US2019/025870 dated Jun. 21, 2019.
Kim, et al. “Robust approach to reconstructing transparent objects using a time-of-flight depth camera”, Optics Express, vol. 25, No. 3; Published Feb. 6, 2017.
Related Publications (1)
Number Date Country
20190310652 A1 Oct 2019 US