Method, system and apparatus for shelf edge detection

Information

  • Patent Grant
  • 11200677
  • Patent Number
    11,200,677
  • Date Filed
    Monday, June 3, 2019
    4 years ago
  • Date Issued
    Tuesday, December 14, 2021
    2 years ago
Abstract
A method of detecting an edge of a support surface in an imaging controller includes: obtaining image data captured by an image sensor and a plurality of depth measurements captured by a depth sensor, the image data and the plurality of depth measurements corresponding to an area containing the support surface; detecting preliminary edges in the image data; applying a Hough transform to the preliminary edges to determine Hough lines representing candidate edges of the support surface; segmenting the plurality of depth measurements to assign classes to each pixel, each class defined by one of a plurality of seed pixels, wherein the plurality of seed pixels are identified from the depth measurements based on the Hough lines; and detecting the edge of the support surface by selecting a class of pixels and applying a line-fitting model to the selected class to obtain an estimated edge of the support surface.
Description
BACKGROUND

Environments in which objects are managed, such as retail facilities, warehousing and distribution facilities, and the like, may be complex and fluid. For example, a retail facility may include objects such as products for purchase, and a distribution facility may include objects such as parcels or pallets. For example, a given environment may contain a wide variety of objects with different sizes, shapes, and other attributes. Such objects may be supported on shelves in a variety of positions and orientations. The variable position and orientation of the objects, as well as variations in lighting and the placement of labels and other indicia on the objects and the shelves, can render detection of structural features, such as the edges of the shelves, difficult.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The accompanying figures, where like reference numerals refer to identical or functionally similar elements throughout the separate views, together with the detailed description below, are incorporated in and form part of the specification, and serve to further illustrate embodiments of concepts that include the claimed invention, and explain various principles and advantages of those embodiments.



FIG. 1 is a schematic of a mobile automation system.



FIG. 2 depicts a mobile automation apparatus in the system of FIG. 1.



FIG. 3 is a block diagram of certain internal components of the mobile automation apparatus in the system of FIG. 1.



FIG. 4 is a flowchart of a method of detecting an edge of a support surface in the system of FIG. 1.



FIG. 5A is a diagram of image data obtained during the performance of the method of FIG. 4.



FIG. 5B is a diagram of preliminary edge detection during the performance of the method of FIG. 4.



FIG. 5C is a diagram of Hough lines overlaid on image data during the performance of the method of FIG. 4.



FIG. 6 is a flowchart illustrating an example method of performance of block 420 of the method of FIG. 4.



FIG. 7A is a diagram illustrating segmented depth measurements after the performance of block 420 of the method of FIG. 4.



FIG. 7B is a diagram illustrating angle segmentation.



FIG. 8 is a flowchart of a method of fusing results from multiple shelf plane detectors.





Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present invention.


The apparatus and method components have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.


DETAILED DESCRIPTION

Examples disclosed herein are directed to a method in an imaging controller, including: obtaining image data captured by an image sensor and a plurality of depth measurements captured by a depth sensor, the image data and the plurality of depth measurements corresponding to an area containing the support surface; detecting preliminary edges in the image data; applying a Hough transform to the preliminary edges to determine Hough lines representing candidate edges of the support surface; segmenting the plurality of depth measurements to assign classes to each pixel, each class defined by one of a plurality of seed pixels, wherein the plurality of seed pixels are identified from the depth measurements based on the Hough lines; and selecting a class of pixels and applying a line-fitting model to the selected class to obtain an estimated edge of the support surface.


Additional examples disclosed herein are directed to a mobile automation apparatus, comprising: a locomotive assembly; an image sensor and a depth sensor; and an imaging controller configured to: obtain image data captured by the image sensor and a plurality of depth measurements captured by the depth sensor, the image data and the plurality of depth measurements corresponding to an area containing the support surface; detect preliminary edges in the image data; apply a Hough transform to the preliminary edges to determine Hough lines representing candidate edges of the support surface; segment the plurality of depth measurements to assign classes to each pixel, each class defined by one of a plurality of seed pixels, wherein the plurality of seed pixels are identified from the depth measurements based on the Hough lines; and select a class of pixels and applying a line-fitting model to the selected class to obtain an estimated edge of the support surface.



FIG. 1 depicts a mobile automation system 100 in accordance with the teachings of this disclosure. The system 100 includes a server 101 in communication with at least one mobile automation apparatus 103 (also referred to herein simply as the apparatus 103) and at least one client computing device 104 via communication links 105, illustrated in the present example as including wireless links. In the present example, the links 105 are provided by a wireless local area network (WLAN) deployed via one or more access points (not shown). In other examples, the server 101, the client device 104, or both, are located remotely (i.e. outside the environment in which the apparatus 103 is deployed), and the links 105 therefore include wide-area networks such as the Internet, mobile networks, and the like. The system 100 also includes a dock 106 for the apparatus 103 in the present example. The dock 106 is in communication with the server 101 via a link 107 that in the present example is a wired link. In other examples, however, the link 107 is a wireless link.


The client computing device 104 is illustrated in FIG. 1 as a mobile computing device, such as a tablet, smart phone or the like. In other examples, the client device 104 is implemented as another type of computing device, such as a desktop computer, a laptop computer, another server, a kiosk, a monitor, and the like. The system 100 can include a plurality of client devices 104 in communication with the server 101 via respective links 105.


The system 100 is deployed, in the illustrated example, in a retail facility including a plurality of support structures such as shelf modules 110-1, 110-2, 110-3 and so on (collectively referred to as shelf modules 110 or shelves 110, and generically referred to as a shelf module 110 or shelf 110—this nomenclature is also employed for other elements discussed herein). Each shelf module 110 supports a plurality of products 112. Each shelf module 110 includes a shelf back 116-1, 116-2, 116-3 and a support surface (e.g. support surface 117-3 as illustrated in FIG. 1) extending from the shelf back 116 to a shelf edge 118-1, 118-2, 118-3.


The shelf modules 110 are typically arranged in a plurality of aisles, each of which includes a plurality of modules 110 aligned end-to-end. In such arrangements, the shelf edges 118 face into the aisles, through which customers in the retail facility as well as the apparatus 103 may travel. As will be apparent from FIG. 1, the term “shelf edge” 118 as employed herein, which may also be referred to as the edge of a support surface (e.g., the support surfaces 117) refers to a surface bounded by adjacent surfaces having different angles of inclination. In the example illustrated in FIG. 1, the shelf edge 118-3 is at an angle of about ninety degrees relative to each of the support surface 117-3 and the underside (not shown) of the support surface 117-3. In other examples, the angles between the shelf edge 118-3 and the adjacent surfaces, such as the support surface 117-3, is more or less than ninety degrees.


The apparatus 103 is equipped with a plurality of navigation and data capture sensors 108, such as image sensors (e.g. one or more digital cameras) and depth sensors (e.g. one or more Light Detection and Ranging (LIDAR) sensors, one or more depth cameras employing structured light patterns, such as infrared light, or the like). The apparatus 103 is deployed within the retail facility and, via communication with the server 101 and use of the sensors 108, navigates autonomously or partially autonomously along a length 119 of at least a portion of the shelves 110. Navigation may be performed according to a frame of reference 102 established within the retail facility. That is, the apparatus 103 tracks its location in the frame of reference 102. While navigating among the shelves 110, the apparatus 103 can capture images, depth measurements and the like, representing the shelves 110 (generally referred to as shelf data or captured data).


The server 101 includes a special purpose controller, such as a processor 120, specifically designed to control and/or assist the mobile automation apparatus 103 to navigate the environment and to capture data. The processor 120 is interconnected with a non-transitory computer readable storage medium, such as a memory 122, having stored thereon computer readable instructions for performing various functionality, including control of the apparatus 103 to navigate the modules 110 and capture shelf data, as well as post-processing of the shelf data. The memory 122 can also store data for use in the above-mentioned control of the apparatus 103, such as a repository 123 containing a map of the retail environment and any other suitable data (e.g. operational constraints for use in controlling the apparatus 103, data captured by the apparatus 103, and the like).


The memory 122 includes a combination of volatile memory (e.g. Random Access Memory or RAM) and non-volatile memory (e.g. read only memory or ROM, Electrically Erasable Programmable Read Only Memory or EEPROM, flash memory). The processor 120 and the memory 122 each comprise one or more integrated circuits. In some embodiments, the processor 120 is implemented as one or more central processing units (CPUs) and/or graphics processing units (GPUs).


The server 101 also includes a communications interface 124 interconnected with the processor 120. The communications interface 124 includes suitable hardware (e.g. transmitters, receivers, network interface controllers and the like) allowing the server 101 to communicate with other computing devices—particularly the apparatus 103, the client device 104 and the dock 106—via the links 105 and 107. The links 105 and 107 may be direct links, or links that traverse one or more networks, including both local and wide-area networks. The specific components of the communications interface 124 are selected based on the type of network or other links that the server 101 is required to communicate over. In the present example, as noted earlier, a wireless local-area network is implemented within the retail facility via the deployment of one or more wireless access points. The links 105 therefore include either or both wireless links between the apparatus 103 and the mobile device 104 and the above-mentioned access points, and a wired link (e.g. an Ethernet-based link) between the server 101 and the access point.


The processor 120 can therefore obtain data captured by the apparatus 103 via the communications interface 124 for storage (e.g. in the repository 123) and subsequent processing (e.g. to detect objects such as shelved products in the captured data, and detect status information corresponding to the objects). The server 101 may also transmit status notifications (e.g. notifications indicating that products are out-of-stock, in low stock or misplaced) to the client device 104 responsive to the determination of product status data. The client device 104 includes one or more controllers (e.g. central processing units (CPUs) and/or field-programmable gate arrays (FPGAs) and the like) configured to process (e.g. to display) notifications received from the server 101.


Turning now to FIG. 2, the mobile automation apparatus 103 is shown in greater detail. The apparatus 103 includes a chassis 201 containing a locomotive mechanism 203 (e.g. one or more electrical motors driving wheels, tracks or the like). The apparatus 103 further includes a sensor mast 205 supported on the chassis 201 and, in the present example, extending upwards (e.g., substantially vertically) from the chassis 201. The mast 205 supports the sensors 108 mentioned earlier. In particular, the sensors 108 include at least one imaging sensor 207, such as a digital camera, as well as at least one depth sensor 209, such as a 3D digital camera capable of capturing both depth data and image data. The apparatus 103 also includes additional depth sensors, such as LIDAR sensors 211. As shown in FIG. 2A, the cameras 207 and the LIDAR sensors 211 are arranged on one side of the mast 205, while the depth sensor 209 is arranged on a front of the mast 205. That is, the depth sensor 209 is forward-facing (i.e. captures data in the direction of travel of the apparatus 103), while the cameras 207 and LIDAR sensors 211 are side-facing (i.e. capture data alongside the apparatus 103, in a direction perpendicular to the direction of travel). In other examples, the apparatus 103 includes additional sensors, such as one or more RFID readers, temperature sensors, and the like.


In the present example, the mast 205 supports seven digital cameras 207-1 through 207-7, and two LIDAR sensors 211-1 and 211-2. The mast 205 also supports a plurality of illumination assemblies 213, configured to illuminate the fields of view of the respective cameras 207. That is, the illumination assembly 213-1 illuminates the field of view of the camera 207-1, and so on. The sensors 207 and 211 are oriented on the mast 205 such that the fields of view of each sensor face a shelf 110 along the length 119 of which the apparatus 103 is traveling. The apparatus 103 is configured to track a location of the apparatus 103 (e.g. a location of the center of the chassis 201) in a common frame of reference previously established in the retail facility, permitting data captured by the mobile automation apparatus to be registered to the common frame of reference.


Referring to FIG. 3, certain components of the mobile automation apparatus 103 are shown, in addition to the cameras 207, depth sensor 209, lidars 211, and illumination assemblies 213 mentioned above. The apparatus 103 includes a special-purpose controller, such as a processor 300, interconnected with a non-transitory computer readable storage medium, such as a memory 304. The memory 304 includes a suitable combination of volatile memory (e.g. Random Access Memory or RAM) and non-volatile memory (e.g. read only memory or ROM, Electrically Erasable Programmable Read Only Memory or EEPROM, flash memory). The processor 300 and the memory 304 each comprise one or more integrated circuits. The memory 304 stores computer readable instructions for execution by the processor 300. In particular, the memory 304 stores a control application 308 which, when executed by the processor 300, configures the processor 300 to perform various functions discussed below in greater detail and related to the detection of shelf edges in data captured by the sensors (e.g. the depth sensors 209 or the LIDAR sensors 211). The control application 308 may further configure the processor 300 to perform various functions related to the navigation of the apparatus 103 (e.g. by controlling the locomotive mechanism 203).


The processor 300, when so configured by the execution of the application 308, may also be referred to as a controller 300. Those skilled in the art will appreciate that the functionality implemented by the processor 300 via the execution of the application 308 may also be implemented by one or more specially designed hardware and firmware components, such as FPGAs, ASICs and the like in other embodiments.


The memory 304 may also store a repository 312 containing, for example, a map of the environment in which the apparatus 103 operates, for use during the execution of the application 308. The apparatus 103 also includes a communications interface 316 enabling the apparatus 103 to communicate with the server 101 (e.g. via the link 105 or via the dock 106 and the link 107), for example to receive instructions to navigate to specified locations and initiate data capture operations.



FIG. 3 also illustrates example components of the application 308. As will be apparent to those skilled in the art, the illustrated components may be implemented as a suite of distinct applications in other embodiments. In the present example, the application 308 includes a preprocessor 320 configured to obtain image data and depth measurements and detect preliminary edges in the image data. The application 308 further includes a Hough line detector 324 configured to apply a Hough transform to the preliminary edges to detect Hough lines in the image data. The application 308 further includes a segmentation controller 328 configured to overlay the Hough lines with the depth measurements to obtain seed pixels and segment the depth measurements based on the seed pixels. The application 308 further includes a shelf estimator 332 configured to estimate the shelf edge and the shelf plane based on a class of pixels identified by the segmentation controller 328. In particular, by seeding the depth measurement segmentation with Hough lines in the image data, the resultant object classes are likely to represent shelf edges. Further, the depth measurement segmentation is more tolerant of calibration errors between the image sensor and the depth sensor.


The functionality of the application 308 to detect shelf edges will now be described in greater detail, with reference to FIG. 4. FIG. 4 illustrates a method 400 of detecting a shelf edge, which will be described in conjunction with its performance in the system 100, and in particular by the apparatus 103, with reference to the components illustrated in FIGS. 2 and 3. As will be apparent in the discussion below, in other examples, some or all of the processing performed by the server 101 may be performed by the apparatus 103, and some or all of the processing performed by the apparatus 103 may be performed by the server 101.


At block 405, the processor 300, and in particular the preprocessor 320, is configured to obtain image data and depth measurements captured, respectively, by an image sensor and a depth sensor and corresponding to an area containing the support surface. In other words, in the present example, the image data and the depth measurements correspond to an area containing at least one shelf support surface 117 and shelf edge 118. The image data and depth measurements obtained at block 405 are, for example, captured by the apparatus 103 and stored in the repository 132. The preprocessor 320 is therefore configured, in the above example, to obtain the image data and depth measurements by retrieving the image data and depth measurements from the repository 132.


In some examples, the preprocessor 320 can also be configured to perform one or more filtering operations on the depth measurements. For example, depth measurements greater than a predefined threshold may be discarded from the data captured at block 405. Such measurements may be indicative of surfaces beyond the shelf backs 116 (e.g. a ceiling, or a wall behind a shelf back 116). The predefined threshold may be selected, for example, as the sum of the known depth of a shelf 110 and the known width of an aisle.


At block 410, the processor 300, and in particular the preprocessor 320 detects preliminary edges in the image data. For example, referring to FIG. 5A, an image 500 of an example aisle is depicted. The aisle includes a shelf module 510 having support surfaces having shelf edges 518-1, 518-2, and 518-3. The support surfaces create shadows, thus providing high contrast at the shelf edges 518, and allowing edges to be readily detected from the image data. For example, the preprocessor 320 may employ Canny edge detection on the image data to detect the preliminary edges. In particular, the preprocessor 320 may generate a Canny image 520, as depicted in FIG. 5B, including the preliminary Canny edges 528-1, 528-2, and 528-3 representing the shelf edges 518. In other embodiments, the preprocessor 320 may employ other suitable edge detection models.


The Canny edge detection also detects other Canny edges, including edges of products, ends of the shelf modules, and the like. Accordingly, the processor 300 may further process the preliminary edges to determine which edges represent shelf edges. Returning to FIG. 4, at block 415, the processor 300, and in particular the Hough line detector 324, applies a Hough transform on the preliminary edges detected at block 410 to determine Hough lines. In particular, the Hough transform determines, for each pixel position corresponding to a preliminary edge, candidate lines through that pixel position. The candidate lines through the pixel position are mapped as votes for bins in a Hough space, where each bin in the Hough space corresponds to a set of parameters defining a candidate line within the image source. For example, the parameters generally include a distance p defining the distance from the origin (in the image frame of reference) to the point on the candidate line closest to the origin. The parameters generally also include an angle θ defining the angle between the horizontal axis (i.e., the x axis) and the line connecting the candidate line to the origin. The bin having the highest number of votes defines a Hough line based on the parameters of the bin. In the present example, bins having at least a threshold number of votes may define Hough lines.


Turning to FIG. 5C, the image 500 is overlaid with Hough lines 538 determined at block 415. In particular, the Hough lines 538 substantially overlay the shelf edges 518, as well as some product edges and the vertical edges of the shelf module 510. The processor 300 may expect that substantially vertical Hough lines detected in the image space are unlikely to represent the shelf edges 518. Accordingly, the Hough line detector 324 may further to be configured, at block 415, to perform one or more filtering operations to discard Hough lines within a threshold angle of vertical. Specifically, the Hough line detector 324 may be configured to determine an angle between a given Hough line and a vertical line. Hough lines having an angle below the threshold angle from vertical may be discarded. Thus, for example, the Hough line 538-1 may be filtered out. The remaining Hough lines 538 may be assumed to be candidate edges of the shelf.


Returning again to FIG. 4, at block 420, the processor 300, and in particular the segmentation controller 328, segments the depth measurements. Specifically, the segmentation controller 328 is configured to assign an object class to each depth measurement, wherein each object class corresponds to a distinct object in the image data. For example, the segmentation controller 328 may segment the image data into a ground class representing the ground or floor of the aisle, and one or more object classes representing distinct objects in the aisle. In particular, some of the object classes may correspond to edges of the support surfaces in the aisle or products on the support surfaces.



FIG. 6 depicts a method 600 of segmenting depth measurements as performed by the segmentation controller 328. Generally, the segmentation controller 328 employs a segmentation algorithm to grow object classes based on a seed pixel depth measurement for each object class. More particularly, the seed pixel depth measurements are derived based on the Hough lines, and thus, the resulting object classes represent objects having linear components, such as shelf edges.


At block 605, the segmentation controller 328 is configured to identify a plurality of seed pixels from the depth measurements. Specifically, the segmentation controller 328 overlays the Hough lines with the depth measurements, for example, using a predefined correspondence between the image sensor and the depth sensor. The depth measurements corresponding to Hough lines are identified as seed pixels.


In some embodiments, the segmentation controller 328 may further be configured to filter out the ground class of depth measurements prior to identifying seed pixels. Specifically, the segmentation controller 328 may select a ground seed pixel at or near the bottom of the image space (e.g. based on predefined criteria). The segmentation controller 328 may then grow a ground class based on the selected ground seed pixel using the segmentation algorithm as will be described further below. Thus, the seed pixels identified at block 605 may include depth measurements corresponding to Hough lines and not classified as ground pixels.


For example, referring to FIG. 7A, an image 700 representing the segmented depth measurements is depicted. The image 700 includes Hough lines 705-1, 705-2, and 705-3 overlaid with the depth measurements. The Hough lines 705 define seed pixels 712-1, 712-2 and 712-3, which define object classes 710-1, 710-2, and 710-3. The Hough lines 705 also define seed pixels at other depth measurements along the Hough lines 705, however, as depicted, these seed pixels are included in the object classes defined by the seed pixels 712. The image 700 further includes a ground class 720 originating from a ground seed pixel 722. The depth measurements in the ground class 720 may therefore be discarded prior to identifying or selecting seed pixels.


Returning to FIG. 6, at block 610, the processor 300 is configured to select an unclassified object seed pixel. The seed pixel may be, for example, a seed pixel determined at block 605, which is not classified as being in the ground class. The segmentation controller 328 is further configured to define an object class based on the selected seed pixel. In particular, the object class will be grown iteratively using the segmentation algorithm.


Having selected a seed pixel from which to grow an object class, the method 600 proceeds to block 615 to grow the object class. At block 615, the segmentation controller 328 selects an unclassified pixel adjacent to a pixel in the object class. For example, in the first iteration, the segmentation controller 328 selects an unclassified pixel adjacent to the seed pixel selected at block 610. The segmentation controller 328 then determines whether the selected adjacent pixel is part of the object class.


For example, the segmentation controller 328 may employ an angle segmentation algorithm, as outlined in “Efficient Online Segmentation for Sparse 3D Laser Scans” (Igor Bogoslayskyi & Cyrill Stachniss, Bonn). Specifically, given a first point and a second point in 3D space, the segmentation controller 328 determines an angle β between an origin in the image frame of reference, the second point, and the first point. That is, the segmentation controller 328 determines an angle β between a first line from the first point to the second point and a second line from the origin in the image frame of reference to the second point. When the angle β is above a threshold angle, the first point and the second point are determined to be the same object.


For example, referring to FIGS. 7A and 7B, the segmentation controller 328 may employ the angle segmentation algorithm to determine whether the pixel 730 is in the object class 710 defined by the seed pixel 712-1. The segmentation controller 328 determines an angle β between the origin 740, the pixel 730, and the seed pixel 712-1 based on the depth measurements of the pixel 730 and the seed pixel 712-1 relative to the origin 740. FIG. 7B depicts an overhead view of the angle β between the origin 740, the pixel 730, and the seed pixel 712-1. When the angle β is above a threshold angle, the pixel 730 is determined to be the same object as the seed pixel 712-1, and is classified as part of the object class 710-1 and is added to the object class.


Thus, at block 615, the segmentation controller 328 classifies the selected adjacent pixel. Specifically, when the segmentation controller 328 determines that the selected adjacent pixel is part of the object class, the selected adjacent pixel is added to the object class. If the adjacent pixel is not part of the object class, the segmentation controller 328 may classify it to indicate that the pixel has been assessed for the current object class. The method 600 then proceeds to block 620.


At block 620, the segmentation controller 328 determines if there are any unclassified pixels adjacent to pixels in the current object class. If there are, the segmentation controller 328 returns to block 615 to select an unclassified adjacent pixel. Thus, the segmentation controller 328 iterates through adjacent pixels to grow the object class. If, at block 620, there are no adjacent unclassified pixels, then the current object class is complete, and the segmentation controller 328 proceeds to block 625.


At block 625, the segmentation controller 328 determines if there are any unclassified seed pixels. If there are, the segmentation controller 328 returns to block 610 to select an unclassified seed pixel and define a new object class. Thus, the segmentation controller 328 iterates through the seed pixels to segment the depth measurements into distinct object classes. In particular, as the seed pixels are based on Hough lines, the resulting object classes represent objects having a linear component, and are likely to be shelf edges. Additional constraints may also be applied to select shelf edges, as will be described further below.


Returning to FIG. 4, at block 425, the processor 300, and in particular the shelf estimator 332, is configured to compute an estimated edge of the support surface. Specifically, the shelf estimator 332 selects a class of pixels as segmented at block 420 as a predicted shelf edge. For example, the shelf estimator 332 may select the largest class of pixels satisfying predefined constraints within which a shelf edge is expected to comply. For example, the shelf estimator 332 may expect that a difference in height between pixels in the class and its seed pixel are within a first threshold distance (e.g. 5 cm). That is, a shelf edge is expected to have a maximum height, and hence classes having heights exceeding the first threshold distance may be discarded as potential shelf edges. Further, the shelf estimator 332 may expect that a distance between consecutive pixels in the class are within a second threshold distance. That is, a shelf edge is expected to have good point density.


The shelf estimator 332 may then apply a line-fitting model (e.g. RANSAC) to the selected class to obtain an estimated shelf edge. In some embodiments, the shelf estimator 332 may further obtain an estimated support surface plane (shelf plane) based on the estimated shelf edge by assuming that the shelf edge is substantially vertical, and may be represented by a vertical plane. Accordingly, the estimated shelf plane is the plane defined by the estimated shelf edge and a vertical line.


At block 425, the processor 300 may further be configured to compute a current distance and a current yaw of the apparatus 103 to the shelf plane. The current distance and current yaw of the apparatus 103 to the shelf plane may be used in the navigation of the apparatus 103, and in particular, to maintain a constant distance and yaw of the apparatus 103 while navigating the aisle. In particular, the processor 300 may add the current distance to a distance buffer including a plurality of previously computed distances, and the current yaw to a yaw buffer including a plurality of previously computed yaws. The processor 300 may then compute an average distance and an average yaw based, respectively, on the distance buffer and the yaw buffer. Thus, the impact of a bad shelf plane detection may be minimized by the buffer.


In some embodiments, the processor 300 may further be configured to fuse the output of the present shelf plane detection with one or more additional shelf plane detection methods. For example, the apparatus 103 may further employ a bottom shelf detector, and a point cloud shelf detector in addition to the present RGBD shelf detector. FIG. 8 depicts a method 800 of fusing the outputs of the three detection methods.


At block 805, the processor 300 obtains estimated support surface (shelf) plane results from the bottom shelf detector and the point cloud shelf detector.


At block 810, the processor 300 is configured to compute an agreement score between the estimated shelf planes from the bottom shelf detector and the point cloud detector. Specifically, the processor 300 may determine whether distance and yaw measurements from the estimated shelf planes agree. To determine whether the measurements for two detection methods agree, the processor 300 computes the agreement score given by equation (1), where v and u represent the respective direction vectors reconstructed using the distance and yaw measurements from the two detection methods.









score


=





v
·
u

-






v

q
,
xx





v

q
,
xy







v

q
,
yz





v

q
,
yy







-






u

q
,
xx





u

q
,
xy







u

q
,
yz





u

q
,
yy












(
1
)







Thus, the agreement score is based on the dot product of the two vectors minus the Frobenius norm of the covariance matrix associated with each detection method.


At block 815, the processor 300 determines which estimated shelf plane to push forwards based on the computed agreement score. Specifically, if the agreement score is above the threshold score, the processor 300 determines that the estimated shelf plane results from the bottom shelf point cloud detector and the point cloud shelf detector agree, and proceeds to block 820. At block 820, the processor 300 selects the estimated shelf plane from the point cloud detector as a comparison plane for the RGBD detector results. The method 800 then proceeds to block 830.


If the agreement score computed at block 810 is below the threshold score, the processor 300 determines that the estimated shelf plane results from the bottom shelf point cloud detector and the point cloud shelf detector do not agree and proceeds to block 825. At block 825, the processor 300 selects the estimated shelf plane from the bottom shelf detector as the comparison plane for the RGBD detector results. Specifically, the processor 300 expects that the estimated shelf plane from the bottom shelf detector is more accurate. The method then proceeds to block 830.


At block 830, the processor 300 computes a second agreement score between the comparison plane obtained from block 820 or block 825 and the estimated shelf plane from the RGBD detector results. Specifically, the processor 300 computes the second agreement score based on equation (1).


At block 835, the processor 300 determines whether to publish an estimated shelf plane based on the second computed agreement score. If the second agreement score is above the threshold score, the processor 300 determines that the estimated shelf plane from the RGBD detector and the comparison plane agree and proceeds to block 840. At block 840, the processor 300 selects the estimated shelf plane from the RGBD detector, for example, for navigational operations in the apparatus 103.


If the second agreement score computed at block 830 is below the threshold score, the processor 300 is configured to proceed to block 845. At block 845, the processor 300 is configured to discard the results of the frame and wait for the subsequent frame.


In the foregoing specification, specific embodiments have been described. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present teachings.


The benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential features or elements of any or all the claims. The invention is defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued.


Moreover in this document, relational terms such as first and second, top and bottom, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” “has”, “having,” “includes”, “including,” “contains”, “containing” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises, has, includes, contains a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “comprises . . . ”, “has . . . ”, “includes . . . ”, “contains . . . ” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises, has, includes, contains the element. The terms “a” and “an” are defined as one or more unless explicitly stated otherwise herein. The terms “substantially”, “essentially”, “approximately”, “about” or any other version thereof, are defined as being close to as understood by one of ordinary skill in the art, and in one non-limiting embodiment the term is defined to be within 10%, in another embodiment within 5%, in another embodiment within 1% and in another embodiment within 0.5%. The term “coupled” as used herein is defined as connected, although not necessarily directly and not necessarily mechanically. A device or structure that is “configured” in a certain way is configured in at least that way, but may also be configured in ways that are not listed.


It will be appreciated that some embodiments may be comprised of one or more specialized processors (or “processing devices”) such as microprocessors, digital signal processors, customized processors and field programmable gate arrays (FPGAs) and unique stored program instructions (including both software and firmware) that control the one or more processors to implement, in conjunction with certain non-processor circuits, some, most, or all of the functions of the method and/or apparatus described herein. Alternatively, some or all functions could be implemented by a state machine that has no stored program instructions, or in one or more application specific integrated circuits (ASICs), in which each function or some combinations of certain of the functions are implemented as custom logic. Of course, a combination of the two approaches could be used.


Moreover, an embodiment can be implemented as a computer-readable storage medium having computer readable code stored thereon for programming a computer (e.g., comprising a processor) to perform a method as described and claimed herein. Examples of such computer-readable storage mediums include, but are not limited to, a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a ROM (Read Only Memory), a PROM (Programmable Read Only Memory), an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Erasable Programmable Read Only Memory) and a Flash memory. Further, it is expected that one of ordinary skill, notwithstanding possibly significant effort and many design choices motivated by, for example, available time, current technology, and economic considerations, when guided by the concepts and principles disclosed herein will be readily capable of generating such software instructions and programs and ICs with minimal experimentation.


The Abstract of the Disclosure is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in various embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.

Claims
  • 1. A method of detecting an edge of a support surface by an imaging controller, the method comprising: obtaining image data captured by an image sensor and a plurality of depth measurements captured by a depth sensor, the image data and the plurality of depth measurements corresponding to an area containing the support surface;detecting preliminary edges in the image data;applying a Hough transform to the preliminary edges to determine Hough lines representing candidate edges of the support surface;segmenting the plurality of depth measurements to assign classes to each pixel, each class defined by one of a plurality of seed pixels, wherein the plurality of seed pixels are identified from the depth measurements based on the Hough lines; anddetecting the edge of the support surface by selecting a class of pixels and applying a line-fitting model to the selected class to obtain an estimated edge of the support surface,wherein segmenting the plurality of depth measurements comprises: overlaying the Hough lines with the depth measurements and identifying the seed pixels as the depth measurements which correspond to Hough lines;selecting a seed pixel and defining an object class based on the selected seed pixel;iteratively growing the object class by: selecting an unclassified pixel adjacent to a pixel in the object class;determining if the unclassified adjacent pixel is part of the object class; andwhen the determination is positive, adding the unclassified adjacent pixel to the object class.
  • 2. The method of claim 1, wherein determining if the unclassified adjacent pixel is part of the object class comprises: determining an angle between an origin in the image frame of reference, the unclassified adjacent pixel, and the pixel in the object class; andwhen the angle is above a predefined threshold, determining that the unclassified adjacent pixel is part of the object class.
  • 3. The method of claim 1, further comprising, prior to segmenting the depth measurements, discarding Hough lines within a threshold angle of vertical.
  • 4. The method of claim 1, further comprising, prior to segmenting the depth measurements: selecting a ground seed pixel and defining a ground class for the ground seed pixel;iteratively growing the ground class by:selecting an unclassified pixel adjacent to a pixel in the ground class;determining if the unclassified adjacent pixel is part of the ground class; andwhen the determination is positive, adding the unclassified adjacent pixel to the ground class; anddiscarding pixels in the ground class.
  • 5. The method of claim 1, further comprising estimating a support surface plane associated with the support surface as a vertical plane of the estimated edge of the support surface.
  • 6. The method of claim 5, further comprising, based on the estimated support surface plane: computing a current distance of an apparatus of the imaging controller to the estimated support surface plane; andcomputing a current yaw of the apparatus to the estimated support surface plane.
  • 7. The method of claim 6, further comprising: computing an average distance of the apparatus to the estimated support surface plane based on the current distance and a plurality of previous distances; andcomputing an average yaw of the apparatus to the estimated support surface plane based on the current yaw and a plurality of previous yaws.
  • 8. The method of claim 6, further comprising: obtaining a second estimated support surface plane, the second estimated support surface plane computed by a different detection method;computing an agreement score of the estimated support surface plane and the second estimated support surface plane; andwhen the agreement score is above a threshold score, publishing the estimated support surface plane as a detected support surface plane.
  • 9. The method of claim 1, wherein selecting the class of pixels comprises selecting a largest object class wherein a difference in height between pixels in the class and its seed pixel are within a first threshold distance; and wherein a distance between consecutive pixels in the class are within a second threshold distance.
  • 10. A mobile automation apparatus, comprising: a locomotive assembly;an image sensor and a depth sensor; andan imaging controller configured to: obtain image data captured by the image sensor and a plurality of depth measurements captured by the depth sensor, the image data and the plurality of depth measurements corresponding to an area containing the support surface;detect preliminary edges in the image data;apply a Hough transform to the preliminary edges to determine Hough lines representing candidate edges of the support surface;segment the plurality of depth measurements to assign classes to each pixel, each class defined by one of a plurality of seed pixels, wherein the plurality of seed pixels are identified from the depth measurements based on the Hough lines; anddetect an edge of the support surface by selecting a class of pixels and applying a line-fitting model to the selected class to obtain an estimated edge of the support surface,wherein the imaging controller is further configured to: estimate a support surface plane associated with the support surface as a vertical plane of the estimated edge of the support surface;obtain a second estimated support surface plane, the second estimated support surface plan computed by a different detection method;compute an agreement score of the estimated support surface plane and the second estimated support surface plane; andwhen the agreement score is above a threshold score, publish the estimated support surface plane as a detected support surface plane.
  • 11. The mobile automation apparatus of claim 10, wherein the imaging controller is configured to segment the depth measurements by: overlaying the Hough lines with the depth measurements and identifying the seed pixels as the depth measurements which correspond to Hough lines;selecting a seed pixel and defining an object class based on the selected seed pixel;iteratively growing the object class by: selecting an unclassified pixel adjacent to a pixel in the object class;determining if the unclassified adjacent pixel is part of the object class; andwhen the determination is positive, adding the unclassified adjacent pixel to the object class.
  • 12. The mobile automation apparatus of claim 11, wherein the imaging controller is configured to determine if the unclassified adjacent pixel is part of the object class by: determining an angle between an origin in the image frame of reference, the unclassified adjacent pixel, and the pixel in the object class; andwhen the angle is above a predefined threshold, determining that the unclassified adjacent pixel is part of the object class.
  • 13. The mobile automation apparatus of claim 10, wherein the imaging controller is further configured to, prior to segmenting the depth measurements, discard Hough lines within a threshold angle of vertical.
  • 14. The mobile automation apparatus of claim 10, wherein the imaging controller is further configured to, prior to segmenting the depth measurements: select a ground seed pixel and defining a ground class for the ground seed pixel;iteratively grow the ground class by: selecting an unclassified pixel adjacent to a pixel in the ground class;determining if the unclassified adjacent pixel is part of the ground class; andwhen the determination is positive, adding the unclassified adjacent pixel to the ground class; anddiscard pixels in the ground class.
  • 15. The mobile automation apparatus of claim 10, wherein the imaging controller is further configured to, based on the estimated support surface plane: compute a current distance of an apparatus of the imaging controller to the estimated support surface plane; andcompute a current yaw of the apparatus to the estimated support surface plane.
  • 16. The mobile automation apparatus of claim 15, wherein the imaging controller is further configured to: compute an average distance of the apparatus to the estimated support surface plane based on the current distance and a plurality of previous distances; andcompute an average yaw of the apparatus to the estimated support surface plane based on the current yaw and a plurality of previous yaws.
  • 17. The mobile automation apparatus of claim 10, wherein the imaging controller is further configured to select the class of pixels by selecting a largest object class wherein a difference in height between pixels in the class and its seed pixel are within a first threshold distance; and wherein a distance between consecutive pixels in the class are within a second threshold distance.
  • 18. A method of detecting an edge of a support surface by an imaging controller, the method comprising: obtaining image data captured by an image sensor and a plurality of depth measurements captured by a depth sensor, the image data and the plurality of depth measurements corresponding to an area containing the support surface;detecting preliminary edges in the image data;applying a Hough transform to the preliminary edges to determine Hough lines representing candidate edges of the support surface;segmenting the plurality of depth measurements to assign classes to each pixel, each class defined by one of a plurality of seed pixels, wherein the plurality of seed pixels are identified from the depth measurements based on the Hough lines;detecting the edge of the support surface by selecting a class of pixels and applying a line-fitting model to the selected class to obtain an estimated edge of the support surface; andprior to segmenting the depth measurements: selecting a ground seed pixel and defining a ground class for the ground seed pixel,iteratively growing the ground class by: selecting an unclassified pixel adjacent to a pixel in the ground class,determining if the unclassified adjacent pixel is part of the ground class,when the determination is positive, adding the unclassified adjacent pixel to the ground class, anddiscarding pixels in the ground class.
US Referenced Citations (410)
Number Name Date Kind
5209712 Ferri May 1993 A
5214615 Bauer May 1993 A
5408322 Hsu et al. Apr 1995 A
5414268 McGee May 1995 A
5534762 Kim Jul 1996 A
5566280 Fukui et al. Oct 1996 A
5953055 Huang et al. Sep 1999 A
5988862 Kacyra et al. Nov 1999 A
6026376 Kenney Feb 2000 A
6034379 Bunte et al. Mar 2000 A
6075905 Herman et al. Jun 2000 A
6115114 Berg et al. Sep 2000 A
6141293 Amorai-Moriya et al. Oct 2000 A
6304855 Burke Oct 2001 B1
6442507 Skidmore et al. Aug 2002 B1
6549825 Kurata Apr 2003 B2
6580441 Schileru-Key Jun 2003 B2
6711293 Lowe Mar 2004 B1
6721769 Rappaport et al. Apr 2004 B1
6836567 Silver et al. Dec 2004 B1
6995762 Pavlidis et al. Feb 2006 B1
7090135 Patel Aug 2006 B2
7137207 Armstrong et al. Nov 2006 B2
7245558 Willins et al. Jul 2007 B2
7248754 Cato Jul 2007 B2
7277187 Smith et al. Oct 2007 B2
7373722 Cooper et al. May 2008 B2
7474389 Greenberg et al. Jan 2009 B2
7487595 Armstrong et al. Feb 2009 B2
7493336 Noonan Feb 2009 B2
7508794 Feather et al. Mar 2009 B2
7527205 Zhu et al. May 2009 B2
7605817 Zhang et al. Oct 2009 B2
7647752 Magnell Jan 2010 B2
7693757 Zimmerman Apr 2010 B2
7726575 Wang et al. Jun 2010 B2
7751928 Antony et al. Jul 2010 B1
7783383 Eliuk et al. Aug 2010 B2
7839531 Sugiyama Nov 2010 B2
7845560 Emanuel et al. Dec 2010 B2
7885865 Benson et al. Feb 2011 B2
7925114 Mai et al. Apr 2011 B2
7957998 Riley et al. Jun 2011 B2
7996179 Lee et al. Aug 2011 B2
8009864 Linaker et al. Aug 2011 B2
8049621 Egan Nov 2011 B1
8091782 Cato et al. Jan 2012 B2
8094902 Crandall et al. Jan 2012 B2
8094937 Teoh et al. Jan 2012 B2
8132728 Dwinell et al. Mar 2012 B2
8134717 Pangrazio et al. Mar 2012 B2
8189855 Opalach et al. May 2012 B2
8199977 Krishnaswamy et al. Jun 2012 B2
8207964 Meadow et al. Jun 2012 B1
8233055 Matsunaga et al. Jul 2012 B2
8265895 Willins et al. Sep 2012 B2
8277396 Scott et al. Oct 2012 B2
8284988 Sones et al. Oct 2012 B2
8423431 Rouaix et al. Apr 2013 B1
8429004 Hamilton et al. Apr 2013 B2
8463079 Ackley et al. Jun 2013 B2
8479996 Barkan et al. Jul 2013 B2
8520067 Ersue Aug 2013 B2
8542252 Perez et al. Sep 2013 B2
8571314 Tao et al. Oct 2013 B2
8599303 Stettner Dec 2013 B2
8630924 Groenevelt et al. Jan 2014 B2
8660338 Ma et al. Feb 2014 B2
8743176 Stettner et al. Jun 2014 B2
8757479 Clark et al. Jun 2014 B2
8812226 Zeng Aug 2014 B2
8923893 Austin et al. Dec 2014 B2
8939369 Olmstead et al. Jan 2015 B2
8954188 Sullivan et al. Feb 2015 B2
8958911 Wong et al. Feb 2015 B2
8971637 Rivard Mar 2015 B1
8989342 Liesenfelt et al. Mar 2015 B2
9007601 Steffey et al. Apr 2015 B2
9037287 Grauberger et al. May 2015 B1
9064394 Trundle Jun 2015 B1
9070285 Ramu et al. Jun 2015 B1
9072929 Rush Jul 2015 B1
9129277 Macintosh Sep 2015 B2
9135491 Morandi et al. Sep 2015 B2
9159047 Winkel Oct 2015 B2
9171442 Clements Oct 2015 B2
9247211 Zhang et al. Jan 2016 B2
9329269 Zeng May 2016 B2
9349076 Liu et al. May 2016 B1
9367831 Besehanic Jun 2016 B1
9380222 Clayton et al. Jun 2016 B2
9396554 Williams et al. Jul 2016 B2
9400170 Steffey Jul 2016 B2
9424482 Patel et al. Aug 2016 B2
9517767 Kentley et al. Dec 2016 B1
9542746 Wu et al. Jan 2017 B2
9549125 Goyal et al. Jan 2017 B1
9562971 Shenkar et al. Feb 2017 B2
9565400 Curlander et al. Feb 2017 B1
9589353 Mueller-Fischer et al. Mar 2017 B2
9600731 Yasunaga et al. Mar 2017 B2
9600892 Patel et al. Mar 2017 B2
9612123 Levinson et al. Apr 2017 B1
9639935 Douady-Pleven et al. May 2017 B1
9697429 Patel et al. Jul 2017 B2
9766074 Roumeliotis et al. Sep 2017 B2
9778388 Connor Oct 2017 B1
9791862 Connor Oct 2017 B1
9805240 Zheng et al. Oct 2017 B1
9811754 Schwartz Nov 2017 B2
9827683 Hance et al. Nov 2017 B1
9880009 Bell Jan 2018 B2
9928708 Lin et al. Mar 2018 B2
9953420 Wolski et al. Apr 2018 B2
9980009 Jiang et al. May 2018 B2
9994339 Colson et al. Jun 2018 B2
9996818 Ren et al. Jun 2018 B1
10019803 Venable et al. Jul 2018 B2
10111646 Nycz et al. Oct 2018 B2
10121072 Kekatpure Nov 2018 B1
10127438 Fisher et al. Nov 2018 B1
10197400 Jesudason et al. Feb 2019 B2
10210603 Venable et al. Feb 2019 B2
10229386 Thomas Mar 2019 B2
10248653 Blassin et al. Apr 2019 B2
10265871 Hance et al. Apr 2019 B2
10289990 Rizzolo et al. May 2019 B2
10336543 Sills et al. Jul 2019 B1
10349031 DeLuca Jul 2019 B2
10352689 Brown et al. Jul 2019 B2
10373116 Medina et al. Aug 2019 B2
10394244 Song et al. Aug 2019 B2
20010031069 Kondo et al. Oct 2001 A1
20010041948 Ross et al. Nov 2001 A1
20020006231 Jayant et al. Jan 2002 A1
20020097439 Braica Jul 2002 A1
20020146170 Rom Oct 2002 A1
20020158453 Levine Oct 2002 A1
20020164236 Fukuhara et al. Nov 2002 A1
20030003925 Suzuki Jan 2003 A1
20030094494 Blanford et al. May 2003 A1
20030174891 Wenzel et al. Sep 2003 A1
20040021313 Gardner et al. Feb 2004 A1
20040131278 imagawa et al. Jul 2004 A1
20040240754 Smith et al. Dec 2004 A1
20050016004 Armstrong et al. Jan 2005 A1
20050114059 Chang et al. May 2005 A1
20050213082 DiBernardo et al. Sep 2005 A1
20050213109 Schell et al. Sep 2005 A1
20060032915 Schwartz Feb 2006 A1
20060045325 Zavadsky et al. Mar 2006 A1
20060106742 Bochicchio et al. May 2006 A1
20060285486 Roberts et al. Dec 2006 A1
20070036398 Chen Feb 2007 A1
20070074410 Armstrong et al. Apr 2007 A1
20070272732 Hindmon Nov 2007 A1
20080002866 Fujiwara Jan 2008 A1
20080025565 Zhang et al. Jan 2008 A1
20080027591 Lenser et al. Jan 2008 A1
20080077511 Zimmerman Mar 2008 A1
20080159634 Sharma et al. Jul 2008 A1
20080164310 Dupuy et al. Jul 2008 A1
20080175513 Lai et al. Jul 2008 A1
20080181529 Michel et al. Jul 2008 A1
20080238919 Pack Oct 2008 A1
20080294487 Nasser Nov 2008 A1
20090009123 Skaff Jan 2009 A1
20090024353 Lee et al. Jan 2009 A1
20090057411 Madej et al. Mar 2009 A1
20090059270 Opalach et al. Mar 2009 A1
20090060349 Linaker et al. Mar 2009 A1
20090063306 Fano et al. Mar 2009 A1
20090063307 Groenovelt et al. Mar 2009 A1
20090074303 Filimonova et al. Mar 2009 A1
20090088975 Sato et al. Apr 2009 A1
20090103773 Wheeler et al. Apr 2009 A1
20090125350 Lessing et al. May 2009 A1
20090125535 Basso et al. May 2009 A1
20090152391 McWhirk Jun 2009 A1
20090160975 Kwan Jun 2009 A1
20090192921 Hicks Jul 2009 A1
20090206161 Olmstead Aug 2009 A1
20090236155 Skaff Sep 2009 A1
20090252437 Li et al. Oct 2009 A1
20090287587 Bloebaum et al. Nov 2009 A1
20090323121 Valkenburg et al. Dec 2009 A1
20100017407 Beniyama et al. Jan 2010 A1
20100026804 Tanizaki et al. Feb 2010 A1
20100070365 Siotia et al. Mar 2010 A1
20100082194 Yabushita et al. Apr 2010 A1
20100091094 Sekowski Apr 2010 A1
20100118116 Tomasz et al. May 2010 A1
20100131234 Stewart et al. May 2010 A1
20100141806 Uemura et al. Jun 2010 A1
20100171826 Hamilton et al. Jul 2010 A1
20100208039 Setettner Aug 2010 A1
20100214873 Somasundaram et al. Aug 2010 A1
20100235033 Yamamoto et al. Sep 2010 A1
20100241289 Sandberg Sep 2010 A1
20100295850 Katz et al. Nov 2010 A1
20100315412 Sinha et al. Dec 2010 A1
20100326939 Clark et al. Dec 2010 A1
20110047636 Stachon et al. Feb 2011 A1
20110052043 Hyung et al. Mar 2011 A1
20110093306 Nielsen et al. Apr 2011 A1
20110137527 Simon et al. Jun 2011 A1
20110168774 Magal Jul 2011 A1
20110172875 Gibbs Jul 2011 A1
20110216063 Hayes Sep 2011 A1
20110242286 Pace et al. Oct 2011 A1
20110254840 Halstead Oct 2011 A1
20110286007 Pangrazio et al. Nov 2011 A1
20110288816 Thierman Nov 2011 A1
20110310088 Adabala et al. Dec 2011 A1
20120019393 Wolinsky et al. Jan 2012 A1
20120022913 VolKmann et al. Jan 2012 A1
20120051730 Cote et al. Mar 2012 A1
20120069051 Hagbi et al. Mar 2012 A1
20120075342 Choubassi et al. Mar 2012 A1
20120133639 Kopf et al. May 2012 A1
20120307108 Forutanpour Jun 2012 A1
20120169530 Padmanabhan et al. Jul 2012 A1
20120179621 Moir et al. Jul 2012 A1
20120185112 Sung et al. Jul 2012 A1
20120194644 Newcombe et al. Aug 2012 A1
20120197464 Wang et al. Aug 2012 A1
20120201466 Funayama et al. Aug 2012 A1
20120209553 Doytchinov et al. Aug 2012 A1
20120236119 Rhee et al. Sep 2012 A1
20120249802 Taylor Oct 2012 A1
20120250978 Taylor Oct 2012 A1
20120269383 Bobbitt et al. Oct 2012 A1
20120287249 Choo et al. Nov 2012 A1
20120323620 Hofman et al. Dec 2012 A1
20130030700 Miller et al. Jan 2013 A1
20130090881 Janardhanan et al. Apr 2013 A1
20130119138 Winkel May 2013 A1
20130132913 Fu et al. May 2013 A1
20130134178 Lu May 2013 A1
20130138246 Gutmann et al. May 2013 A1
20130142421 Silver et al. Jun 2013 A1
20130144565 Miller et al. Jun 2013 A1
20130154802 O'Haire et al. Jun 2013 A1
20130156292 Chang et al. Jun 2013 A1
20130162806 Ding et al. Jun 2013 A1
20130176398 Bonner et al. Jul 2013 A1
20130178227 Vartanian et al. Jul 2013 A1
20130182114 Zhang et al. Jul 2013 A1
20130226344 Wong et al. Aug 2013 A1
20130228620 Ahem et al. Sep 2013 A1
20130235165 Gharib et al. Sep 2013 A1
20130236089 Litvak et al. Sep 2013 A1
20130278631 Border et al. Oct 2013 A1
20130299306 Jiang et al. Nov 2013 A1
20130299313 Baek, IV et al. Nov 2013 A1
20130300729 Grimaud Nov 2013 A1
20130303193 Dharwada et al. Nov 2013 A1
20130321418 Kirk Dec 2013 A1
20130329013 Metois et al. Dec 2013 A1
20130341400 Lancaster-Larocque Dec 2013 A1
20140002597 Taguchi et al. Jan 2014 A1
20140003655 Gopalkrishnan et al. Jan 2014 A1
20140003727 Lortz et al. Jan 2014 A1
20140016832 Kong et al. Jan 2014 A1
20140019311 Tanaka Jan 2014 A1
20140025201 Ryu et al. Jan 2014 A1
20140028837 Gao et al. Jan 2014 A1
20140047342 Breternitz et al. Feb 2014 A1
20140049616 Stettner Feb 2014 A1
20140052555 MacIntosh Feb 2014 A1
20140086483 Zhang et al. Mar 2014 A1
20140098094 Neumann et al. Apr 2014 A1
20140100813 Shaowering Apr 2014 A1
20140104413 McCloskey et al. Apr 2014 A1
20140129027 Schnittman May 2014 A1
20140156133 Cullinane et al. Jun 2014 A1
20140161359 Magri et al. Jun 2014 A1
20140192050 Qiu et al. Jul 2014 A1
20140195374 Bassemir et al. Jul 2014 A1
20140214547 Signorelli et al. Jul 2014 A1
20140214600 Argue et al. Jul 2014 A1
20140267614 Ding et al. Sep 2014 A1
20140267688 Aich et al. Sep 2014 A1
20140277691 Jacobus et al. Sep 2014 A1
20140277692 Buzan et al. Sep 2014 A1
20140300637 Fan et al. Oct 2014 A1
20140344401 Varney et al. Nov 2014 A1
20140351073 Murphy et al. Nov 2014 A1
20140369607 Patel et al. Dec 2014 A1
20150015602 Beaudoin Jan 2015 A1
20150019391 Kumar et al. Jan 2015 A1
20150029339 Kobres et al. Jan 2015 A1
20150032304 Nakamura Jan 2015 A1
20150039458 Reid Feb 2015 A1
20150088618 Basir et al. Mar 2015 A1
20150088703 Yan Mar 2015 A1
20150092066 Geiss et al. Apr 2015 A1
20150106403 Haverinen et al. Apr 2015 A1
20150117788 Patel et al. Apr 2015 A1
20150139010 Jeong et al. May 2015 A1
20150154467 Feng et al. Jun 2015 A1
20150161793 Takahashi Jun 2015 A1
20150170256 Pettyjohn et al. Jun 2015 A1
20150181198 Baele et al. Jun 2015 A1
20150212521 Pack et al. Jul 2015 A1
20150245358 Schmidt Aug 2015 A1
20150262116 Katircioglu et al. Sep 2015 A1
20150279035 Wolski et al. Oct 2015 A1
20150298317 Wang et al. Oct 2015 A1
20150310601 Rodriguez et al. Oct 2015 A1
20150352721 Wicks et al. Dec 2015 A1
20150363625 Wu et al. Dec 2015 A1
20150363758 Wu et al. Dec 2015 A1
20150365660 Wu et al. Dec 2015 A1
20150379704 Chandrasekar et al. Dec 2015 A1
20160026253 Bradski et al. Jan 2016 A1
20160044862 Kocer Feb 2016 A1
20160061591 Pangrazio et al. Mar 2016 A1
20160070981 Sasaki et al. Mar 2016 A1
20160092943 Vigier et al. Mar 2016 A1
20160012588 Taguchi et al. Apr 2016 A1
20160104041 bowers et al. Apr 2016 A1
20160107690 Oyama et al. Apr 2016 A1
20160112628 Super et al. Apr 2016 A1
20160114488 Mascorro Medina et al. Apr 2016 A1
20160129592 Saboo et al. May 2016 A1
20160132815 Itoko et al. May 2016 A1
20160150217 Popov May 2016 A1
20160156898 Ren et al. Jun 2016 A1
20160163067 Williams et al. Jun 2016 A1
20160171336 Schwartz Jun 2016 A1
20160171429 Schwartz Jun 2016 A1
20160171707 Schwartz Jun 2016 A1
20160185347 Lefevre et al. Jun 2016 A1
20160191759 Somanath et al. Jun 2016 A1
20160224927 Pettersson Aug 2016 A1
20160253735 Scudillo et al. Sep 2016 A1
20160253844 Petrovskaya et al. Sep 2016 A1
20160260054 High et al. Sep 2016 A1
20160271795 Vicenti Sep 2016 A1
20160313133 Zeng et al. Oct 2016 A1
20160328618 Patel et al. Nov 2016 A1
20160353099 Thomson et al. Dec 2016 A1
20160364634 Davis et al. Dec 2016 A1
20170004649 Collet Romea et al. Jan 2017 A1
20170011281 Dijkman et al. Jan 2017 A1
20170011308 Sun et al. Jan 2017 A1
20170032311 Rizzolo et al. Feb 2017 A1
20170041553 Cao et al. Feb 2017 A1
20170054965 Raab et al. Feb 2017 A1
20170066459 Singh Mar 2017 A1
20170074659 Giurgiu et al. Mar 2017 A1
20170109940 Guo et al. Apr 2017 A1
20170150129 Pangrazio May 2017 A1
20170178060 Schwartz Jun 2017 A1
20170193434 Shah et al. Jul 2017 A1
20170219338 Brown et al. Aug 2017 A1
20170219353 Alesiani Aug 2017 A1
20170227645 Swope et al. Aug 2017 A1
20170227647 Baik Aug 2017 A1
20170228885 Baumgartner Aug 2017 A1
20170261993 Venable et al. Sep 2017 A1
20170262724 Wu et al. Sep 2017 A1
20170280125 Brown et al. Sep 2017 A1
20170286773 Skaff et al. Oct 2017 A1
20170286901 Skaff et al. Oct 2017 A1
20170323253 Enssle et al. Nov 2017 A1
20170323376 Glaser et al. Nov 2017 A1
20170337508 Bogolea et al. Nov 2017 A1
20180001481 Shah et al. Jan 2018 A1
20180005035 Bogolea et al. Jan 2018 A1
20180005176 Williams et al. Jan 2018 A1
20180020145 Kotfis et al. Jan 2018 A1
20180051991 Hong Feb 2018 A1
20180053091 Savvides et al. Feb 2018 A1
20180053305 Gu et al. Feb 2018 A1
20180101813 Paat et al. Apr 2018 A1
20180108134 Venable et al. Apr 2018 A1
20180114183 Howell Apr 2018 A1
20180130011 Jacobsson May 2018 A1
20180143003 Clayton et al. May 2018 A1
20180174325 Fu et al. Jun 2018 A1
20180201423 Drzewiecki et al. Jul 2018 A1
20180204111 Zadeh et al. Jul 2018 A1
20180251253 Taira et al. Sep 2018 A1
20180281191 Sinyayskiy et al. Oct 2018 A1
20180293442 Fridental et al. Oct 2018 A1
20180313956 Rzeszutek et al. Nov 2018 A1
20180314260 Jen et al. Nov 2018 A1
20180314908 Lam Nov 2018 A1
20180315007 Kingsford et al. Nov 2018 A1
20180315065 Zhang et al. Nov 2018 A1
20180315173 Phan et al. Nov 2018 A1
20180315865 Haist et al. Nov 2018 A1
20180370727 Hance et al. Dec 2018 A1
20190057588 Savvides et al. Feb 2019 A1
20190065861 Savvides et al. Feb 2019 A1
20190073554 Rzeszutek Mar 2019 A1
20190073559 Rzeszutek et al. Mar 2019 A1
20190077015 Shibasaki et al. Mar 2019 A1
20190087663 Yamazaki et al. Mar 2019 A1
20190094876 Moore et al. Mar 2019 A1
20190108606 Komiyama Apr 2019 A1
20190178436 Mao Jun 2019 A1
20190180150 Taylor et al. Jun 2019 A1
20190197728 Yamao Jun 2019 A1
20190236530 Cantrell et al. Aug 2019 A1
20190304132 Yoda et al. Oct 2019 A1
20190392212 Sawhney et al. Dec 2019 A1
20200314333 Liang Oct 2020 A1
Foreign Referenced Citations (36)
Number Date Country
2835830 Nov 2012 CA
3028156 Jan 2018 CA
104200086 Dec 2014 CN
107067382 Aug 2017 CN
766098 Apr 1997 EP
1311993 May 2007 EP
2309378 Apr 2011 EP
2439487 Apr 2012 EP
2472475 Jul 2012 EP
2562688 Feb 2013 EP
2662831 Nov 2013 EP
2693362 Feb 2014 EP
2323238 Sep 1998 GB
2330265 Apr 1999 GB
101234798 Jan 2009 KR
1020190031431 Mar 2019 KR
WO 9923600 May 1999 WO
WO 2003002935 Jan 2003 WO
WO 2003025805 Mar 2003 WO
WO 2006136958 Dec 2006 WO
WO 2007042251 Apr 2007 WO
WO 2008057504 May 2008 WO
WO 2008154611 Dec 2008 WO
WO 2012103199 Aug 2012 WO
WO 2012103202 Aug 2012 WO
WO 2012154801 Nov 2012 WO
WO 2013165674 Nov 2013 WO
WO 2014066422 May 2014 WO
WO 2014092552 Jun 2014 WO
WO 2014181323 Nov 2014 WO
WO 2015127503 Sep 2015 WO
WO 2016020038 Feb 2016 WO
WO 2018018007 Jan 2018 WO
WO 2018204308 Nov 2018 WO
WO 2018204342 Nov 2018 WO
WO 2019023249 Jan 2019 WO
Non-Patent Literature Citations (92)
Entry
“Fair Billing with Automatic Dimensioning” pp. 1-4, undated, Copyright Mettler-Toledo International Inc.
“Plane Detection in Point Cloud Data” dated Jan. 25, 2010 by Michael Ying Yang and Wolfgang Forstner, Technical Report 1, 2010, University of Bonn.
“Swift Dimension” Trademark Omniplanar, Copyright 2014.
Ajmal S. Mian et al., “Three-Dimensional Model Based Object Recognition and Segmentation in Cluttered Scenes”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, No. 10, Oct. 2006.
Batalin et al., “Mobile robot navigation using a sensor network,” IEEE, International Conference on robotics and automation, Apr. 26, May 1, 2004, pp. 636-641.
Bazazian et al., “Fast and Robust Edge Extraction in Unorganized Point clouds,” IEEE, 2015 International Conference on Digital Image Computing: Techniques and Applicatoins (DICTA), Nov. 23-25, 2015, pp. 1-8.
Biswas et al. “Depth Camera Based Indoor Mobile Robot Localization and Navigation” Robotics and Automation (ICRA), 2012 IEEE International Conference on IEEE, 2012.
Bohm, Multi-Image Fusion for Occlusion-Free Façde Texturing, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, pp. 867-872 (Jan. 2004).
Bristow et al., “A Survey of Iterative Learning Control”, IEEE Control Systems, Jun. 2006, pp. 96-114.
Buenaposada et al. “Realtime tracking and estimation of plane pose” Proceedings of the ICPR (Aug. 2002) vol. II, IEEE pp. 697-700.
Carreira et al., “Enhanced PCA-based localization using depth maps with missing data,” IEEE, pp. 1-8, Apr. 24, 2013.
Chen et al. “Improving Octree-Based Occupancy Maps Using Environment Sparsity with Application to Aerial Robot Navigation” Robotics and Automation (ICRA), 2017 IEEE.
Cleveland Jonas et al: “Automated System for Semantic Object Labeling with Soft-Object Recognition and Dynamic Programming Segmentation”, IEEE Transactions on Automation Science and Engineering, IEEE Service Center, New York, NY (Apr. 1, 2017).
Cook et al., “Distributed Ray Tracing” ACM SIGGRAPH Computer Graphics, vol. 18, No. 3, ACM pp. 137-145, 1984.
Datta, A., et al. “Accurate camera calibration using iterative refinement of control points,” in Computer Vision Workshops (ICCV Workshops), 2009.
Deschaud, et al., “A Fast and Accurate Place Detection algoritm for large noisy point clouds using filtered normals and voxel growing,” 3DPVT, May 2010, Paris, France. [hal-01097361].
Douillard, Bertrand, et al. “On the segmentation of 3D LIDAR point clouds.” Robotics and Automation (ICRA), 2011 IEEE International Conference on IEEE, 2011.
Dubois, M., et al., “A comparison of geometric and energy-based point cloud semantic segmentation methods,” European Conference on Mobile Robots (ECMR), p. 88-93, Sep. 25-27, 2013.
Duda, et al., “Use of the Hough Transformation to Detect Lines and Curves in Pictures”, Stanford Research Institute, Menlo Park, California, Graphics and Image Processing, Communications of the ACM, vol. 15, No. 1 (Jan. 1972).
F.C.A. Groen et al., “The smallest box around a package,” Pattern Recognition, vol. 14, No. 1-6, Jan. 1, 1981, pp. 173-176, XP055237156, GB, ISSN: 0031-3203, DOI: 10.1016/0031-3203(81(90059-5 p. 176-p. 178.
Federico Tombari et al. “Multimodal cue integration through Hypotheses Verification for RGB-D object recognition and 6DOF pose estimation”, IEEE International Conference on Robotics and Automation, Jan. 2013.
Notice of allowance for U.S. Appl. No. 15/211,103 dated Apr. 5, 2017.
Olson, Clark F., etal. “Wide-Baseline Stereo Vision for terrain Mapping” in Machine Vision and Applications, Aug. 2010.
Oriolo et al., “An iterative learning controller for nonholonomic mobile Robots”, the international Journal of Robotics Research, Aug. 1997, pp. 954-970.
Ostafew et al., “Visual Teach and Repeat, Repeat, Repeat: Iterative learning control to improve mobile robot path tracking in challenging outdoor environment”, IEEE/RSJ International Conference on Intelligent robots and Systems, Nov. 2013, pp. 176-.
Park et al., “Autonomous mobile robot navigation using passive rfid in indoor environment,” IEEE, Transactions on industrial electronics, vol. 56, issue 7, pp. 2366-2373 (Jul. 2009).
Perveen et al. (An overview of template matching methodologies and its application, International Journal of Research in Computer and Communication Technology, v2n10, Oct. 2013) (Year: 2013).
Pivtoraiko et al., “Differentially constrained mobile robot motion planning in state lattices”, journal of field robotics, vol. 26, No. 3, 2009, pp. 308-333.
Pratt W K Ed: “Digital Image processing, 10-image enhancement, 17-image segmentation”, Jan. 1, 2001, Digital Image Processing: PIKS Inside, New York: John Wily & Sons, US, pp. 243-258, 551.
Puwein, J., et al.“Robust Multi-view camera calibration for wide-baseline camera networks,” in IEEE Workshop on Applications of computer vision (WACV), Jan. 2011.
Rusu, et al. “How to incrementally register pairs of clouds,” PCL Library, retrieved from internet on Aug. 22, 2016 [http://pointclouds.org/documentation/tutorials/pairwise_incremental_registration.php.
Rusu, et al. “Spatial Change detection on unorganized point cloud data,” PCL Library, retrieved from internet on Aug. 19, 2016 [http://pointclouds.org/documentation/tutorials/octree_change.php].
Schnabel et al. “Efficient RANSAC for Point-Cloud Shape Detection”, vol. 0, No. 0, pp. 1-12 (1981).
Senthilkumaran, et al., “Edge Detection Techniques for Image Segmentation—A Survey of Soft Computing Approaches”, International Journal of Recent Trends in Engineering, vol. 1, No. 2 (May 2009).
Szeliski, “Modified Hough Transform”, Computer Vision. Copyright 2011, pp. 251-254. Retrieved on Aug. 17, 2017 [http://szeliski.org/book/drafts/SzeliskiBook_20100903_draft.pdf].
Tahir, Rabbani, et al., “Segmentation of point clouds using smoothness constraint,” International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36.5 (Sep. 2006): 248-253.
Trevor et al., “Tables, Counters, and Shelves: Semantic Mapping of Surfaces in 3D,” Retrieved from Internet Jul. 3, 2018 @ http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.703.5365&rep=rep1&type=p.
Tseng, et al., “A Cloud Removal Approach for Aerial Image Visualization”, International Journal of Innovative Computing, Information & Control, vol. 9, No. 6, pp. 2421-2440 (Jun. 2013).
Uchiyama, et al., “Removal of Moving Objects from a Street-View Image by Fusing Multiple Image Sequences”, Pattern Recognition, 2010, 20th International Conference On, IEEE, Piscataway, NJ pp. 3456-3459 (Aug. 23, 2010).
United Kingdom Intellectual Property Office, “Combined Search and Examination Report” for GB Patent Application No. 1813580.6 dated Feb. 21, 2019.
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated Jan. 22, 2016 for GB Patent Application No. 1417218.3.
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated Jan. 22, 2016 for GB Patent Application No. 1521272.3.
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated Mar. 11, 2015 for GB Patent Application No. 1417218.3.
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated May 13, 2020 for GB Patent Application No. 1917864.9.
Varol Gul et al: “Product placement detection based on image processing”, 2014 22nd Signal Processing and Communication Applications Conference (SIU), IEEE, Apr. 23, 2014.
Varol Gul et al: “Toward Retail product recognition on Grocery shelves”, Visual Communications and image processing; Jan. 20, 2004; San Jose, (Mar. 4, 2015).
Weber et al., “Methods for Feature Detection in Point clouds,” visualization of large and unstructured data sets—IRTG Workshop, pp. 90-99 (2010).
Zhao Zhou et al.: “An Image contrast Enhancement Algorithm Using PLIP-based histogram Modification”, 2017 3rd IEEE International Conference on Cybernetics (CYBCON), IEEE, (Jun. 21, 2017).
Ziang Xie et al., “Multimodal Blending for High-Accuracy Instance Recognition”, 2013 IEEE RSJ International Conference on Intelligent Robots and Systems, p. 2214-2221.
Fan Zhang et al., “Parallax-tolerant Image Stitching”, 2014 Computer Vision Foundation, pp. 4321-4328.
Kaimo Lin et al., “SEAGULL: Seam-guided Local Alignment for Parallax-tolerant Image Stitching”, Retrieved on Nov. 16, 2020 [http://publish.illinois.edu/visual-modeling-and-analytics/files/2016/08/Seagull.pdf].
Julio Zaragoza et al., “As-Projective-As-Possible Image Stitching with Moving DLT”, 2013 Computer Vision Foundation, pp. 2339-2346.
Flores, et al., “Removing Pedestrians from Google Street View Images”, Computer Vision and Pattern Recognition Workshops, 2010 IEEE Computer Society Conference On, IEE, Piscataway, NJ, pp. 53-58 (Jun. 13, 2010).
Glassner, “Space Subdivision for Fast Ray Tracing.” IEEE Computer Graphics and Applications, 4.10, pp. 15-24, 1984.
Golovinskiy, Aleksey, et al. “Min-Cut based segmentation of point clouds.” Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on. IEEE, 2009.
Hackel et al., “Contour Detection in unstructured 3D point clouds,” IEEE, 2016 Conference on Computer vision and Pattern recognition (CVPR), Jun. 27-30, 2016, pp. 1-9.
Hao et al., “Structure-based object detection from scene point clouds,” Science Direct, v191, pp. 148-160 (2016).
Hu et al., “An improved method of discrete point cloud filtering based on complex environment,” International Journal of Applied Mathematics and Statistics, v48, i18 (2013).
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2016/064110 dated Mar. 20, 2017.
International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2017/024847 dated Jul. 7, 2017.
International Search Report and Written Opinion for International Application No. PCT/US2019/025859 dated Jul. 3, 2019.
International Search Report and Written Opinion from International Patent Application No. PCT/US2018/030345 dated Sep. 17, 2018.
International Search Report and Written Opinion from International Patent Application No. PCT/US2018/030360 dated Jul. 9, 2018.
International Search Report and Written Opinion from International Patent Application No. PCT/US2018/030363 dated Jul. 9, 2018.
International Search Report and Written Opinion from International Patent Application No. PCT/US2019/025849 dated Jul. 9, 2019.
International Search Report and Written Opinion from International Patent Application No. PCT/US2019/064020 dated Feb. 19, 2020.
International Search Report and Written Opinion for International Patent Application No. PCT/US2013/053212 dated Dec. 1, 2014.
International Search Report and Written Opinion for International Patent Application No. PCT/US2013/070996 dated Apr. 2, 2014.
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/028133 dated Jul. 24, 2020.
International Search Report and Written Opinion from International Patent Application No. PCT/US2020/029134 dated Jul. 27, 2020.
International Search Report and Written Opinion from International Patent Application No. PCT/US2020/028183 dated Jul. 24, 2020.
International Search Report and Written Opinion from International Patent Application No. PCT/US2020/035285 dated Aug. 27, 2020.
Jadhav et al. “Survey on Spatial Domain dynamic template matching technique for scanning linear barcode,” International Journal of science and research v 5 n 3, Mar. 2016)(Year: 2016).
Jian Fan et al: “Shelf detection via vanishing point and radial projection”, 2014 IEEE International Conference on image processing (ICIP), IEEE, (Oct. 27, 2014), pp. 1575-1578.
Kang et al., “Kinematic Path-Tracking of Mobile Robot Using Iterative learning Control”, Journal of Robotic Systems, 2005, pp. 111-121.
Kay et al. “Ray Tracing Complex Scenes.” ACM SIGGRAPH Computer Graphics, vol. 20, No. 4, ACM, pp. 269-278, 1986.
Kelly et al., “Reactive Nonholonomic Trajectory Generation via Parametric Optimal Control”, International Journal of Robotics Research, vol. 22, No. 7-8, pp. 583-601 (Jul. 30, 2013).
Lari, Z., et al., “An adaptive approach for segmentation of 3D laser point cloud.” International Archives of the Photogrammertry, Remote sensing and spatial information Sciences, vol. XXXVIII-5/W12, 2011, ISPRS Calgary 2011 Workshop, Aug. 29-31, 2011, Calgary, Canada.
Lecking et al: “Localization in a wide range of industrial environments using relative 3D ceiling features”, IEEE, pp. 333-337 (Sep. 15, 2008).
Lee et al. “Statistically Optimized Sampling for Distributed Ray Tracing.” ACM SIGGRAPH Computer Graphics, vol. 19, No. 3, ACM, pp. 61-67, 1985.
Li et al., “An improved RANSAC for 3D Point cloud plane segmentation based on normal distribution transformation cells,” Remote sensing, V9: 433, pp. 1-16 (2017).
Likhachev, Maxim, and Dave Ferguson. “Planning Long dynamically feasible maneuvers for autonomous vehicles.” The international journal of Robotics Reasearch 28.8 (2009): 933-945 (Year:2009).
Marder-Eppstein et al., “The Office Marathon: robust navigation in an indoor office environment,” IEEE, 2010 International conference on robotics and automation, May 3-7, 2010, pp. 300-307.
McNaughton, Matthew, et al. “Motion planning for autonomous driving with a conformal spatiotemporal lattice.” Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE, 2011. (Year: 2011).
Mitra et al., “Estimating surface normals in noisy point cloud data,” International Journal of Computational geometry & applications, Jun. 8-10, 2003, pp. 322-328.
N.D.F. Campbell et al. “Automatic 3D Object Segmentation in Multiple Views using Volumetric Graph-Cuts”, Journal of Image and Vision Computing, vol. 28, Issue 1, Jan. 2010, pp. 14-25.
Ni et al., “Edge Detection and Feature Line Tracing in 3D-Point Clouds by Analyzing Geometric Properties of Neighborhoods,” Remote Sensing, V8 I9, pp. 1-20 (2016).
Norriof et al., “Experimental comparison of some classical iterative learning control algorithms”, IEEE Transactions on Robotics and Automation, Jun. 2002, pp. 636-641.
Notice of allowance for U.S. Appl. No. 13/568,175 dated Sep. 23, 2014.
Notice of allowance for U.S. Appl. No. 13/693,503 dated Mar. 11, 2016.
Notice of allowance for U.S. Appl. No. 14/068,495 dated Apr. 25, 2016.
Notice of allowance for U.S. Appl. No. 14/518,091 dated Apr. 12, 2017.
Related Publications (1)
Number Date Country
20200380694 A1 Dec 2020 US