The disclosures herein relate in general to audio processing, and in particular to a method, system and computer program product for estimating a level of noise.
In audio processing systems, a level of a signal's noise may be estimated for various purposes, such as noise suppression, voice activity detection, noise adaptive volume control, and echo suppression. For estimating the level of the signal's noise, a time constant may be applied. If the time constant is too slow, then such estimate is less accurate if it slowly adapts to a sudden change in the signal from a relatively quiet environment (e.g., enclosed office) to a relatively noisy environment (e.g., urban street). Conversely, if the time constant is not slow enough, then such estimate is less accurate if it mistakenly increases in response to a sudden rise in the signal.
In response to a signal failing to exceed an estimated level of noise by more than a predetermined amount for more than a predetermined continuous duration, the estimated level of noise is adjusted according to a first time constant in response to the signal rising and a second time constant in response to the signal falling, so that the estimated level of noise falls more quickly than it rises. In response to the signal exceeding the estimated level of noise by more than the predetermined amount for more than the predetermined continuous duration, a speed of adjusting the estimated level of noise is accelerated.
A control device 204 receives the signal V1 (which represents the speech and the noise) from the primary microphone and the signal V2 (which represents the noise and leakage of the speech) from the secondary microphone. In response to the signals V1 and V2, the control device 204 outputs: (a) a first electrical signal to a speaker 206; and (b) a second electrical signal to an antenna 208. The first electrical signal and the second electrical signal communicate speech from the signals V1 and V2, while suppressing at least some noise from the signals V1 and V2.
In response to the first electrical signal, the speaker 206 outputs sound waves, at least some of which are audible to the human user 202. In response to the second electrical signal, the antenna 208 outputs a wireless telecommunication signal (e.g., through a cellular telephone network to other smartphones). In the illustrative embodiments, the control device 204, the speaker 206 and the antenna 208 are components of the smartphone 100, whose various components are housed integrally with one another. Accordingly in a first example, the speaker 206 is the ear speaker of the smartphone 100. In a second example, the speaker 206 is the loud speaker of the smartphone 100.
The control device 204 includes various electronic circuitry components for performing the control device 204 operations, such as: (a) a digital signal processor (“DSP”) 210, which is a computational resource for executing and otherwise processing instructions, and for performing additional operations (e.g., communicating information) in response thereto; (b) an amplifier (“AMP”) 212 for outputting the first electrical signal to the speaker 206 in response to information from the DSP 210; (c) an encoder 214 for outputting an encoded bit stream in response to information from the DSP 210; (d) a transmitter 216 for outputting the second electrical signal to the antenna 208 in response to the encoded bit stream; (e) a computer-readable medium 218 (e.g., a nonvolatile memory device) for storing information; and (f) various other electronic circuitry (not shown in
The DSP 210 receives instructions of computer-readable software programs that are stored on the computer-readable medium 218. In response to such instructions, the DSP 210 executes such programs and performs its operations, so that the first electrical signal and the second electrical signal communicate speech from the signals V1 and V2, while suppressing at least some noise from the signals V1 and V2. For executing such programs, the DSP 210 processes data, which are stored in memory of the DSP 210 and/or in the computer-readable medium 218. Optionally, the DSP 210 also receives the first electrical signal from the amplifier 212, so that the DSP 210 controls the first electrical signal in a feedback loop.
In an alternative embodiment, the primary microphone (
Accordingly: (a) x1[n] contains information that primarily represents the speech, but also the noise; and (b) x2[n] contains information that primarily represents the noise, but also leakage of the speech. The noise includes directional noise (e.g., a different person's background speech) and diffused noise. The DSP 210 performs a dual-microphone blind source separation (“BSS”) operation, which generates y1[n] and y2[n] in response to x1[n] and x2[n], so that: (a) y1[n] is a primary channel of information that represents the speech and the diffused noise while suppressing most of the directional noise from x1[n]; and (b) y2[n] is a secondary channel of information that represents the noise while suppressing most of the speech from x2[n].
After the BSS operation, the DSP 210 performs a non-linear post processing operation for suppressing noise, without estimating a phase of y1[n]. In the post processing operation, the DSP 210: (a) in response to y2[n], estimates the diffused noise within y1[n]; and (b) in response to such estimate, generates ŝ1[n], which is an output channel of information that represents the speech while suppressing most of the noise from y1[n]. As discussed hereinabove in connection with
As shown in
The filters H1 and H2 are adapted to reduce cross-correlation between y1[n] and y2[n], so that their filter lengths (e.g., 20 filter taps) are sufficient for estimating: (a) a path of the speech from the primary channel to the secondary channel; and (b) a path of the directional noise from the secondary channel to the primary channel. In the BSS operation, the DSP 210 estimates a level of a noise floor (“noise level”) and a level of the speech (“speech level”).
The DSP 210 computes the speech level by autoregressive (“AR”) smoothing (e.g., with a time constant of 20 ms). The DSP 210 estimates the speech level as Ps[n]=α·Ps[n−1]+(1−α)·y1[n]2, where: (a) α=exp(−1/Fsτ); (b) Ps[n] is a power of the speech during the time frame n; (c) Ps[n−1] is a power of the speech during the immediately preceding time frame n−1; and (d) Fs is a sampling rate. In one example, α=0.95, and τ=0.02.
The DSP 210 estimates the noise level (e.g., once per 10 ms) as: (a) if Ps[n]>PN[n−1]·Cu, then PN[n]=PN[n−1]·Cu, where PN[n] is a power of the noise level during the time frame n, PN[n−1] is a power of the noise level during the immediately preceding time frame n−1, and Cu is an upward time constant; or (b) if Ps[n]≦PN[n−1]·Cd, then PN[n]=PN[n−1]·Cd, where Cd is a downward time constant; or (c) if neither (a) nor (b) is true, then PN[n]=Ps[n]. In one example, Cu is 3 dB/sec, and Cd is −24 dB/sec.
A particular band is referenced as the kth band, where: (a) k is an integer that ranges from 1 through N; and (b) N is a total number of such bands. In the illustrative embodiment, N=64. Referring again to
As shown in
For the time frame n, the DSP 210 computes:
Py
Py
where: (a) Py
The DSP 210 computes its estimate of a priori SNR as:
a priori SNR=Ps[n−1,k]/Py
where: (a) Ps[n−1, k] is estimated power of clean speech for the immediately preceding time frame n−1; and (b) Py
However, if Py
a priori SNR=Ps[n−1,k]/PN[n−1,k],
where: (a) PN[n−1, k] is an estimate of noise level within y1[n−1, k]; and (b) the DSP 210 estimates PN[n−1, k] in the same manner as discussed hereinbelow in connection with
The DSP 210 computes Ps[n−1, k] as:
Ps[n−1,k]=G[n−1,k]2·Py
where: (a) G[n−1, k] is the kth band's respective noise suppression gain for the immediately preceding time frame n−1; and (b) Py1 [n−1, k] is AR smoothed power of y1[n−1, k] in the kth band for the immediately preceding time frame n−1.
The DSP 210 computes a posteriori SNR as:
a posteriori SNR=Py
However, if Py
a posteriori SNR=Py
where: (a) PN[n, k] is an estimate of noise level within y1[n, k]; and (b) the DSP 210 estimates PN[n, k] in the same manner as discussed hereinbelow in connection with
In
For example, if estimated a priori SNR is relatively high, then Xis positive, so that the DSP 210 shifts the baseline curve left (which effectively increases G[n, k]), because the positive X indicates that y1[n, k] likely represents a smaller percentage of noise. Conversely, if estimated a priori SNR is relatively low, then X is negative, so that the DSP 210 shifts the baseline curve right (which effectively reduces G[n, k]), because the negative X indicates that y1[n, k] likely represents a larger percentage of noise. In this manner, the DSP 210 smooths G[n, k] transition and thereby reduces its rate of change, so that the DSP 210 reduces an extent of annoying musical noise artifacts (but without producing excessive smoothing distortion, such as reverberation), while nevertheless updating G[n, k] with sufficient frequency to handle relatively fast changes in the signals V1 and V2. To further achieve those objectives in various embodiments, the DSP 210 shifts the baseline curve horizontally (either left or right by a first variable amount) and/or vertically (either up or down by a second variable amount) in response to estimated a priori SNR, so that the baseline curve shifts in one dimension (e.g., either horizontally or vertically) or multiple dimensions (e.g., both horizontally and vertically).
In one example of the illustrative embodiments, the DSP 210 implements the curve shift X by precomputing an attenuation table of G[n, k] values (in response to various combinations of a posteriori SNR and estimated a priori SNR) for storage on the computer-readable medium 218, so that the DSP 210 determines G[n, k] in real-time operation by reading G[n, k] from such attenuation table in response to a posteriori SNR and estimated a priori SNR. In one version of the illustrative embodiments, the DSP 210 implements the curve shift X by computing G[n, k] as:
G[n,k]=√(1−(100.1.CurveSNR)0.01,
where CurveSNR=X·a posteriori SNR.
However, the DSP 210 imposes a floor on G[n, k] to ensure that G[n, k] is always greater than or equal to a value of the floor, which is programmable as a runtime parameter. In that manner, the DSP 210 further reduces an extent of annoying musical noise artifacts. In the example of
In response to Px
In response to Px
Conversely, if Px
In the example of
In the illustrative embodiments, a computer program product is an article of manufacture that has: (a) a computer-readable medium; and (b) a computer-readable program that is stored on such medium. Such program is processable by an instruction execution apparatus (e.g., system or device) for causing the apparatus to perform various operations discussed hereinabove (e.g., discussed in connection with a block diagram). For example, in response to processing (e.g., executing) such program's instructions, the apparatus (e.g., programmable information handling system) performs various operations discussed hereinabove. Accordingly, such operations are computer-implemented.
Such program (e.g., software, firmware, and/or microcode) is written in one or more programming languages, such as: an object-oriented programming language (e.g., C++); a procedural programming language (e.g., C); and/or any suitable combination thereof. In a first example, the computer-readable medium is a computer-readable storage medium. In a second example, the computer-readable medium is a computer-readable signal medium.
A computer-readable storage medium includes any system, device and/or other non-transitory tangible apparatus (e.g., electronic, magnetic, optical, electromagnetic, infrared, semiconductor, and/or any suitable combination thereof) that is suitable for storing a program, so that such program is processable by an instruction execution apparatus for causing the apparatus to perform various operations discussed hereinabove. Examples of a computer-readable storage medium include, but are not limited to: an electrical connection having one or more wires; a portable computer diskette; a hard disk; a random access memory (“RAM”); a read-only memory (“ROM”); an erasable programmable read-only memory (“EPROM” or flash memory); an optical fiber; a portable compact disc read-only memory (“CD-ROM”); an optical storage device; a magnetic storage device; and/or any suitable combination thereof.
A computer-readable signal medium includes any computer-readable medium (other than a computer-readable storage medium) that is suitable for communicating (e.g., propagating or transmitting) a program, so that such program is processable by an instruction execution apparatus for causing the apparatus to perform various operations discussed hereinabove. In one example, a computer-readable signal medium includes a data signal having computer-readable program code embodied therein (e.g., in baseband or as part of a carrier wave), which is communicated (e.g., electronically, electromagnetically, and/or optically) via wireline, wireless, optical fiber cable, and/or any suitable combination thereof.
Although illustrative embodiments have been shown and described by way of example, a wide range of alternative embodiments is possible within the scope of the foregoing disclosure.
This application claims priority to U.S. Provisional Patent Application Ser. No. 61/526,948, filed Aug. 24, 2011, entitled ROBUST NOISE FLOOR LEVEL ESTIMATION FOR INSTANT NOISE ENVIRONMENT CHANGE, naming Takahiro Unno et al. as inventors. This application claims priority to and is a continuation-in-part of co-owned co-pending U.S. patent application Ser. No. 13/589,237, filed Aug. 20, 2012, entitled METHOD, SYSTEM AND COMPUTER PROGRAM PRODUCT FOR ATTENUATING NOISE IN MULTIPLE TIME FRAMES, naming Takahiro Unno as inventor, which claims priority to U.S. Provisional Patent Application Ser. No. 61/526,962, filed Aug. 24, 2011, entitled JOINT A PRIORI SNR AND POSTERIOR SNR ESTIMATION FOR BETTER SNR ESTIMATION AND SNR-ATTENUATION MAPPING IN NON-LINEAR PROCESSING NOISE SUPPRESSOR, naming Takahiro Unno as inventor. All of the above-identified applications are hereby fully incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4696040 | Doddington et al. | Sep 1987 | A |
6249757 | Cason | Jun 2001 | B1 |
6993480 | Klayman | Jan 2006 | B1 |
20060262938 | Gauger et al. | Nov 2006 | A1 |
20110123019 | Gowreesunker et al. | May 2011 | A1 |
Entry |
---|
Ephraim et al., “Speech Enhancement Using a Minimum Mean-Square Error Short-Time Spectral Amplitude Estimator”, IEEE Transactions on Acoustics, Speech, and Signal Processing, Dec. 1984, pp. 1109-1121, vol. ASSP-32, No. 6, IEEE. |
Parikh et al., “Perceptual Artifacts in Speech Noise Suppression”, IEEE, 2010, pp. 99-103, Asilomar, Georgia Institute of Technology, Atlanta, GA, U.S.A. |
Parikh et al., “Gain Adaptation Based on Signal-To-Noise Ratio for Noise Suppression”, IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, Oct. 18-21, 2009, pp. 185-188, IEEE, New Paltz, NY. |
Takahashi et al., “Blind Spatial Subtraction Array for Speech Enhancement in Noisy Environment”, IEEE Transactions on Audio, Speech, and Language Processing, May 2009, pp. 650-664, vol. 17 No. 4, IEEE. |
Parikh et al., “Blind Source Separation with Perceptual Post Processing”, IEEE DSP/SPE, 2011, pp. 321-325, Georgia Institute of Technology, Atlanta, GA, U.S.A. |
Anderson, David V., “A Modulation View of Audio Processing for Reducing Audible Artifacts”, IEEE ICASSP, 2010, pp. 5474-5477, Georgia Institute of Technology, Atlanta, GA, U.S.A. |
Cappe, Olivier, “Elimination of the Musical Noise Phenomenon with the Ephraim and Malah Noise Suppressor”, IEEE Transactions on Speech and Audio Processing, Apr. 1994, pp. 345-349, vol. 2, No. 2, IEEE. |
Number | Date | Country | |
---|---|---|---|
20130051570 A1 | Feb 2013 | US |
Number | Date | Country | |
---|---|---|---|
61526948 | Aug 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13589237 | Aug 2012 | US |
Child | 13594401 | US |