High pressure processing (HPP) is a cold pasteurization technique which consists of subjecting product in a sealed, flexible and water-resistant packaging, to a high level of hydrostatic pressure (pressure transmitted by a liquid) up to 600 MPa/87,000 psi for a few seconds to a few minutes.1 1 https://www.hiperbaric.com/en/hpp
Researchers have performed preliminary analysis of high pressure processing to reduce the pathogen load on blood and blood components, with encouraging conclusions. Bradley et al. found promising results of virus inactivation in plasma while maintaining plasma functionality. The research, using a custom-built apparatus, concluded that, “high-pressure procedures may be useful for the inactivation of viruses in blood and other protein-containing components.” They chose a Lambda phage as the model system, “because it is small, has no plasma membrane, and thus should serve as a model system for small, nonencapsulated viruses, which are the most difficult to inactivate by current procedures.” Accordingly, this shows promise for high pressure processing to inactivate nonencapsulated viruses, such as parvovirus B19 and hepatitis A virus, as well as “encapsulated viruses (hepatitis B virus and HIV) and larger organisms such as bacteria and parasites.”
Similarly, Yang, et al.2 found that a cycle at 250 Mpa preserved the plasma while inactivating the majority of pathogens, in line with the Chinese FDA's guidance. Under the conditions of 200-250 MPa with 5×1 minute multi-pulsed high pressure at near 0° C., “the inactivation efficacy was greater than 8.5 log. The CFUs of E. coli were reduced by 7.5 log, B. cereus were 8 log; however, PPV and S. aureus cannot be inactivated sufficiently. The activities of factor II, VII, IX, X, XI, XII, fibrinogen, IgG, IgM stayed over 95% compared to untreated, and Factor V and VIII activity was maintained at 46-63% and 77-82%, respectively.” 2 Yang C, Bian G, Yang H, Zhang X, Chen L, Wang J (2016) Development of High Hydrostatic Pressure Applied in Pathogen Inactivation for Plasma. PLoS ONE 11(8): e0161775. doi:10.1371/ journal.pone.0161775
This disclosure includes the following:
1. A system that subjects a health care biologics product, in original or temporary or transitory or consumable or disposable containers (e.g., flow through tubing, tubing segments, vials, pouches, boxes, bottles, bags, balloons, packaging, wraps, sponges), synonymous for the purposes of this disclosure, to high pressure using a working fluid, a pressure vessel and the product container in order to reduce unwanted cells, while preserving an acceptable levels of the desired cells. The disclosure may also include the following:
1.1. A method that
1.2. A specific container that withstands the cycle, with specifications of:
The baseline pressure range that inactivates most pathogens are 50-300 MPa, while preserving the efficacy of plasma, limiting the hemolysis of red blood cells and is on the edge of maintaining platelet stability. The disclosure considers the right settings for these parameters to disrupt the unwanted cells while maintaining efficacy of the desired cells.
This disclosure considers parameters and processes that may affect the viability such as:
This disclosure considers that additives may be used to protect the desired biologic cells (e.g., red blood cells (red blood cells), platelets) and increase the likelihood of disrupting the unwanted cells when subjected to high pressure processing. This disclosure considers the function of these additives to:
Each desired cell product may require a bespoke additive or combination of additives. Compounds found in deep sea creatures, such as organic osmolytes, trimethylamine N-oxide (TMAO), squalamine (found in dogfish sharks), Limulus Amebocyte Lysate (found in horseshoe crabs), other amoebocytes, antimicrobial peptides, including peptide fragments of histones, leukocyte lysates, coagulogens, hemocyanin, cold water oxygen (found in crocodile icefish), oxygen infused water or saline, hemerythrin (found in brachiopods), chlorochurion; and compounds used in the de/glycerolization process to freeze red blood cells, such as dimethyl sulfoxide (DMSO) may protect red blood cells and other cells. Additives such as Trehelose, which has been used as a platelet cryoprotectant and in lyophilization (freeze dry); thrombocytes; lymphocytes; or apatite-trehalose-saline may protect the platelets or other cells during high pressure processing.
Other additives that this disclosure considers are thrombin; lactoferrin; collagen and ristocetin; amotosalen; psoralen; hyaluronic acid; glucosamine; monosaccharides and disaccharides; albumin, serum albumin, factor concentrates, immunoglobulin, fibrinogen; proteins such as monoclonal antibodies, peptides, interferons; surface associated glycans, formylated 6 peptides, lipopolysaccharide; saline adenine glucose mannitol; vitamins such as riboflavin, vitamins A, C, D and E; amino acids; antimicrobials such as steroid-polyamine conjugate compounds; antibiotics such as hygromycin, vancomycin and others that cover methicillin-resistant staphylococcus aureus, ceftobiprole and others that cover pseudomonas aeruginosa, linezolid and others that cover vancomycin-resistant Enterococcus; antivirals such as tenofovir, tipranavir, simeprevir, remdesivir, elbasvir; antiparasitic drugs such as artemisinin, atovaquone-proguanil, quinine sulfate with doxycycline, primaquine phosphate; anti-angiogenic factors and agents; enzymes, enzyme inhibitors, proteasomes, proteasome inhibitors; pH buffers, acids or alkalinity increasers; salt, urea, saline, crystalloids, colloids; liposome structures or liposomes, and combinations, of two or more at specific concentrations, or substitutions of these additives.
The disclosure also considers protecting the desired cells (e.g., red blood cell, platelets and other cells) with a gas-impermeable coating or a chemical that prevents gas from entering cell. Being protected, the product could be subjected to high pressure processing. In some embodiments, another chemical or gas could be added to the product, which would attach, infuse or bond to the unwanted cells, which would then increase the likelihood of deactivation during high pressure processing. For example, the unwanted cells would be inactivated by explosive decompression cavitation during high pressure processing. These processes of protection and priming could be used in conjunction or separately.
These additives could be in the form of a solution, added to the container in advance of collection, after collection, before mixing or after mixing. For example, blood products require anti-coagulants in the container, as shown in Error! Reference source not found., and these anti-coagulants may provide a secondary purpose of stabilizing the cells for high pressure processing. The chemical composition of these nutrient solutions may be adjusted to stabilize the cells. The disclosure considers citrate, dextrose, phosphate, adenine, citric acid, citrate-glucose, acidified-citrate-dextrose, citrate-phosphate-dextrose with and without adenine, and combinations of these additives.
The system requires a container that can withstand the high pressures exerted on the container that are translated to the product. The materials, construction, geometry, joints, interfaces, etc. all integrate for a container design that can withstand the process.
The disclosure considers multiple embodiments of the container, including a bag made by joining two sheets of film in an enclosed perimeter and a pre-formed container. As shown in Error! Reference source not found., this disclosure considers the need to carefully select materials, dimensions, geometry, adhesion methods, elastic moduli (e.g., Young's, shear, bulk moduli), strain rate for plastic deformation, yield strength, mating of materials with dissimilar material properties in order for the container to compress, compact, deform, disjoint, delaminate, stretch, contort and shift in order for the container to survive high pressure processing. Because high pressure processing applies a balanced sum of forces, containers do not collapse; but, rather, they either elastically or plastically deform. Dissimilar materials will compress at different rates, putting stress on the joints or mating features. The packaging and product will compress at different rates due to their different moduli of elasticity and other mechanical properties.
Bag/Pouch This disclosure considers a bag or pouch made by joining two sheets of film around the perimeter with a seam (e.g., RF weld, ultrasonic weld, thermal process (melting and matrix solidification), chemical adhesion, mechanical adhesion, other joining of the two films).
Pre formed Container This disclosure considers a preformed container such as a bottle, box, pouch that is formed into a shape capable of containing a liquid. This container may be made through blow-molding, injection molding, thermoforming, 3D printing. The container may require a cap, such as the threaded caps shown in Error! Reference source not found., Error! Reference source not found. and Error! Reference source not found. The cap or closure, such as a clamshell, may be threaded, may have and interference fit, may have a specific gap fit, may be adhered to the rim of the cylindrical body by means of radiofrequency welding, ultrasonic welding, chemical adhesion or other mechanical locking features that would close the container and make it impermeable to the working fluid used to transfer pressure during high pressure processing. The cap may be made of a membrane material that allows communication of certain substances while preventing the ingress of the working fluid.
This disclosure considers the design selection of elastic moduli (e.g., Young's, shear, bulk moduli), viscosity, creep rate, durometer, compatibility with sterilization methods (e.g., gamma radiation, ethylene tri-oxide, autoclave), surface energy, flexibility, stiffness, Poisson's ratio, shear strength, surface roughness, yield strength, biocompatibility, non-pyrogenicity, hemocompatibility, non-genotoxicity, non-cytotoxicity, non-irritation, non-toxicity, non-leachable, non-extractable, opacity, thermal expansion, glass transition temperatures, melting point, coefficient of thermal expansion.
Pooling, as seen in Error! Reference source not found., is beneficial because the resulting pool has a near-average biological profile. For example, blood plasma consists of coagulation factors. Each donated unit, typically about 250 mL in volume, has differing levels of these factors. When pooling, a unit with lower than average factors may be mixed with a unit with higher than average factors, which would bring the pooled product factor level closer to the average of the donor population. The large pooling bags, which can range in size from, for example, 500 mL to 5 L to 10 L and more, can be processed using high pressure processing and then redistributed into smaller transfusable units. In some embodiments, after using the pooling bag, the mixed product could then be distributed into smaller transfusable units, and then these individual units could be processed using high pressure processing. This pooling process with HPP processing could be used on any biologic that is in liquid form and could be transferred between containers.
Total volume of the sample may range from a few milliliters to several liters.
The disclosure considers that the container may be filled with product and then after treatment, that the treated product can be transfused or administered to a patient. As such, there may be an inlet port and an outlet port, which may be the same port. There may be additional ports or connectors to inject substances into the container. These ports and/or caps and the interface with the main container must withstand the high pressures. As shown in Error! Reference source not found., these ports are typically tubular in cross-section in order to access the internal components of the bag. These ports are mated to the bag, typically inserted between layers of film. Due to different material properties, dimensions and geometry, these ports and the junction with the bag will strain and deform at different rates than the main body of the bag, potentially leading to a failure of the packaging.
This disclosure considers predicable levels of compression of the container (solid) and the biologic (typically liquid, semi-liquid, solid and gas mixtures). There may be a non-zero amount of gas or non-product fluid in the container, called the headspace, as shown in Error! Reference source not found.. Specifying headspace, per the container design and the cycle pressures and other dynamics is critical to the container surviving the high pressure processing because the product and the headspace may have different moduli of elasticity (and yield strength), which results in one material compressing and deforming (elastically or plastically) at a greater or different strain rate than the headspace. The headspace, which may include a gas, will compress more than the solid container and the product will compress, which would stress joints or mating features of the container. This volume has to be such that there isn't too much headspace, the amount of gas in the container, which would result in putting stress on the seams or mating interfaces due to the difference in compression between gases, liquids and solids. If there is not enough headspace, the container may compress more than the liquid, which would put internal stresses on the seams or mating interface of the container, possibly resulting in rupture and leakage.
The volume or quantity of headspace could be measured via a flowrate meter, a scale or another indicator fixture to meter or measure the target volume or mass. There may be markings on the container to indicate the proper level of headspace. There may be a supporting machine or mechanism to add the inert or other gas to the container with or without a filtration method.
This application claims priority to U.S. Provisional application 63/256,905,titled “Method, System and Device to Reduce Unwanted Cells in Biologic Products” filed Oct. 18, 2021 the entire contents of which are hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
63256905 | Oct 2021 | US |