The disclosed embodiments generally relate to reflective and emissive image displays. In one embodiment, the disclosure relates to a total internal reflection-based high gain reflector. In another embodiment, the disclosure relates to a hybrid display with a spectrally notched color filter, narrow band emissive LEDs and total internal reflection-based high gain reflector capable of efficiently operating in low lighting and high brightness conditions.
Liquid crystal displays (LCDs) are one of the most common display technologies on the market. LCDs use a thin layer of liquid crystal material to control the emission or reflectance of a display. Liquid crystals (LCs) represent an unusual phase of matter since, unlike typical liquids with randomly oriented molecules, their molecules exhibit some degree of orientational alignment. Depending on the substance itself and the environmental conditions, a liquid crystal may take one of a number of phases. The phases include nematic, chiral nematic (substances forming this phase are often called cholesteric liquid crystals) and smectic liquid crystals. It is important to note that in all of these phases, an anisotropy results from the preferred orientation of the molecules, particularly in terms of the interaction of light with these materials.
In an image display device, a thin layer of liquid crystal material is typically contained in a gap between two glass plates. An electric field may be applied across the gap to cause the permanent or induced dipoles in the liquid crystal molecules to orient with the dipole axis parallel to the field.
Polarization is a characteristic of light that describes the direction of the electric and magnetic fields comprising the wave. For instance, linearly polarized light is a special case in which the electric field points in a single direction. The anisotropy of a liquid crystal resulting from the orientational alignment causes light that is linearly polarized parallel to a specified direction to propagate at a different velocity than light that is linearly polarized perpendicular to that specified direction. In view of this behavior, it is useful to consider that light is a combination of these two linear polarizations.
The two polarization components travel through a slab of liquid crystal material at two different velocities, and therefore may emerge from the material with a phase difference that is proportional to the thickness of the material. Thus, the orientational alignment of a liquid crystal affects the change it imparts to the polarization of incident light, which is why LCs are so useful in image displays.
Linearly polarized light can be produced by passing unpolarized light through a polarizing material that almost completely absorbs one polarization while allowing the other polarization to pass through fairly efficiently. If two such polarizing filters are layered with perpendicular polarization directions (in an arrangement known as crossed polarizers), very little light will pass through since the linearly polarized light emerging from the first polarizer will be absorbed by the second. The insertion of an isotropic material between the two polarizers will have no effect on the transmission of light since the polarization of the light is unchanged as it passes through such a material. A liquid crystal material inserted between the two polarizer filters, however, changes the polarization state such that some of the light will transmit through the stack. The application of an electric field across the liquid crystal can deform the crystal structure to change this anisotropy. In this manner, the amount of light that passed through the stack can be controlled.
Liquid crystals may be used in two primary types of image displays, namely transmissive and reflective. Transmissive displays may be constructed by stacking the appropriate polarizing filters and liquid crystal material to form a LC panel and incorporating a backlight to direct light through the liquid crystal panel toward the viewer. In the bright state, the molecules are oriented such that light passes through the panel. In the dark state, the light is absorbed, and the region looks dark. To generate each of these states, the anisotropy of the liquid crystal material is changed by the application of an electric field.
The reflective configuration is similar, but includes a polarization-preserving rear reflector instead of a backlight. In this case, the bright state again allows polarized incident light to pass fairly efficiently through the layers, where it reflects from the rear reflector, and passes again through the panel to return to the viewer. In the dark state, the light is absorbed, creating a dark appearance. These passive displays rely on the ambient lighting conditions, rather than a backlight, for the image on the display to be visible.
When there is no voltage applied to a pixel or segment of prior art display 100, light may completely pass through the display and be reflected by rear reflective layer 122 back towards viewer 106. The pixel or segment may appear in a light or bright state to viewer 106. When a voltage is applied to a pixel or segment forming an electric field across liquid crystal layer 112 to align the liquid crystals, light may be absorbed. The pixel or segment may appear dark to viewer 106.
A full-color image may also be generated in both the reflective and transmissive display configurations using a color filter overlay. Transmissive liquid crystal displays yield bright, colorful images by illuminating the display with a high intensity backlight. The backlight system may comprise a light source, such as light emitting diodes (LEDs), and a light guide. This is a visually effective technique, but because of the substantial power consumption of the backlight, it is inappropriate for low power, battery-operated device applications. Reflective displays, on the other hand, can operate on low power since they reflect the ambient light, but the maximum reflectance of such displays is quite limited. In theory, a monochrome LC display may be at most 50% reflective since at least half of the ambient light must be absorbed by the polarizer. In practice, the maximum reflectance of a typical monochrome reflective display is about 34%, and this value drops to at most about 16% for a full-color reflective liquid crystal display. A powerful front-light is sometimes used to illuminate this display surface for improved legibility, but again this drastically increases the power required to operate the device. Reflective LCDs also typically exhibit an unappealing gray or metallic-like appearance due to the specular-like rear reflector required to maximize the brightness of the display.
These and other embodiments of the disclosure will be discussed with reference to the following exemplary and non-limiting illustrations, in which like elements are numbered similarly, and where:
Throughout the following description specific details are set forth in order to provide a more thorough understanding to persons skilled in the art. However, well-known elements may not have been shown or described in detail to avoid unnecessarily obscuring the disclosure. Accordingly, the description and drawings are to be regarded in an illustrative, rather than a restrictive or exclusive, sense.
This disclosure generally relates to reflective-emissive hybrid image displays.
Certain low power reflective display embodiments described herein combine a high gain reflector unit, an LCD layer, spectrally notched color filters and a narrow band light emission layer to create a hybrid reflective-emissive display. The hybrid reflective-emissive display invention described herein is capable of operating in reflective mode, emissive mode or a hybrid reflective/emissive mode from low lighting conditions to high brightness conditions. The combination of the design elements described herein may yield enhanced performance in both reflective and emissive modes of operation. In some embodiments described, the overall brightness of reflective LCDs is enhanced. In addition, the embodiments described herein may give a reflective LCD a whiter and more visually pleasing paper-like appearance than what is currently on the market.
According to certain embodiments of the disclosure, a hybrid reflective-emissive liquid crystal display comprises a transparent sheet further comprising at least one convex protrusion. In certain embodiments, a hybrid reflective-emissive liquid crystal display comprises a transparent sheet further comprising at least one convex protrusion and a spectrally notched absorbing color filter layer. In some embodiments, a hybrid reflective-emissive liquid crystal display comprises a transparent sheet further comprising at least one convex protrusion, a spectrally notched absorbing color filter layer and a spectrally notched transmitting specular reflector. In some embodiments, a hybrid reflective-emissive liquid crystal display comprises a transparent sheet further comprising at least one convex protrusion, a spectrally notched absorbing color filter layer, a spectrally notched transmitting specular reflector and a reflective polarizer layer. In some embodiments, a hybrid reflective-emissive liquid crystal display comprises a transparent sheet further comprising at least one convex protrusion, a spectrally notched absorbing color filter layer, a spectrally notched transmitting specular reflector and a backlight system. In some embodiments, a hybrid reflective-emissive liquid crystal display comprises a transparent sheet further comprising a spectrally notched absorbing color filter layer, a spectrally notched transmitting specular reflector and a front light system. In other embodiments, a hybrid reflective-emissive microencapsulated electrophoretic display comprises a spectrally notched absorbing color filter layer and a narrow band LED light source. In still other embodiments, a hybrid reflective-emissive electrowetting display comprises a spectrally notched absorbing color filter layer and a narrow band LED light source.
In some embodiments, sheet 202 may also perform as a transparent barrier layer. A barrier layer may be located in various locations within the display embodiments described herein. Sheet 202 may act as one or more of a gas barrier or moisture barrier and may be hydrolytically stable. Sheet 202 may comprise one or more of polyester, polypropylene, polyethylene terephthalate, polyethylene naphthalate or copolymer, or polyethylene. Sheet 202 may comprise one or more of a chemical vapor deposited (CVD) or sputter coated ceramic-based thin film on a polymer substrate. The ceramic may comprise one or more of Al2O3, SiO2 or other metal oxide. Sheet 202 may comprise one or more of a Vitriflex barrier film, Invista OXYCLEAR® barrier resin, Toppan GL′ barrier films GL-AEC-F, GX-P-F, GL-AR-DF, GL-ARH, GL-RD, Celplast Ceramis® CPT-036, CPT-001, CPT-022, CPA-001, CPA-002, CPP-004, CPP-005 silicon oxide (SiOx) barrier films, Celplast CAMCLEAR® aluminum oxide (AlOx) coated clear barrier films, Celplast CAMSHIELD® T AlOx-polyester film, Torayfan® CBH or Torayfan® CBLH biaxially-oriented clear barrier polypropylene films.
Display 200 in
Display embodiment 200 in
While the specification refers to filters (e.g., optical, color, etc.) as general filters, it should be noted that optical filters may include bandpass filters which allow passage of particular wavelength (or group of wavelengths) while filtering out the non-matching bandwidths. In this manner, the light source and the filter may be substantially spectrally matched.
Spectrally notched filters (interchangeably, spectrally notched color filters) used in the display embodiments described herein may not be limited to two absorption bands as graphically illustrated in
A spectrally notched absorbing filter array yields a similar result as conventional broader-band non-saturated filter arrays used in reflective color LCDs. This is because only a portion of the light in the absorption range may be absorbed. Conventional broader-band, non-saturated, filter arrays have moderate absorption over a wide wavelength band, whereas in spectrally notched absorbing filters, there is high absorption but only in narrow regions within the desired band.
The notched filters may absorb in one or more regions.
Referring again to
Display embodiment 200 in
Display embodiment 200 of
Display embodiment 200 in
In certain embodiments, the disclosed embodiments combine a high gain reflector unit with an LCD layer to increase the overall brightness of reflective LCDs. The high gain reflector unit may comprise a polarization retention, semi-retro-reflective layer. The high gain reflector unit may comprise a de-polarizing, semi-retro-reflective layer. Furthermore, the embodiments described herein may make reflective LC displays more amenable to addition of a color filter layer for full-color reflective LCDs that are brighter than what is currently on the market. In addition, the embodiments described herein may give a reflective LCD a whiter and more visually pleasing paper-like appearance than the conventional displays. In the exemplary embodiment of
Second transparent sheet 220 may be located behind polarizer sheet 218 to provide support to display 200. In some embodiments, sheet 220 may be flexible or conformable. Sheet 202 may comprise glass. In some embodiments, sheet 220 may comprise glass of thickness in the range of about 20-2000 μm. In an exemplary embodiment, sheet 220 may comprise glass of thickness in the range of about 20-250 μm. Sheet 220 may comprise a flexible glass such as SCHOTT AF 32® eco or D 263® T eco ultra-thin glass. Sheet 220 may comprise a transparent polymer such as polycarbonate or an acrylic such as poly(methyl methacrylate).
Display embodiment 200 in
In one embodiment, protrusions 222 may comprise a high refractive index polymer. The refractive index of protrusions 222 may be greater than about 1.5. In some embodiments, convex protrusions 222 may be in the shape of hemispheres. Protrusions 222 may be of any shape or size or a mixture of shapes and sizes. Protrusions 222 may be elongated hemispheres or hexagonally shaped or a combination thereof. In other embodiments the convex protrusions may be microbeads embedded in sheet 220. Protrusions 222 may have a refractive index of about 1.5 or higher. In an exemplary embodiment, protrusions 222 may have a refractive index of about 1.5-1.9. The protrusions may have a diameter of at least about 0.5 microns. Protrusions 222 may have a diameter of at least about 2 microns. In some embodiments the protrusions may have a diameter in the range of about 0.5-5000 microns. In other embodiments, protrusions 222 may have a diameter in the range of about 0.5-500 microns. In still other embodiments, protrusions 222 may have a diameter in the range of about 0.5-100 microns. The protrusions may have a height of at least about 0.5 microns. In some embodiments the protrusions may have a height in the range of about 0.5-5000 microns. In other embodiments, protrusions 222 may have a height in the range of about 0.5-500 microns. In still other embodiments, protrusions 222 may have a height in the range of about 0.5-100 microns. In certain embodiments, protrusions 222 may include materials having a refractive index in the range of about 1.5 to 2.2. In certain other embodiments, the high refractive index protrusions may be a material having a refractive index of about 1.6 to about 1.9. Protrusions 222 may be comprised of a substantially rigid, high index material. High refractive index polymers that may be used may further comprise high refractive index additives such as metal oxides. The metal oxides may comprise one or more of SiO2, ZrO2, ZnO2, ZnO or TiO2. The refractive index of protrusions 222 may be greater than about 1.5.
In some embodiments, convex protrusions 222 may be in the shape of hemispheres as illustrated in
Display embodiment 200 in
In one embodiment, light source 226 may provide light of a specific wavelength (or wavelengths) that is substantially spectrally matches to one or more of the optical filters used in the display. For example, if light 226 is configured to provide a red LED light, one or more optical filters may be selected to allow substantially light corresponding to red wavelength(s) to pass through.
The concept of using spectrally notched absorbing color filters, as graphically illustrated in
In contrast, when the filters are illuminated by narrow band wavelength LEDs when the display is in emissive mode as graphically illustrated in
Display embodiment 200 in
Display embodiment 200 in
Layer 230 and convex protrusions 222 may form a gap or cavity 232. Gap 232 may comprise a low refractive index medium 234 in cavity 232. In an exemplary embodiment, medium 234 may comprise air. Medium 234 may be a gas such as Ar, N2 or CO2. Medium 234 may be a liquid. Medium 234 may be an inert, low refractive index fluid medium. Medium 234 may be a hydrocarbon. In other embodiments, the refractive index of medium 234 may be about 1 to 1.5. In still other embodiments, the refractive index of medium 234 may be about 1.1 to 1.4. In an exemplary embodiment, medium 234 may be a fluorinated hydrocarbon. In another exemplary embodiment, medium 234 may be a perfluorinated hydrocarbon. In an exemplary embodiment, medium 234 has a lower refractive index than the refractive index of convex protrusions 222. In other embodiments, medium 234 may be a mixture of a hydrocarbon and a fluorinated hydrocarbon. In an exemplary embodiment, medium 234 may comprise one or more of Fluorinert™, Novec™ 7000, Novec™ 7100, Novec™ 7300, Novec™ 7500, Novec™ 7700, Novec™ 8200, Teflon AF, CYTOP™ or Fluoropel™. In still other embodiments, medium 234 may comprise an optically clear adhesive (OCA). The gap 232 distance may be the focal length for the lens-focusing characteristic of the protrusions, in order for the light that passes through the dark pupil region to largely return in the direction from which it came. This may further enhance the semi-retro-reflective gain.
Display embodiment 200 may further comprise sidewalls 290 located in gap 232. Sidewalls 290 may help to maintain a uniform gap distance if the display is flexed or bent. Sidewalls 290 may be located in gap 232 in a periodic or random array. Sidewalls 290 may comprise polymer, glass or a metal. Sidewalls 290 may be flexible. Gap 232 may also comprise spacer units (not shown) such as beads. Spacer units may comprise a polymer.
Display embodiment 200 in
In some embodiments, layer 236 may comprise a high efficiency diffuse light reflector. Layer 236 may be flexible or conformable. Layer 236 may comprise a polymer such as polytetrafluroethylene (PTFE). Layer 236 may comprise a Porex Corp. (Fairburn, Ga., USA) POREX® PTFE diffuser, Accuratus Corp. (Phillipsburg, N.J., USA) Accuflect® B6, Accuflect® G6, Bright View Technologies (Durham, N.C., USA) BrightWhite 98™, BrightWhite 97™ or a BrightWhite Metal diffuser.
Display embodiment 200 in
Display embodiment 200 may further comprise a voltage bias source 240. Bias source 240 that may create an electric field or electromagnetic flux across liquid crystal layer 214 situated between front electrode 212 and rear electrode 216. The flux may change the orientation of the liquid crystals in layer 214. In an exemplary embodiment, twisted nematic liquid crystals located in layer 214 may re-orient by application of a bias. Twisted nematic liquid crystals in layer 214 may return to an original state upon removal of an applied voltage bias.
Bias source 240 may be coupled to one or more processor circuitry and memory circuitry configured to change or switch the applied bias in a predefined manner and/or for predetermined durations. For example, the processing circuitry may switch the applied bias to display characters on display 200.
In the example of
In another example mode of reflection as illustrated in
In the reflective mode described in
Voltages of various levels may be applied across layer 214 in order to re-orient the liquid crystals to varying degrees. This varies the amount of light that may be absorbed by or pass through layer 218. Gray states may be formed by partial reorientation of the liquid crystals in layer 214. Some light may thus be absorbed by layer 218 while some light may be reflected by the high gain reflective unit comprising layers 222, 230.
In a first mode, waveguide 224 may emit light 260 that is generated by edge lighting with LEDs. The LEDs may be narrow band RGB LEDs as previously described herein and graphically illustrated in
In a second illustrative emissive mode, light 262 may be emitted by waveguide 224. Light 262 may have incorrect polarization to pass through reflective polarizer layer 228. Light 262 then be reflected back as reflected light 264 towards rear specular reflector layer 236. Light 262, 264 may be recycled until it attains the correct polarization to pass through reflective polarizer layer 228. This is represented by emitted light 266 as it passes through display embodiment 200 towards viewer 206. Light 266 may similarly pass through display 200 as previously described for exiting light 260.
In a third illustrative emissive mode, light 268 may be emitted by waveguide 224. A portion of light 268 may have the correct polarization to pass through layer 228 and be emitted from display 200 as light 270 towards viewer 206. Another portion of light 268 that does not have the correct polarization may be reflected by layer 228 as light 272 (dotted line). Light 272 may be recycled between rear specular reflector layer 236 and layer 228 until it achieves the correct polarization. When it achieves the correct polarization it may be emitted from display 200 towards viewer 206. This is represented by emitted light 274 (dotted line). It should be reiterated that the three emissive/reflective modes described herein are for illustrative purposes only. Many other emissive/reflective modes may be possible. Furthermore, display 200 in emissive mode may be bright color saturated. This is due to the RGB LEDs are matched to the transmission notches in color filter array 210. The power consumption in this mode may be as good as a conventional emissive display because the light may be efficiently in the high efficiency backlit waveguide.
Display embodiment 200 in
In an exemplary embodiment, display 200 may further comprise an ambient light sensor. When ambient light is high above a pre-determined level, display 200 may operate in reflection mode. When ambient light is low and below a pre-determined level, display 200 may operate in emissive mode. When ambient light is present in a range of levels, display 200 may operate in a hybrid mode. In one embodiment, the ambient light sensor is positioned in the periphery of the hybrid display.
Display 700 in
As in
Display embodiment 700 may further comprise a high efficiency diffuse reflector 738 and reflective polarizer layer 740. In other embodiments, one or both of layers 738 and 740 may be replaced with a specular reflector layer.
Two modes of reflection will be illustrated in embodiment 700 in
In a first illustrative mode of reflection, light 742 may enter display embodiment 700 and pass through a first polarizing layer 714. Polarizing layer 714 absorbs a portion of the incident light. It is assumed, for illustrative purposes only, that the polarizer layer 714 absorbs perpendicular polarized light only and allows all parallel polarized light to approach layer 720 comprising of liquid crystals. It is assumed that layer 720 comprises twisted nematic liquid crystals. The twisted nematic liquid crystals are in their natural twisted state as it is assumed that no power is being applied to the front 718 and rear electrodes 722. As the parallel polarized light enters layer 720, the twisted nematic liquid crystals interact with and convert the light from parallel to perpendicular polarized light. The perpendicular polarized light is allowed to pass through absorptive polarizing layer 726 that lies at about a 90° angle to polarizing layer 714. This allows light to continue to pass through polarizing layer 726 towards array of convex protrusions 730. Some light undergoes TIR at the interface of high refractive index layer 730 and low refractive index medium 736 as previously explained herein. The totally internally reflected light 742 is reflected back towards viewer 710 as reflected light ray 744.
In the second illustrative mode, representative light 746 enters a pixel in display 700 and first polarizer layer 714 where perpendicular polarized light may be absorbed and parallel polarized light may continue to enter the display. The parallel polarized light 746 may be converted to perpendicular polarized light by interaction with the nematic liquid crystals in layer 720. The perpendicular polarized light may pass through light polarizing layer 726 towards the interface of array of high refractive index protrusions 730 and low refractive index medium 736. In this location, light 746 arrives at the interface at an angle smaller than critical angle, θc, and passes through the “dark pupil” region as previously explained. Light 746 may then be totally internally reflected back towards viewer 710 by high efficiency diffuse reflector layer 738 as representative light 748. If reflected light 748 retains the proper polarization after reflection from layer 738 it may pass through reflective polarizer layer 740 and exit the display back towards viewer 710. In some instances, the polarization of incident light 746 may change after reflection off of diffuse reflector layer 738. In these instances, reflective polarizer layer 740 may reflect the light back towards layer 738 until the light has the correct polarization to pass through layer 740. Light may thus be recycled between layer 738 and layer 740 until the proper polarization is attained so that the light may exit the display.
A second emissive/reflective mode illustrated in
In another embodiment, layers 738 and 740 may be replaced by a specular reflector. Specular reflectors typically reflect light and do not substantially change the polarization allowing the light to be emitted from the display. A specular reflector layer may be used in placed of layers 738 and 740 in
Display embodiment 700 in
In an exemplary embodiment, display 700 may further comprise an ambient light sensor. When ambient light is high above a pre-determined level, display 700 may operate in reflection mode. When ambient light is low and below a pre-determined level, display 700 may operate in emissive mode. When ambient light is present in a range of levels, display 700 may operate in a hybrid mode.
It should be known that matching spectrally notched absorbing color filters with narrow band emissive LEDs, as described herein, may be combined with other reflective display technologies to enhance brightness. This technology may be combined with electrowetting displays (i.e. Liquivista B.V., Eindhoven, the Netherlands), electrofluidic displays, microencapsulated electrophoretic displays (i.e. E Ink Holdings, Hsinchu, Taiwan; OED Technologies, Guangzhou, China), reflective LCDs, microelectromechanical-based systems (MEMs) or other reflective display systems. This technology may be used as front lighting or backlighting systems.
Any of the disclosed embodiments may comprise a diffuser layer. A diffuser layer may be used to soften the incoming light or reflected light or to reduce glare. Diffuser layer may comprise a flexible polymer. Diffuser layer may comprise ground glass in a flexible polymer matrix. Diffuser may comprise a micro-structured or textured polymer. Diffuser layer may comprise 3M™ anti-sparkle or anti-glare film. Diffuser layer may comprise 3M™ GLR320 film (Maplewood, Minn.) or AGF6200 film. A diffuser layer may be located at one or more various locations within the display embodiments described herein.
Any of the disclosed embodiments may further comprise at least one optically clear adhesive (OCA) layer. OCA layer may be flexible or conformable. OCA's may be used to adhere display layers together and to optically couple the layers. Any of the display embodiments described herein may comprise optically clear adhesive layers further comprised of one or more of 3M™ optically clear adhesives 3M™ 8211, 3M™ 8212, 3M™ 8213, 3M™ 8214, 3M™ 8215, 3M™ OCA 8146-X, 3M™ OCA 817X, 3M™ OCA 821X, 3M™ OCA 9483, 3M™ OCA 826XN or 3M™ OCA 8148-X, 3M™ CEF05XX, 3M™ CEF06XXN, 3M™ CEF19XX, 3M™ CEF28XX, 3M™ CEF29XX, 3M™ CEF30XX, 3M™ CEF31, 3M™ CEF71XX, Lintec MO-T020RW, Lintec MO-3015UV series, Lintec MO-T015, Lintec MO-3014UV2+, Lintec MO-3015UV.
Any of the disclosed embodiments may further include at least one optional dielectric layer. The one or more optional dielectric layers may be used to protect one or both of the layers in any of the display embodiments described herein. In some embodiments, the dielectric layers may comprise different compositions. The dielectric layers may be substantially uniform, continuous and substantially free of surface defects.
The dielectric layers may be at least about 5 nm in thickness or more. In some embodiments, the dielectric layer thickness may be about 5 to 300 nm. In other embodiments, the dielectric layer thickness may be about 5 to 200 nm. In still other embodiments, the dielectric layer thickness may be about 5 to 100 nm. The dielectric layers may each have a thickness of at least about 30 nanometers. In an exemplary embodiment, the thickness may be about 30-200 nanometers.
In other embodiments, parylene may have a thickness of about 20 nanometers. The dielectric layers may comprise at least one pin hole. The dielectric layer may define a conformal coating and may be free of pin holes or may have minimal pin holes. The dielectric layer may also be a structured layer. The dielectric layer may also act as a barrier layer to prevent moisture or gas ingress. The dielectric layers may have a high or low dielectric constant. The dielectric layers may have a dielectric constant in the range of about 1-15. Dielectric compounds may be organic or inorganic in type. The most common inorganic dielectric material is SiO2 commonly used in integrated chips. The dielectric layer may be SiN. The dielectric layer may be Al2O3. The dielectric layer may be a ceramic. Organic dielectric materials are typically polymers such as polyimides, fluoropolymers, polynorbornenes and hydrocarbon-based polymers lacking polar groups. The dielectric layers may be a polymer or a combination of polymers. The dielectric layers may be combinations of polymers, metal oxides and ceramics. In an exemplary embodiment, the dielectric layers comprise parylene. In other embodiments the dielectric layers may comprise a halogenated parylene. Other inorganic or organic dielectric materials or combinations thereof may also be used for the dielectric layers. One or more of the dielectric layers may be CVD or sputter coated. One or more of dielectric layers may be a solution coated polymer, vapor deposited dielectric or sputter deposited dielectric.
Any of the display embodiments described herein may further comprise a conductive cross-over. A conductive cross-over may bond to the front electrode layer and to a trace on the rear electrode layer such as a TFT. This may allow a driver integrated circuit (IC) to control the voltage at the front electrode. In an exemplary embodiment, the conductive cross-over may comprise an electrically conductive adhesive that is flexible or conformable.
In order to bend or flex any of the display embodiments described herein comprising convex protrusions, the protrusions may be spaced far enough apart such that they do not impinge on neighboring protrusions. As the amount of flex is desired in the display increases, the spacing may need to be increased to prevent impinging of adjacent protrusions. The smaller the spacing, the less the display may be allowed to flex or bend. In some embodiments the spacing between the protrusions may be about 0.01 μm or larger. In other embodiments, the spacing between the protrusions may be about 0.01-10 μm. In still other embodiments, the spacing between the protrusions may be about 1-5 μm. In some embodiments, the ratio of the height of a protrusion to the spacing of adjacent protrusions is in the range of about 100:1 to about 5:1.
At least one edge seal may be employed with the disclosed display embodiments. The edge seal may prevent ingress of moisture or other environmental contaminants from entering the display. The edge seal may be a thermally, chemically or a radiation cured material or a combination thereof. The edge seal may comprise one or more of an epoxy, silicone, polyisobutylene, acrylate or other polymer based material. In some embodiments the edge seal may comprise a metallized foil. In some embodiments the edge sealant may comprise a filler such as SiO2 or Al2O3. In other embodiments, the edge seal may be flexible or conformable after curing. In still other embodiments, the edge seal may also act as a barrier to moisture, oxygen and other gasses.
At least one sidewall (may also be referred to as cross-walls or partition walls) may be employed with the disclosed display embodiments. In an exemplary embodiment, sidewalls may substantially maintain a uniform gap distance within specified areas of the display embodiments. Sidewalls may also act as a barrier to aid in preventing prevent moisture and oxygen ingress into the display. The sidewalls may be located within the light modulation layer comprising the liquid crystals, electrowetting solution or other materials. The sidewalls may comprise polymer, metal or glass or a combination thereof. The sidewalls may be any size or shape. The sidewalls may have a rounded cross-section. The sidewalls or cross-walls may be configured to create wells or compartments in, for example, square-like, triangular, pentagonal or hexagonal shapes or a combination thereof. The sidewalls may comprise a polymeric material and patterned by one or more conventional techniques including photolithography, embossing or molding. In an exemplary embodiment, the sidewalls may be comprised of a flexible or conformal polymer.
Various control mechanisms for the invention may be implemented fully or partially in software and/or firmware. This software and/or firmware may take the form of instructions contained in or on a non-transitory computer-readable storage medium. Those instructions may then be read and executed by one or more processors to enable performance of the operations described herein. The instructions may be in any suitable form, such as but not limited to source code, compiled code, interpreted code, executable code, static code, dynamic code, and the like. Such a computer-readable medium may include any tangible non-transitory medium for storing information in a form readable by one or more computers, such as but not limited to read only memory (ROM); random access memory (RAM); magnetic disk storage media; optical storage media; a flash memory, etc.
In some embodiments, a tangible machine-readable non-transitory storage medium that contains instructions may be used in combination with the disclosed display embodiments. In other embodiments the tangible machine-readable non-transitory storage medium may be further used in combination with one or more processors.
Memory 920 may store instructions to be executed by processor 930 for driving display 200, 700. The instructions may be configured to operate display 200, 700. In one embodiment, the instructions may include biasing electrodes associated with display 200, 700 through power supply 950. When biased, the electrodes may cause movement of electrophoretic particles towards or away from a region proximal to the surface of the plurality of protrusions at the inward surface of the front transparent sheet to thereby absorb or reflect light received at the inward surface of the front transparent sheet. By appropriately biasing the electrodes, liquid crystals (e.g., liquid crystals 214 in
In the exemplary display embodiments described herein, they may be used in Internet of Things (IoT) devices. The IoT devices may comprise a local wireless or wired communication interface to establish a local wireless or wired communication link with one or more IoT hubs or client devices. The IoT devices may further comprise a secure communication channel with an IoT service over the internet using a local wireless or wired communication link. The IoT devices comprising one or more of the display devices described herein may further comprise a sensor. Sensors may include one or more of a temperature, humidity, light, sound, motion, vibration, proximity, gas or heat sensor. The IoT devices comprising one or more of the display devices described herein may be interfaced with home appliances such as a refrigerator, freezer, television (TV), close captioned TV (CCTV), stereo system, heating, ventilation, air conditioning (HVAC) system, robotic vacuum, air purifiers, lighting system, washing machine, drying machine, oven, fire alarms, home security system, pool equipment, dehumidifier or dishwashing machine. The IoT devices comprising one or more of the display devices described herein may be interfaced with health monitoring systems such as heart monitoring, diabetic monitoring, temperature monitoring, biochip transponders or pedometer. The IoT devices comprising one or more of the display devices described herein may be interfaced with transportation monitoring systems such as those in an automobile, motorcycle, bicycle, scooter, marine vehicle, bus or airplane.
In the exemplary display embodiments described herein, they may be used IoT and non-IoT applications such as in, but not limited to, electronic book readers, portable computers, tablet computers, cellular telephones, smart cards, signs, watches, wearables, military display applications, automotive displays, automotive license plates, shelf labels, flash drives and outdoor billboards or outdoor signs comprising a display. The displays may be powered by one or more of a battery, solar cell, wind, electrical generator, electrical outlet, AC power, DC power or other means.
The following exemplary embodiments are provided to further illustrate the disclosed principles. These examples are illustrative and non-limiting.
Example 1 is directed to a liquid crystal display pixel, comprising: a first polarizer to receive a first light ray having a first polarization state and a second polarization state, the first polarizer configured to substantially remove the first polarization state from the first light ray to form a first wavelengths polarized light ray; an optical color filter configured to receive the first polarized light ray and to allow substantial transmission of a first optical frequency band of the first polarized light ray through the color filter to form a first filtered light ray; a liquid crystal layer; a high gain reflector having a first and a second medium arranged to form an interface therebetween, the interface configured to totally internally reflect the first filtered light ray when the first filtered light ray is incident on the interface at an angle that is greater than the critical angle (θc); and a light source to emit a second light ray to the high gain reflector.
Example 2 is directed to display pixel of example 1, wherein the light source and the optical color filter are spectrally matched.
Example 3 is directed to the display pixel of example 1, wherein the light source provides a second light ray having a second bandwidth and wherein the optical color filter is configured to substantially pass light of the second bandwidth while substantially filtering light outside of the second bandwidth.
Example 4 is directed to the display pixel of example 1, wherein the optical color filter comprises a notch filter and wherein the notch filter is configured to allow substantial transmission of one or more frequency bands matching one of red, green or blue color wavelengths.
Example 5 is directed to the display pixel of example 1, further comprising a second polarizer configured to substantially remove the second polarization state of the first light ray.
Example 6 is directed to the display pixel of example 1, wherein the high gain reflector is configured to allow the first filtered light ray to pass therethrough when the first filtered light ray is incident on the interface at an angle less than a critical angle (θc).
Example 7 is directed to the display pixel of example 1, further comprising a light guide layer to receive the second light ray from the light source and to transmit the received second light ray to the high gain reflector.
Example 8 is directed to the display pixel of example 7, further comprising a rear light polarizing layer and a rear reflector layer positioned to interpose the light guide layer.
Example 9 is directed to the display pixel of example 8, wherein the at least one of the front or the rear reflector comprises a spectrally notched reflector.
Example 10 is directed to the display of example 1, wherein the first light ray comprises ambient light and has a first bandwidth.
Example 11 is directed to a liquid crystal display, comprising: a first polarizer to receive a plurality of ambient light rays, the plurality of ambient light rays having a first polarization state and a second polarization state, the first polarizer configured to substantially remove the first polarization state from the plurality of ambient light rays to form a plurality of polarized ambient light rays; a first optical filter having a first optical bandpass, the first optical filter configured to receive and spectrally filter a first portion of the plurality of polarized ambient light rays to provide a first filtered ray; a second optical filter having a second bandpass, the second optical filter configured to receive and spectrally filter a second portion of the plurality of polarized ambient light rays to provide a second filtered ray; a liquid crystal layer to receive the first filtered ray and the second filtered ray; a high gain reflector having a first and a second medium arranged to form an interface therebetween, the interface configured to totally internally reflect one of the first filtered ray and the second filtered ray when the rays of the first optical band is incident on the interface at an angle that is greater than the critical angle (θc); a first light source to emit light of a first spectral band; and a second light source to emit light of a second spectral band.
Example 12 is directed to the display of example 11, wherein the first light source and the first optical color filter are spectrally matched and wherein the second light source and the second optical filter are spectrally matched.
Example 13 is directed to the display of example 11, wherein the first optical color filter comprises a spectrally notched color filter and wherein the spectrally notched color filter is configured to allow substantial transmission of one or more frequency bands matching one of red, green or blue color wavelengths.
Example 14 is directed to the display of example 11, further comprising a second polarizer to substantially remove the second polarization state of the plurality of ambient light rays.
Example 15 is directed to the display of example 11, wherein the high gain reflector is configured to allow the first filtered ray and the second filtered ray to pass therethrough when the first filtered light ray is incident on the interface at an angle less than a critical angle (θc).
Example 16 is directed to the display of example 11, further comprising a light guide layer to receive an incoming ray from the first light source and to transmit the incoming ray to the high gain reflector.
Example 17 is directed to the display of example 16, further comprising a front reflector and a rear reflector positioned to interpose the light guide layer.
Example 18 is directed to the display of example 17, wherein the at least one of the front or the rear reflector comprises a spectrally notched reflector.
Example 19 is directed to a method to display spectrally matched rays, the method comprising: substantially removing a first polarization state from an incoming ambient light ray at an optical polarizer to form an ambient polarized light ray; receiving and spectrally filtering the ambient polarized light ray at an optical filter to provide a filtered ambient light ray, the optical filter having a spectral bandpass; receiving the filtered ambient light ray at a high gain reflector having an interface; totally-internally reflecting the received filtered ambient light ray when the light ray enters the interface at an angle equal or greater than a critical angle (θc); and passing the filtered ambient light ray through the high gain reflector when the filtered ambient light ray is incident on the interface at an angle less than the critical angle (θc); receiving an emitted light ray from a light source.
Example 20 is directed to the method of example 19, wherein the emitted light ray has a spectral bandwidth substantially similar to the optical filter spectral bandwidth.
Example 21 is directed to the method of example 19, further comprising directing the received emitted light ray to the optical polarizer through the high gain reflector.
Example 22 is directed to the method of example 19, wherein the light source and the optical color filter are spectrally matched.
Example 23 is directed to the method of example 19, wherein spectrally filtering the ambient polarized light further comprises filtering the ambient polarized light through a spectrally notched color filter and substantially transmitting a frequency band matching one of red, green or blue color wavelengths through the notch filter.
Example 24 is directed to the method of example 19, further comprising substantially removing a second polarization state from the incoming ambient light ray to form a second ambient polarized light ray.
Example 25 is directed to the method of example 19, further comprising directing the emitted light from the light source to a viewer through a waveguide.
Example 26 is directed to the method of example 25, wherein directing the emitted light through the waveguide further comprises transmitting the emitted light from the waveguide layer through a specular reflector layer.
While the principles of the disclosure have been illustrated in relation to the exemplary embodiments shown herein, the principles of the disclosure are not limited thereto and include any modification, variation or permutation thereof.
The present application is a continuation of International Patent Application No. PCT/US18/59216, filed Nov. 5, 2018, which claims the benefit of U.S. Provisional Application No. 62/581,205, filed Nov. 3, 2017, both of which are incorporated herein by reference in their entireties for all purposes.
Number | Date | Country | |
---|---|---|---|
62581205 | Nov 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2018/059216 | Nov 2018 | US |
Child | 16864985 | US |