This invention relates to dental procedures, more particularly to orthodontic procedures, more particularly to methods, systems and accessories including models and transfer trays used in such procedures, and specially relating to indirect bonding procedures.
The branch of dentistry dealing with teeth irregularities and their corrections, such as by means of braces, is known as Orthodontics. The primary purpose of orthodontic treatment is to alter the position and reorient an individual's teeth so as to modify or improve their function. Teeth may also be reoriented mainly for cosmetic reasons.
In orthodontic treatment, as currently practiced, it is often necessary to affix various orthodontic appliances to the surfaces of a patient's teeth. The location of the orthodontic appliance on the tooth as well as its orientation is a critical factor in determining the direction of movement of the teeth during the treatment, and accurate placement may ensure that the teeth are aligned with a single bracket bonding treatment. Conversely, less accurate placement of orthodontic appliances may require repeated treatments, including repeated bonding and wire bending procedures until the final alignment is achieved.
Once the position of the orthodontic appliances has been decided upon, it is thus critical that a good bond is established between the orthodontic appliances and the teeth at that position. Orthodontic appliances affixed to teeth surfaces serve to support wires and tensioning springs to exert moments of force acting to move the teeth subjected to these forces to a degree and in a direction causing the teeth to assume a desired posture in the dental arch.
In current orthodontic practice, the orthodontist decides on a general scheme of placing the orthodontic appliances on the teeth and then attaches each of them to the surface of a tooth, in an exact location and orientation previously decided. Preparatory to an orthodontic treatment, the orthodontist typically prepares a plaster model of the teeth of the treated individual and on the basis of such model, and the general scheme of placement of the orthodontic appliances can be decided.
A typical treatment plan includes, among other factors, the desired position of each of the force-inducing orthodontic implements on the teeth. The placement of the orthodontic appliances on the teeth determines the outcome of the above-mentioned movements, e.g. the degree and direction of the teeth movements. Any deviation from the planned position of the orthodontic appliances affects the outcome of the treatment. Thus, during the process of placing the orthodontic appliances on the teeth, much effort is made to ensure the accurate positioning of the orthodontic appliances in accordance with their desired position as determined by the treatment plan, and to ensure that the orthodontic appliances are properly bonded to the teeth at these positions.
The orthodontic appliances are typically placed on the buccal surface of the teeth, though at times, it is desired both from a treatment perspective as well as for reasons of external appearance of the individual, to place the orthodontic appliances on the lingual surface of the teeth.
One form of positioning brackets is known as indirect bonding, and is traditionally based on forming a tray of a thermoplastic material, or any other suitable material, over a physical model of the teeth on which the brackets have been positioned using a relatively weak adhesive, for example as described in U.S. Pat. No. 3,738,005. The brackets may be positioned onto the model in any one of a number of ways, for example as disclosed in U.S. Pat. No. 4,812,118. The tray thus comprises a negative impression of the teeth model, which is very close-fitting with respect thereto, and also has the brackets embedded in position in the tray in their correct positions with respect to the model. The tray can then be removed from the model, taking with it the brackets in the correct relative positions with respect to the negative impression. The tray is then transferred to the intraoral cavity of the patient, and when properly fitted over the appropriate arch, presents the brackets in ostensibly the correct positions vis-à-vis the teeth. It is then attempted to bond the brackets simultaneously onto the teeth, and the tray may then be removed, leaving the brackets in place.
This method is commonly practiced, and can be used for both buccal and lingual brackets. Most of the preparatory work is done by a technician rather than the dentist, and the technique results in a shorter installation time than when the brackets are installed manually one at a time, but the technician needs to have a supply of brackets readily available. This method also requires all the teeth to be dry and pre-etched, before bonding begins.
Some patent publications of general background interest include: U.S. Pat. Nos. 5,971,754; 4,360,341; 6,123,544; 4,501,554, US 2005/0244790; US 2004/0253562; US 2004/0229185.
In this specification, we shall only refer to brackets as particular examples of the orthodontic appliance (also interchangeably referred to as orthodontic element or component), to be anchored on a tooth's surface, but it is to be understood that this is only by way of example, and the invention applies to all other types of orthodontics appliances, mutatis mutandis, such as for example tubes, springs and other appliances that are configured for being affixed to a dental surface for providing an orthodontic treatment.
According to a first aspect of the invention, there is provided a physical model of at least a portion of a patient's dentition, said model comprising model dental surfaces corresponding to real dental surfaces of the patient's dentition, said physical model further comprising at least one target configured for facilitating placement of an orthodontic appliance on said model at a desired location, and wherein the or each said target lacks mechanical stops that are outwardly protruding from the said model dental surfaces.
More specifically, the or each said target lacks mechanical stops that are outwardly protruding from the said model dental surfaces and that are configured for locating the orthodontic appliance by abutment on the stops. By model dental surfaces is meant dental surfaces of real teeth that are replicated in the physical model.
According to at least some embodiments of the invention, the or each said target comprises physical and/or optical clues correlated to a respective said desired location such as to enable the respective said orthodontic appliance to be targeted onto the respective said location.
In at least some embodiments, at least one or the said target comprises a recess (interchangeably referred to herein also as a cavity and/or indentation) formed into, i.e., projecting into said model dental surface, said recess having at least one recess edge complementary to an appliance edge of a said orthodontic appliance the recess edge being configured for enabling the appliance to be received in said recess and located therein by abutment between said appliance edge and said respective recess edge.
In a variation of this embodiment, at least one or the said target comprises a recess formed into said model dental surface, said recess having at least two recess edges complementary to two appliance edges of a said orthodontic appliance to be received in said recess and located therein by abutment between said appliance edges and said respective recess edges.
In another variation of this embodiment, at least one or the said target comprises a recess formed into said model dental surface, said recess having at least three recess edges complementary to three appliance edges of a said orthodontic appliance to be received in said recess and located therein by abutment between said appliance edges and said respective recess edges.
In another variation of this embodiment, at least one or the said target comprises a recess formed into said model dental surface, said recess having a plurality of recess edges complementary to the appliance edges of a said orthodontic appliance to be received in said recess and located therein by abutment between said appliance edges and said respective recess edges. For example, the appliance may have four edges, and the recess also has four complementary edges.
In another embodiment, at least one or the said target comprises a physical marking or visual marking formed on said model dental surface, said marking providing sufficient visual clues to enable said orthodontic appliance to be located at the desired location on the model dental surface. For example, the physical marking may comprise a mark or symbol indented, engraved or otherwise formed projecting into said model dental surface (for example as a mild depression) having sufficient visual targeting information to enable a user to navigate a respective said orthodontic appliance and targeted the same onto a desired location on said model. In another example, the visual marking may comprise a mark or symbol having an optical characteristic different from an optical characteristic of a remainder of said model dental surface not comprising said target, and having sufficient visual targeting information to enable a respective said orthodontic appliance to be targeted to a desired location on said model; the optical characteristic may include, for example, at least one of color and contrast. The markings may be inscribed, printed or otherwise formed in the model, and help to visually align the orthodontic appliance at the desired position, without the need for physical stops to keep it in place.
The targets, in particular the recesses and/or markings may be made by CNC machining the physical model, for example, during manufacture of the model or after manufacture of the model. Alternatively, other material removal manufacturing processes may be used for manufacturing the model and targets. Alternatively, other methods may be used for manufacturing the model and targets, for example rapid prototyping techniques. Optical markings may be provided on the physical model by means of computer controlled printing, drawing or other methods that leave a mark or symbol on the model.
The physical marking or visual marking may be configured for enabling a datum mark on said appliance to be aligned therewith such as to locate the appliance at the desired position on the model.
In any particular application of the invention, a plurality of targets may be provided on a corresponding plurality of model teeth of a physical model, according to the requirements of a treatment plan, and the targets may include any combination or permutation of different types of targets—for example a mix between targets that provide a recessed mechanical stop for physically anchoring the respective appliance on the tooth model (the same type of mechanical stop, or different types of mechanical stops), and targets in the form of optical markings that only provide an optical guide (but no anchoring stops) to enable the appliance to be navigated and targeted into the desired place (the same or different types of optical markings). Alternatively, the same type of target may be provided throughout the model. In at least some applications, at least one target may include both a recessed mechanical stop and an optical marking for targeting.
According to a second aspect of the invention, there is provided a method of manufacturing a physical model for use in indirect bonding procedures, comprising:
(a) providing a physical model of at least a portion of the intra oral cavity of a patient;
(b) determining desired positions of orthodontic appliances with respect to said intra oral cavity to enable an orthodontic procedure to be carried out;
(c) providing at least one target on the physical model, the or each said target being configured for facilitating placement of said orthodontic appliance on said physical model at a desired location, and wherein the or each said target lacks mechanical stops that are outwardly protruding from the said model dental surfaces.
The positions in step (b) may be determined with respect to a virtual model corresponding to the physical model of step (a).
Step (c) may be carried out by means of a computer controlled manufacturing process, including, for example, at least one of a CNC machining process and a rapid prototyping manufacturing process.
In at least some embodiments, step (c) is performed concurrently while manufacturing the physical model in step (a).
The physical model may contain one or more characteristic and features of the physical model as per the first aspect of the invention, mutatis mutandis.
According to a third aspect of the invention there is provided a method for indirect bonding for use in an orthodontic procedure, comprising:
(a) providing a physical model of at least a part the intra oral cavity of a patient, said physical model comprising at least one target, the or each said target being configured for facilitating placement of said orthodontic appliance on said physical model at a desired location for enabling said orthodontic procedure, and wherein the or each said target lacks mechanical stops that are outwardly protruding from the said model dental surfaces;
(b) using the targets, locating the orthodontic appliances at respective said desired positions on said physical model;
(c) providing a transfer tray over said physical model such as to anchor said orthodontic appliances within said transfer tray;
(d) transferring the orthodontic appliances to the real intra-oral cavity of the patient.
The physical model may contain one or more characteristic and features of the physical model as per the first aspect of the invention.
According to a fourth aspect of the invention, there is provided a method for providing an indirect bonding transfer tray for use in an orthodontic procedure, comprising:
(a) providing a physical model of at least a part the intra oral cavity of a patient, said physical model comprising at least one target, the or each said target being configured for facilitating placement of said orthodontic appliance on said physical model at a desired location for enabling said orthodontic procedure, and wherein the or each said target lacks mechanical stops that are outwardly protruding from the said model dental surfaces;
(b) using the targets, locating the orthodontic appliances at respective said desired positions on said physical model;
(c) producing a transfer tray over said physical model such as to anchor said orthodontic appliances within said transfer tray;
(d) removing the transfer tray, with the orthodontic appliances in situ therein, from the physical model.
The physical model according to the fourth aspect of the invention may have one or more characteristic and features of the physical model as per the first aspect of the invention, mutatis mutandis.
According to a fifth aspect of the invention, there is provided a system for providing a physical model for use in indirect bonding orthodontic procedures, comprising a computer controlled manufacturing center configured for producing, on a physical model of at least part of the intra-oral cavity of a patient, at least one target, the or each said target being configured for facilitating placement of an orthodontic appliance on said physical model at a desired location for enabling an orthodontic procedure to be carried out on the patient, and wherein the or each said target lacks mechanical stops that are outwardly protruding from the said model dental surfaces.
The physical model according to the fifth aspect of the invention may have one or more characteristic and features of the physical model as per the first aspect of the invention, mutatis mutandis.
Thus, according to at least some aspects of the invention, a physical model of at least a portion of a patient's dentition has model dental surfaces corresponding to real dental surfaces of the patient's dentition. The physical model includes one or more targets, each configured for facilitating placement of an orthodontic appliance on the model at a desired location. The targets lack mechanical stops that are outwardly protruding from the original model dental surfaces. Also provided are a method of manufacturing a physical model for use in indirect bonding procedures, a method for indirect bonding for use in an orthodontic procedure, a method for providing an indirect bonding transfer tray for use in an orthodontic procedure, and a system for providing a physical model for use in indirect bonding orthodontic procedures.
One feature of at least some embodiments and aspects of the invention is that the 5 targets may be retrofittably provided in existing physical models, as the targets are marked on the model or recesses provided into the surface of the model.
Another feature of at least some embodiments and aspects of the invention is that the physical model can be easily repaired if damaged, or if a different position is required. For example, an existing recess can be filled in and re-machined, or an existing marking can be erased or covered over and redrawn.
Another feature of at least some embodiments and aspects of the invention is that the exact location in all degrees of freedom of an orthodontic appliance on a real tooth can be exactly repeated in a tooth model, by providing where necessary buffer layer between the model and the appliance.
In order to understand the invention and to see how it may be carried out in practice, embodiments will now be described, by way of non-limiting example only, with reference to the accompanying drawings, in which:
Referring to
In this embodiment, the model 100 is a physical replica, made from a suitable material as is known in the art, representing the real tooth arch of a patient regarding which it is desired to provide an orthodontic treatment to at least some of the teeth therein. In alternative variations of this embodiment, the model may instead be a physical replica of part of an arch, for example representing a number of teeth or even representing one tooth of the dentition of the patient.
One or more than one target 50 is provided on the representation of a respective tooth model 110 in the model 100, each at a position relative to the dental surfaces of the respective tooth model 110 that is considered to provide the required orthodontic treatment for the patient when the respective orthodontic appliance 90 is placed on the corresponding position real dental surface of the real respective tooth 10 of the patient (
Each target 50 is configured for facilitating placement of the respective orthodontic appliance 90 on the model 100, by providing visual clues and/or mechanical stops, in particular recessed mechanical stops, for aligning the orthodontic appliance 90 accurately on the respective tooth surface.
Once the orthodontic appliances 90 are affixed on the model 100 at the desired positions over the respective tooth representations 110, a transfer tray 200 is provided to fit over the model 100. The inside shape of each of the cavities 220 of the tray 200 is formed to be substantially complementary to the external shape of the particular model tooth of the model 100 that is received therein, in particular the lingual and buccal/labial surfaces of the model teeth. The tray 200 is also designed to embed or fix the orthodontic appliances 90 into the tray material at their correct positions relative thereto (
Thus, the targets 50 are configured for enabling each of the orthodontic appliances 90, for example brackets, to be properly positioned with respect to the respective teeth models 110 that they are to be temporarily bonded to, and at least serve as a navigational and positional guide for the placement of the orthodontic appliances 90 onto the desired positions on model 100.
Referring to
In the embodiment of
Thus, the recess 60 has a nominally uniform depth with respect to the model tooth surface which can be of the same order as the thickness of the base 94, for example, or alternatively more, or alternatively less, but sufficient to enable the orthodontic appliance 90 to be positively located in the recess by the user, without the need for special tools other than optionally a holder for manipulating the orthodontic appliance 90 into engagement with the recess 60.
The recess 60 may be formed on the buccal/labial side, or on the lingual side, or one recess 60 may be provided at each of both sides of the tooth 110 of model 100, as required. In particular, and referring to
In operation, the appliance 90 is manually maneuvered into place by the user, and fixed in place in the recess 60, for example by means of a weak adhesive, and the transfer tray 200 is formed over the model 100 including the appliance 90. Alternatively, in some cases the orthodontic appliance 90 may have an interference fit with respect to the recess 60, and thus is held in place therein without the need for use of an adhesive. In any case, once the orthodontic appliance 90 is engaged in the recess 60 and the tray formed over the model 100 and the orthodontic appliance 90, the tray 200 together with the orthodontic appliance 90 in situ is removed from the model 100, and transferred to the intra-oral cavity of the patient, such that the orthodontic appliance 90 is bonded to the respective real tooth of the patient. The above procedure is of course applicable to one or to a plurality of orthodontic appliances 90 that are transferred via the tray 200.
In this embodiment, the appliance 90 sits substantially on the same location and orientation along the surface of the real tooth as in the tooth model 110, but on the surface of the real tooth rather than below the tooth surface, in contrast with the position of the orthodontic appliance 90 with respect to the model tooth 110, in which the orthodontic appliance 90 was accommodated in recess 60, below the model tooth surface. Since the orthodontic appliance 90 is fully constrained in all six degrees of freedom by the tray 200, the orthodontic appliance 90 is made to abut the respective tooth by making use of the elasticity of the tray and manually pressing the orthodontic appliance 90 towards the respective tooth. The elasticity of the tray 200 also assists in enabling the orthodontic appliances 90 to be extracted from their respective recesses 60 in the model 100 when removing the tray 200 from the model 100.
In an alternative variation of this embodiment, and referring to
In yet another variation of the embodiment of
In alternative variations of the embodiment of
In an alternative variation of this embodiment, and referring to
Optionally, and referring to
In an alternative variation of the embodiment of
The targets 50 in the form of recesses 60, 160 or 260 can be formed on the tooth model 100, for example as follows.
The location and orientation of the targets 50 for each real tooth are first identified, according to a set up plan provided by the orthodontist, as the respective locations and orientations appropriate for bonding or otherwise fixing the brackets or other orthodontic appliances onto the misaligned teeth of the arch such that the teeth may be aligned in the manner desired in response to the orthodontic treatment.
According to an aspect of the invention, and referring to
For example, in step 410, the three dimensional (3D) structure of the patient's dentition, including the teeth that are required to be moved during the course of the orthodontic treatment, and preferably the full dentition of the arch on which these teeth are located, is determined, and provided in digitized form, hereinafter referred to as the initial 3D digitized model or virtual model of the dentition, D1. Optionally the three dimensional (3D) structure of both arches is provided.
The 3D digitized dental model D1 may be obtained in any number of ways. For example, the intra-oral cavity may be scanned or imaged using technology known in the art, including X-rays, CT, MRI, using direct contact methods or using non-contact methods such as for example those that employ an optical probe scanner. For example, such a scanner may comprise a probe for determining three dimensional structure by confocal focusing of an array of light beams, for example as marketed under the name of iTero or as disclosed in WO 00/08415, the contents of which are incorporated herein in their entirety. Alternatively, the required scanning may be accomplished using any suitable scanning apparatus for example comprising a hand held probe. Optionally, color data of the intraoral cavity may also provided together with the 3D data, and thus the first virtual model 500 comprises spatial and color information of the dental surfaces scanned. Examples of such scanners are disclosed in US 2006-0001739, and which is assigned to the present Assignee. The contents of the aforesaid co-pending application are incorporated herein by reference in their entirety. Alternatively, an impression (negative casting) of a patient's teeth is obtained in a manner well known in the art, and this is used for preparing a positive cast suitable for scanning or imaging. Alternatively, the negative casting itself is scanned or imaged. Alternatively, a composite positive-negative model may be manufactured and processed to obtain 3D digitized data, for example as disclosed in U.S. Pat. No. 6,099,314, assigned to the present Assignee, and the contents of which are incorporated herein in their entirety. In any case, the 3D virtual model D1 may be associated with a complete dentition, or with a partial dentition, comprising the teeth that are to be treated.
Providing a digitized data set corresponding to the virtual model D1 from such scanning or imaging is also known in the art and will not be described further. The digitized data set of virtual model D1 is manipulable by means of a computer, and thus allows the next step to be performed using a suitable computer.
In the next step 420, computer based methods are used for generating the set up, and the virtual model D1 is manipulated to provide a final tooth arrangement comprising a final digitized data set corresponding to a final 3D virtual model D2, in which each virtual tooth is positioned in the desired position, for example as disclosed in WO 99/34747 or in U.S. Pat. No. 5,975,893, the contents of which are incorporated herein in their entirety. Essentially, the 3D digitized data corresponding to the individual teeth of the initial virtual model D1 are separated from one another, and the user repositions the 3D individual tooth data for each tooth based on visual appearance, and/or using rules or algorithms, and/or according to prescriptions provided by the orthodontist, to provide the final virtual model D2.
In the next step 430, and based on the final data set corresponding to virtual model D2, brackets or other orthodontic appliances are chosen and “virtually” positioned within the computer environment, i.e. by means of the computer, on the aligned teeth virtual model D2, and the corresponding positions of the brackets or other orthodontic appliances are then mapped back to the initial virtual model D1 in step 440. The position and orientation of the brackets or other orthodontic appliances can then be incorporated into the initial virtual model D1, and virtual artifacts which correspond to the shape of the recess 60, 160 or 260 that is chosen for each particular target 50, collectively referred to herein as target virtual model TVD1, are created in step 450, and may be added to virtual model D1 to provide modified virtual model D1′ in step 460, which includes the original virtual model D1 modified to integrally include the chosen recesses 60, 160 or 260 in the positions corresponding to the chosen respective orthodontic appliances 90 instead of the original virtual tooth surfaces at those positions.
In alternative variations of this embodiment, the position and orientation of the brackets or other orthodontic appliances are provided in a different manner—for example manually, or by directly interacting with model D1 to choose each position and orientation using the practitioner's skill and experience. The positions and orientations can then be incorporated into the initial virtual model D1, and virtual artifacts which correspond to the shape of the recess 60, 160 or 260 that is chosen for each particular target 50, collectively referred to herein as target virtual model TVD1, are created in step 450, and may be added to virtual model D1 to provide modified virtual model D1′ in step 460.
The physical model is then manufactured in step 470 based on the virtual models D1 and TVD1, or based on the virtual model D1, using computer controlled manufacturing methods.
For example, the model 100 may be manufactured using material removal techniques, for example CNC machining methods, or other methods, such as for example rapid prototyping techniques.
Using CNC machining methods, the model 100 may be produced either indirectly or directly. Such indirect methods may comprise, e.g., manufacturing an appropriate female mold using CNC techniques, and then producing a model 100 from the mold. The female mold comprises an internal 3D structure substantially complementary to that defined by virtual model D1′.
In direct CNC machining methods, a suitable CNC machine may be programmed to provide material removal passes over a blank of suitable material, based on dataset D1 or D1′, such as to manufacture the model 100. For example, the targets 50 may be integrally formed with the model 100, wherein the model 100 is manufactured based on virtual model D1′. Alternatively, the targets 50 may be formed as a separate machining operation after the model 100 is produced based on virtual model D1, wherein the position and form of the targets 50 is post-machined based on target virtual model TVD1.
Alternatively, the model 100 may be formed using other techniques such as for example from an impression of the intra-oral cavity, and the targets 50 may be subsequently formed on such a physical model using CNC machining techniques based on target virtual model TVD1. In such a case, the spatial position and orientation of model 100 as a whole must be known with respect to a machining datum so that CNC machining operations are applied to the desired parts of the model to form the recesses 60, 160 and/or 260. Accordingly, it is possible to set the model 100 on a rig or chuck to hold the same in place, and thereafter scanned using a suitable 3D scanner to provide a 3D virtual model, nominally equivalent to model D1, to be followed by machining of the recessed based on target virtual model TVD1, which is manipulated to be in registry with the virtual model of the scanned physical model 100. Alternatively, the model 100 may be fabricated with indicia that help align the model 100 with respect to predetermined datums in the CNC machine, to which the target virtual model TVD1 is also referenced.
Alternatively, the model 100 may be fabricated using other methods. For example, the model 100 may be fabricated using rapid prototyping techniques, for example based on a stereolithography machine, such as for example Model SLA-250/50 available from 3D System, Valencia, Calif., based on the virtual model D1. A liquid or non-hardened resin is hardened into a 3D form that can be separated from the non-hardened liquid or resin to form a positive model 100 from the 3D numerical model D1 thereof. Then, the targets 50 may be formed in the model 100 in a similar manner to that described above, for example, mutatis mutandis, for example by CNC machining. Alternatively, the model 100 may be manufactured integrally with the targets 50 using rapid prototyping techniques in a similar manner to that described herein, mutatis mutandis, based on virtual model D1′.
Once the physical tooth model 100 is manufactured, including the targets 50, the orthodontic appliances 90 are temporarily affixed to the tooth models 110 at positions provided by the targets 50, i.e. recesses 60, 160 and/or 260, via a weak adhesive, interference fit, and so on, optionally with a buffer layer, as already disclosed herein. The tray 200 may then be manufactured for example as in traditional indirect bonding techniques, comprising pressure or vacuum forming a suitable sheet material, such as 0.75 mm thermal forming dental material, over the model 100 and appliances 90. Suitable thermal forming dental materials may include, for example, biocryl, by Great Lakes Orthodontics Ltd., Tonawanda, N.Y.
In a second embodiment of the invention, and referring to
In the embodiment of
In a variation of this embodiment, and referring to
In another variation of this embodiment, and referring to
In yet another variation of this embodiment, and referring to
As illustrated in
Alternatively, the position of a datum with respect to each orthodontic appliance 90 may be marked on the respective tooth model 110, for example as a “+” or “X” symbol or mark, such that the center or other part of the mark corresponds to the center or other known location relative to the orthodontic appliance 90, respectively, and the orientation of the mark is indicative of the desired orientation of the orthodontic appliance 90, for example. Such a reference datum may be referred to a bracket centerline, bracket slot or any other convenient reference on the orthodontic appliance 90 by which it is possible to place the orthodontic appliance 90 in a desired position with some accuracy.
Thus, according to one aspect of the second embodiment, the targets 50 are in the form of a physical marking that is engraved, scratched or otherwise formed as a depression into the surface of the tooth model 100.
Alternatively, according to another aspect of the second embodiment, rather than providing a physical mark as an indentation into the surface of the physical model, the targets 50 in the second embodiment and variations thereof may be provided as optical marks, which are characterized as having a different color and/or contrast or other optical property with respect to the rest of the surface of the physical model 100, in particular the respective tooth model 110 thereof, without necessarily providing a physical mark that is engraved or otherwise physically projecting into the surface of the tooth model. Thus, such targets 50 can be printed, drawn, painted, colored or otherwise provided on the surface of the tooth model 110, similar to the notches and other physical markings of the embodiment of
In yet another variation of the second embodiment, the targets 50 are provided as visual clues that are slightly protruding from the original surface of the tooth model 110, though not sufficiently and/or in a configuration to provide a mechanical structure or stops that are configured for defining the location of the appliance 90 by abutment therewith.
The targets 50 in the form of notches 360, 362, 364, 366 etc, or corresponding optical markings can be provided in a similar manner to the recesses 60, 160 or 260 of the first embodiment, mutatis mutandis, with some differences, for example as follows.
Referring to
Method 500 comprises method steps 510, 520, 530, 540, which are substantially identical to method steps 410, 420, 430, 440, respectively of method 400 as disclosed herein, mutatis mutandis.
In the next step 550, virtual models of the targets 50 in the form of the positions and shapes of the virtual markings are created—collectively referred to as TVD2—based on the shapes and locations of the chosen orthodontic appliances 90.
In step 560, the initial virtual model D1 is updated to incorporate the virtual models TVD2 to create an updated initial virtual model D1″, in which the original virtual model D1 modified to integrally include the chosen markings in the positions corresponding to the chosen respective orthodontic appliances 90 instead of the original virtual tooth surfaces at those positions.
In the next step 570, the physical model 100 of the dentition including the targets according to the second embodiment or variations thereof is manufactured using computer controlled manufacturing methods, based on virtual models D1 and TVD2, or based on virtual model D1″.
Step 570 may be carried out in a number of ways, for example using material removal techniques, for example CNC machining methods, or other methods, such as for example rapid prototyping techniques.
Using CNC machining methods, the model 100 may be produced either indirectly or directly. Such indirect methods may comprise, e.g., manufacturing an appropriate female mold using CNC techniques, and then producing a model 100 from the mold using casting techniques. The female mold comprises an internal 3D structure substantially complementary to that defined by virtual model D1′, in which the locations and form of the markings are integrally and complementarily formed in the female mold as beads or the like, which form the required physical markings in the form of notches or the like indented into the surface of the cast model, when the targets 50 are chosen thus.
Alternatively, in direct CNC methods, a suitable CNC machine may be programmed to provide material removal passes over a blank of suitable material, based on dataset D1 or D1″, such as to manufacture the model 100. For example, the targets 50 in the form of the aforesaid physical markings indented into the model may be integrally formed with the model 100, wherein the model 100 is manufactured based on virtual model D1″. Alternatively, the targets 50 may be formed as a separated operation after the model 100 is produced based on virtual model D1, wherein the position and form of the targets 50 is post-machined based on target virtual model TVD2. For example, a sharp tool may be CNC controlled to provide the physical markings on the model. In the case where at least some of the targets 50 are the aforesaid optical markings, a tool comprising a pen, printer head or the like may be mounted onto a CNC controlled machine, and CNC controlled so as to print, draw or paint the optical markings at the required positions on the model 100.
Alternatively, the model 100 may be formed using other techniques such as for example from an impression of the intra-oral cavity, and the targets 50 in the form of physical markings or optical markings may be formed using CNC machining techniques based on target virtual model TVD2, as disclosed above, mutatis mutandis. In such a case, the spatial position and orientation of model 100 as a whole must be known with respect to a machining datum so that marking operations are applied to the desired parts of the model to form the physical or optical markings. Accordingly, it is possible to set the model 100 on a rig or chuck to hold the same in place, and thereafter scanned using a suitable 3D scanner to provide a virtual model of the physical model, to be followed by creation of the physical or optical markings based on target virtual model TVD2, which is manipulated to be in registry with the virtual model of the scanned physical model 100. Alternatively, the model 100 may be fabricated with indicia that help align the physical model 100 with respect to predetermined datums in the CNC machine, to which the target virtual model TVD2 is also referenced.
Alternatively, the model 100 is fabricated using other methods. For example, the model 100 may be fabricated using rapid prototyping techniques, for example based on a stereolithography machine, such as for example Model SLA-250/50 available from 3D System, Valencia, Calif., based on the virtual model D1. A liquid or non-hardened resin is hardened into a 3D form that can be separated from the non-hardened liquid or resin to form a positive model 100 from the 3D numerical model D1 thereof. Then, the targets 50 in the form of physical markings or optical markings may be formed in the model 100 in a similar manner to that described above, for example, mutatis mutandis, for example by CNC control.
Alternatively, the model 100 may be manufactured integrally with the targets 50 using rapid prototyping techniques based on virtual model D1″, in a similar manner to that described above for virtual model D1′, mutatis mutandis. Where the targets 50 comprise physical markings, the rapid prototyping method automatically creates the physical markings by providing an effective absence of material at the respective locations of the markings. Additionally or alternatively, where the targets 50 comprise optical markings, the stereolithography machine may be programmed to provide at the locations of the markings, resin having a different optical property to that of the resin used for rest of the model 100, at least when the resin hardens, so that the optical markings are visually marked on the model as lines or symbols and so on having a different optical property or characteristic—color, contrast, etc—to the rest of the model 100.
Once the model 100 is finished with the targets 50 in the form of the physical markings and/or the optical markings, the orthodontic appliances 90 are placed at the correct positions on model 100 as guided by the markings, and the transfer tray 200 may then be manufactured, for example as in traditional indirect bonding techniques, comprising pressure or vacuum forming a suitable sheet material, such as 0.75 mm thermal forming dental material. Suitable materials include, for example, biocryl, by Great Lakes Orthodontics Ltd., Tonawanda, N.Y.
Both for the first and second embodiments, the targets 50 may be created as a separate CNC controlled machining operation of the physical model 100, using any suitable tooth, such as for example a sharp or heated cutting tool, a laser or a power tool, marking tool, printing tool, and so on, as appropriate.
Thus, the targets 50 thus provided enable locations of orthodontic appliances 90 to be targeted, and for the orthodontic appliances 90 to be navigated, homed onto and placed at the desired areas of the physical tooth model 100, and thus also to be placed onto the desired areas of the patient's teeth by means of the transfer tray 200. Optionally, the model 100 may be suitably marked in the vicinity of each target 50 with an identifying mark, symbol or alphanumeric character, for example, that identifies the particular type of orthodontic appliance 90 that is supposed to be targeted onto and bonded to the particular tooth model 110 of the model 100 via that target 50. Such an identifier may be printed, etched or in any other manner provided on the model 100.
Thus, a suitable marking implement such as a pen, pencil, printing pad or the like, for example, may be used to mark the area, in ink for example, this mark delineating the position required for the orthodontic appliance 90, for each tooth.
The present invention may also be used for providing remedial assistance during an orthodontic procedure that is already under way. Such assistance may arise when a bracket or other orthodontic appliance falls off a tooth during the course of an orthodontic treatment, for example. Relative to the corresponding tooth, a particular bracket remains in the same position during the full duration of the orthodontic treatment. There are at least two ways of re-installing the missing bracket. According to one method, the original tooth model 100 may be used again to place the orthodontic appliance 90 on the particular tooth model 100 corresponding to the real tooth that is missing the orthodontic appliance 90. Then, a transfer tray for that tooth only is formed over the respective tooth model 110 and orthodontic appliance 90, and the orthodontic appliance 90 is transferred to the real tooth via indirect bonding using the single tooth transfer tray. Thus, even if the tooth has moved significantly since the orthodontic treatment started, since the relative position of the orthodontic appliance 90 with respect to the respective tooth is unchanged, the single tooth transfer tray provides an effective solution.
According to another embodiment of the method, an intermediate virtual model of the dentition can be created, in a similar manner to model 100, mutatis mutandis, taking into account the current positions of the teeth at the intermediate point of the orthodontic treatment. Then, the virtual model corresponding to the target 50 of the particular tooth, for example part of TVD1 or of TVD2, is incorporated into this intermediate virtual model, and a corresponding intermediate physical model can be manufactured together with the target 50 on the aforesaid tooth model 110. The orthodontic appliance 90 is then placed on the particular tooth model 110 corresponding to the real tooth that is missing the orthodontic appliance 90 using the respective target 50. Then, a transfer tray for the full model 100 is made, affixing thereto orthodontic appliance 90, which is transferred to the real tooth via indirect bonding using the transfer tray.
Thus, it may be desired to change the relative position of the orthodontic appliance 90 with respect to the respective tooth, and thus the procedure may be used for providing remedial assistance, or for adjusting an orthodontic treatment by changing the position of the bracket during treatment.
In another variation of the second embodiment, the optical markings are in the form of a transfer patch of a suitable material that is transferred to the respective tooth model. The transfer patch may comprise an adhesive label, for example, that is transferred to the tooth model 110. The adhesive label may be, for example, in the shape of the periphery of the required orthodontic appliance 90, so that the orthodontic appliance 90 may be fitted in the open area in the patch after the patch is adhered to the tooth model.
Alternatively, the patch may cover part or all of the target area, and the orthodontic appliance 90 is fitted onto the patch. The adhesive patch may comprise a chemical or light-cured adhesive, which sets when the patch has been properly seated and aligned on the tooth model 110. Optionally, the patch may comprise adhesive on both sides thereof, enabling the patch to first bond onto the tooth model 110, and then allow the orthodontic appliance 90 to be bonded to the patch. Accordingly, it may be convenient to have different adhesives for each of the sides of the patch, and such that each adhesive may be selectively activated independently of the other. For example, the adhesives may be light-curing adhesives, each of which cures at a different wavelength. This facilitates the procedure of bonding the patch to the tooth model first, and then allowing the orthodontic appliance 90 to be bonded to the patch. Optionally, the patch may be in the form or shape of the bracket, or in any other suitable shape such as to guide the bracket to the required alignment with respect thereto and thus the tooth model.
Once the shape and dimensions of the patch, and their relationship to the position and orientation of the respective orthodontic appliance 90 on the respective tooth model 110, a suitable robot or robotic arm may be suitably programmed, based on the aforementioned virtual models of the intraoral cavity and of the targets, to place the patch at the desired location over the model 110.
Thus, the physical or optical markings according to the second embodiment provide sufficient targeting information for each orthodontic appliance 90, which may be positioned and bonded onto the appropriate part of the tooth model 110 by placing and aligning the orthodontic appliance 90 in registry with the corresponding mark.
The second embodiment also allows the choice of actual bracket to be deferred if desired or necessary, for example due to logistical problems in obtaining specific types of brackets. Since the positional data required for the orthodontic appliance 90 is marked on the model 100, it is possible to target any orthodontic appliance 90 to a particular target 50, so long as the orthodontic appliance 90 comprises suitable datums compatible with the marking criteria used for the marking, for example centerline and slot location datums.
In a third embodiment of the invention, the physical model 100 comprises the elements and features of the first and second embodiments, as described herein, mutatis mutandis, in which at least one target 50 is configured to provide visual clues which enable the orthodontic appliances 90 to be located at the desired locations over the respective tooth model 110″ of model 100″, and also provides at least one mechanical stop to define the location with respect to at least one axis or degree of freedom by abutment therewith. Thus referring to
In a variation of the third embodiment, and referring to
In a variation of the embodiment of
In yet other embodiments of the invention, the model 100 may comprise any combination and permutation of targets 50 according to the first embodiment, and/of the targets according to the second embodiment, and/or the targets according to the third embodiment, mutatis mutandis.
Optionally, the model 100 according to any of the embodiments or variations thereof, may be fabricated at one location, and then transported to another location where the targets 50 are formed. Alternatively, the model 100 including targets 50 may be fabricated at a single location. Further optionally, placement of the orthodontic appliances 90 on the model 100, and/or formation of the tray 200, may be performed at the same location, or at a different location to that used for manufacturing the model 100 and/or the targets 50.
For at least the embodiments or variations thereof disclosed herein, it is possible optionally and additionally to mark the physical model with useful information including, for example, at least one of: the name of the patient; the name of the orthodontist; the name of the dental lab that manufactured the tray; the date of manufacture; the model, type, serial numbers, or other identifying references for the brackets; and so on.
In the method claims that follow, alphanumeric characters and Roman numerals used to designate claim steps are provided for convenience only and do not imply any particular order of performing the steps.
Finally, it should be noted that the word “comprising” as used throughout the appended claims is to be interpreted to mean “including but not limited to”.
While there has been shown and disclosed example embodiments in accordance with the invention, it will be appreciated that many changes may be made therein without departing from the spirit of the invention.
This application is a continuation of U.S. patent application Ser. No. 15/426,653, filed Feb. 7, 2017, now U.S. Pat. No. 9,956,058, issued May 1, 2018, which is a continuation of U.S. patent application Ser. No. 14/567,111, filed Dec. 11, 2014, now U.S. Pat. No. 9,597,165, issued Mar. 21, 2017, which is a continuation of U.S. patent application Ser. No. 12/656,960, filed Feb. 22, 2010, now U.S. Pat. No. 8,936,464, issued Jan. 20, 2015, which claims benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application No. 61/202,387 filed Feb. 24, 2009, now expired, the contents of each of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2467432 | Kesling | Apr 1949 | A |
3407500 | Kesling | Oct 1968 | A |
3600808 | James | Aug 1971 | A |
3660900 | Lawrence | May 1972 | A |
3683502 | Melvin | Aug 1972 | A |
3738005 | Cohen et al. | Jun 1973 | A |
3860803 | Levine | Jan 1975 | A |
3916526 | Schudy | Nov 1975 | A |
3922786 | Lavin | Dec 1975 | A |
3950851 | Bergersen | Apr 1976 | A |
3983628 | Acevedo | Oct 1976 | A |
4014096 | Dellinger | Mar 1977 | A |
4195046 | Kesling | Mar 1980 | A |
4253828 | Coles et al. | Mar 1981 | A |
4324546 | Heitlinger et al. | Apr 1982 | A |
4324547 | Arcan et al. | Apr 1982 | A |
4348178 | Kurz | Sep 1982 | A |
4360341 | Dellinger | Nov 1982 | A |
4478580 | Barrut | Oct 1984 | A |
4500294 | Lewis | Feb 1985 | A |
4501554 | Hickham | Feb 1985 | A |
4504225 | Yoshii | Mar 1985 | A |
4505673 | Yoshii | Mar 1985 | A |
4526540 | Dellinger | Jul 1985 | A |
4575330 | Hull | Mar 1986 | A |
4575805 | Moermann et al. | Mar 1986 | A |
4591341 | Andrews | May 1986 | A |
4609349 | Cain | Sep 1986 | A |
4611288 | Duret et al. | Sep 1986 | A |
4656860 | Orthuber et al. | Apr 1987 | A |
4663720 | Duret et al. | May 1987 | A |
4664626 | Kesling | May 1987 | A |
4676747 | Kesling | Jun 1987 | A |
4742464 | Duret et al. | May 1988 | A |
4755139 | Abbatte et al. | Jul 1988 | A |
4763791 | Halverson et al. | Aug 1988 | A |
4793803 | Martz | Dec 1988 | A |
4798534 | Breads | Jan 1989 | A |
4812118 | Creekmore | Mar 1989 | A |
4836778 | Baumrind et al. | Jun 1989 | A |
4837732 | Brandestini et al. | Jun 1989 | A |
4850864 | Diamond | Jul 1989 | A |
4850865 | Napolitano | Jul 1989 | A |
4856991 | Breads et al. | Aug 1989 | A |
4877398 | Kesling | Oct 1989 | A |
4880380 | Martz | Nov 1989 | A |
4889238 | Batchelor | Dec 1989 | A |
4890608 | Steer | Jan 1990 | A |
4935635 | O'Harra | Jun 1990 | A |
4936862 | Walker et al. | Jun 1990 | A |
4937928 | Van Der Zel | Jul 1990 | A |
4941826 | Loran et al. | Jul 1990 | A |
4964770 | Steinbichler et al. | Oct 1990 | A |
4975052 | Spencer et al. | Dec 1990 | A |
4983334 | Adell | Jan 1991 | A |
5011405 | Lemchen | Apr 1991 | A |
5017133 | Miura | May 1991 | A |
5027281 | Rekow et al. | Jun 1991 | A |
5035613 | Breads et al. | Jul 1991 | A |
5055039 | Abbatte et al. | Oct 1991 | A |
5059118 | Breads et al. | Oct 1991 | A |
5100316 | Wildman | Mar 1992 | A |
5121333 | Riley et al. | Jun 1992 | A |
5125832 | Kesling | Jun 1992 | A |
5128870 | Erdman et al. | Jul 1992 | A |
5130064 | Smalley et al. | Jul 1992 | A |
5131843 | Hilgers et al. | Jul 1992 | A |
5131844 | Marinaccio et al. | Jul 1992 | A |
5139419 | Andreiko et al. | Aug 1992 | A |
5145364 | Martz et al. | Sep 1992 | A |
5176517 | Truax | Jan 1993 | A |
5184306 | Erdman et al. | Feb 1993 | A |
5186623 | Breads et al. | Feb 1993 | A |
5257203 | Riley et al. | Oct 1993 | A |
5273429 | Rekow et al. | Dec 1993 | A |
5278756 | Lemchen et al. | Jan 1994 | A |
5328362 | Watson et al. | Jul 1994 | A |
5338198 | Wu et al. | Aug 1994 | A |
5340309 | Robertson | Aug 1994 | A |
5342202 | Deshayes | Aug 1994 | A |
5368478 | Andreiko et al. | Nov 1994 | A |
5382164 | Stern | Jan 1995 | A |
5395238 | Andreiko et al. | Mar 1995 | A |
5431562 | Andreiko et al. | Jul 1995 | A |
5440326 | Quinn | Aug 1995 | A |
5440496 | Andersson et al. | Aug 1995 | A |
5447432 | Andreiko et al. | Sep 1995 | A |
5452219 | Dehoff et al. | Sep 1995 | A |
5454717 | Andreiko et al. | Oct 1995 | A |
5456600 | Andreiko et al. | Oct 1995 | A |
5474448 | Andreiko et al. | Dec 1995 | A |
RE35169 | Lemchen et al. | Mar 1996 | E |
5518397 | Andreiko et al. | May 1996 | A |
5528735 | Strasnick et al. | Jun 1996 | A |
5533895 | Andreiko et al. | Jul 1996 | A |
5542842 | Andreiko et al. | Aug 1996 | A |
5549476 | Stern | Aug 1996 | A |
5562448 | Mushabac | Oct 1996 | A |
5587912 | Andersson et al. | Dec 1996 | A |
5605459 | Kuroda et al. | Feb 1997 | A |
5607305 | Andersson et al. | Mar 1997 | A |
5614075 | Andre, Sr. | Mar 1997 | A |
5621648 | Crump | Apr 1997 | A |
5645420 | Bergersen | Jul 1997 | A |
5645421 | Slootsky | Jul 1997 | A |
5655653 | Chester | Aug 1997 | A |
5683243 | Andreiko et al. | Nov 1997 | A |
5692894 | Schwartz et al. | Dec 1997 | A |
5725376 | Poirier | Mar 1998 | A |
5725378 | Wang | Mar 1998 | A |
5733126 | Andersson et al. | Mar 1998 | A |
5740267 | Echerer et al. | Apr 1998 | A |
5742700 | Yoon et al. | Apr 1998 | A |
5799100 | Clarke et al. | Aug 1998 | A |
5800174 | Andersson | Sep 1998 | A |
5823778 | Schmitt et al. | Oct 1998 | A |
5848115 | Little et al. | Dec 1998 | A |
5857853 | Van et al. | Jan 1999 | A |
5866058 | Batchelder et al. | Feb 1999 | A |
5879158 | Doyle et al. | Mar 1999 | A |
5880961 | Crump | Mar 1999 | A |
5880962 | Andersson et al. | Mar 1999 | A |
5934288 | Avila et al. | Aug 1999 | A |
5957686 | Anthony | Sep 1999 | A |
5964587 | Sato | Oct 1999 | A |
5971754 | Sondhi et al. | Oct 1999 | A |
5975893 | Chishti et al. | Nov 1999 | A |
6015289 | Andreiko et al. | Jan 2000 | A |
6044309 | Honda | Mar 2000 | A |
6049743 | Baba | Apr 2000 | A |
6062861 | Andersson | May 2000 | A |
6068482 | Snow | May 2000 | A |
6099314 | Kopelman et al. | Aug 2000 | A |
6123544 | Cleary | Sep 2000 | A |
6152731 | Jordan et al. | Nov 2000 | A |
6183248 | Chishti et al. | Feb 2001 | B1 |
6190165 | Andreiko et al. | Feb 2001 | B1 |
6217325 | Chishti et al. | Apr 2001 | B1 |
6217334 | Hultgren | Apr 2001 | B1 |
6244861 | Andreiko et al. | Jun 2001 | B1 |
6309215 | Phan et al. | Oct 2001 | B1 |
6315553 | Sachdeva et al. | Nov 2001 | B1 |
6322359 | Jordan et al. | Nov 2001 | B1 |
6350120 | Sachdeva et al. | Feb 2002 | B1 |
6382975 | Poirier | May 2002 | B1 |
6398548 | Muhammad et al. | Jun 2002 | B1 |
6402707 | Ernst | Jun 2002 | B1 |
6482298 | Bhatnagar | Nov 2002 | B1 |
6524101 | Phan et al. | Feb 2003 | B1 |
6554611 | Shishti et al. | Apr 2003 | B2 |
6572372 | Phan et al. | Jun 2003 | B1 |
6629840 | Chishti et al. | Oct 2003 | B2 |
6705863 | Phan et al. | Mar 2004 | B2 |
6722880 | Chishti et al. | Apr 2004 | B2 |
7020963 | Cleary et al. | Apr 2006 | B2 |
7188421 | Cleary et al. | Mar 2007 | B2 |
7347688 | Kopelman et al. | Mar 2008 | B2 |
7404714 | Cleary et al. | Jul 2008 | B2 |
7410357 | Cleary et al. | Aug 2008 | B2 |
7473096 | Cinader, Jr. | Jan 2009 | B2 |
7792815 | Aravamudan et al. | Sep 2010 | B2 |
8070486 | Kuperman | Dec 2011 | B2 |
8235717 | Kuperman | Aug 2012 | B2 |
8308478 | Primus et al. | Nov 2012 | B2 |
8936464 | Kopelman | Jan 2015 | B2 |
9597165 | Kopelman | Mar 2017 | B2 |
9956058 | Kopelman et al. | May 2018 | B2 |
20020006597 | Andreiko et al. | Jan 2002 | A1 |
20030009252 | Pavlovskaia et al. | Jan 2003 | A1 |
20030139834 | Nikolskiy et al. | Jul 2003 | A1 |
20030224311 | Cronauer | Dec 2003 | A1 |
20040128010 | Pavlovskaia et al. | Jul 2004 | A1 |
20040219471 | Cleary et al. | Nov 2004 | A1 |
20040219473 | Cleary et al. | Nov 2004 | A1 |
20040229185 | Knopp | Nov 2004 | A1 |
20040253562 | Knopp | Dec 2004 | A1 |
20050055118 | Nikolskiy et al. | Mar 2005 | A1 |
20050233276 | Kopelman et al. | Oct 2005 | A1 |
20050244790 | Kuperman | Nov 2005 | A1 |
20060001739 | Babayoff | Jan 2006 | A1 |
20060084026 | Cinader et al. | Apr 2006 | A1 |
20060177791 | Cinader, Jr. | Aug 2006 | A1 |
20070238066 | Kopelman et al. | Oct 2007 | A1 |
20070275340 | Kopelman et al. | Nov 2007 | A1 |
20070298364 | Cinader, Jr. | Dec 2007 | A1 |
20080248437 | Marshall | Oct 2008 | A1 |
20090220920 | Primus et al. | Sep 2009 | A1 |
20100216085 | Kopelman | Aug 2010 | A1 |
20100279243 | Cinader, Jr. et al. | Nov 2010 | A1 |
Number | Date | Country |
---|---|---|
3031677 | May 1979 | AU |
517102 | Jul 1981 | AU |
5598894 | Jun 1994 | AU |
1121955 | Apr 1982 | CA |
2749802 | May 1978 | DE |
69327661 | Jul 2000 | DE |
0091876 | Oct 1983 | EP |
0299490 | Jan 1989 | EP |
0376873 | Jul 1990 | EP |
0490848 | Jun 1992 | EP |
0541500 | May 1993 | EP |
0667753 | Jan 2000 | EP |
0774933 | Dec 2000 | EP |
0731673 | May 2001 | EP |
463897 | Jan 1980 | ES |
2369828 | Jun 1978 | FR |
2652256 | Mar 1991 | FR |
1550777 | Aug 1979 | GB |
S5358191 | May 1978 | JP |
H0428359 | Jan 1992 | JP |
H08508174 | Sep 1996 | JP |
WO-9008512 | Aug 1990 | WO |
WO-9104713 | Apr 1991 | WO |
WO-9410935 | May 1994 | WO |
WO-9832394 | Jul 1998 | WO |
WO-9844865 | Oct 1998 | WO |
WO-9858596 | Dec 1998 | WO |
WO-9934747 | Jul 1999 | WO |
WO-0008415 | Feb 2000 | WO |
Entry |
---|
AADR. American Association for Dental Research, Summary of Activities, Mar. 20-23, 1980, Los Angeles, CA, p. 195. |
Alcaniz, et aL, “An Advanced System for the Simulation and Planning of Orthodontic Treatments,” Karl Heinz Hohne and Ron Kikinis (eds.), Visualization in Biomedical Computing, 4th Intl. Conf., VBC '96, Hamburg, Germany, Sep. 22-25, 1996, Springer-Verlag, pp. 511-520. |
Alexander et al., “The DigiGraph Work Station Part 2 Clinical Management,” JCO, pp. 402-407 (Jul. 1990). |
Altschuler, “3D Mapping of Maxillo-Facial Prosthesis,” AADR Abstract #607, 2 pages total, (1980). |
Altschuler et al., “Analysis of 3-D Data for Comparative 3-D Serial Growth Pattern Studies of Oral-Facial Structures, ” IADR Abstracts, Program and Abstracts of Papers, 57th General Session, IADR Annual Session, Mar. 29, 1979-Apr. 1, 1979, New Orleans Marriot, Journal of Dental Research, vol. 58, Jan. 1979, Special Issue A, p. 221. |
Altschuler et al., “Laser Electro-Optic System for Rapid Three-Dimensional (3D) Topographic Mapping of Surfaces,” Optical Engineering, 20(6):953-961 (1981). 0. |
Altschuler et al., “Measuring Surfaces Space-Coded by a Laser-Projected Dot Matrix,” SPIE Imaging Applications for Automated Industrial Inspection and Assembly, vol. 182, p. 187-191 (1979). |
Andersson et al., “Clinical Results with Titanium Crowns Fabricated with Machine Duplication and Spark Erosion,” Acta. Odontol. Scand., 47:279-286 (1989). |
Andrews, The Six Keys to Optimal Occlusion Straight Wire, Chapter 3, pp. 13-24 (1989). |
Bartels, et al., An Introduction to Splines for Use in Computer Graphics and Geometric Modeling, Morgan Kaufmann Publishers, pp. 422-425 (1987). |
Baumrind, “A System for Craniofacial Mapping Through the Integration of Data from Stereo X-Ray Films and Stereo Photographs,” an invited paper submitted to the 1975 American Society of Photogram Symposium on Close-Range Photogram Systems, University of III., Aug. 26-30, 1975, pp. 142-166. |
Baumrind et al., “A Stereophotogrammetric System for the Detection of Prosthesis Loosening in Total Hip Arthroplasty,” NATO Symposium on Applications of Human Biostereometrics, Jul. 9-13, 1978, SPIE, vol. 166, pp. 112-123. |
Baumrind et al., “Mapping the Skull in 3-D,” reprinted from J. Calif. Dent. Assoc., 48(2), 11 pages total, (1972 Fall Issue). |
Baumrind, “Integrated Three-Dimensional Craniofacial Mapping: Background, Principles, and Perspectives,” Semin. in Orthod., 7(4):223-232 (Dec. 2001). |
Begole et al., “A Computer System for the Analysis of Dental Casts,” The Angle Orthod., 51(3):253-259 (Jul. 1981). |
Bernard et al.,“Computerized Diagnosis in Orthodontics for Epidemiological Studies: A Progress Report,” Abstract, J. Dental Res. Special Issue, vol. 67, p. 169, paper presented at International Association for Dental Research 66th General Session, Mar. 9-13, 1988, Montreal, Canada. |
Bhatia et al., “A Computer-Aided Design for Orthognathic Surgery,” Br. J. Oral Maxillofac. Surg., 22:237-253 (1984). |
Biggerstaff, “Computerized Diagnostic Setups and Simulations,” Angle Orthod., 40(1):28-36 (Jan. 1970). |
Biggerstaff et al., “Computerized Analysis of Occlusion in the Postcanine Dentition,” Am. J. Orthod., 61(3): 245-254 (Mar. 1972). |
Biostar Opeation & Training Manual. Great Lakes Orthodontics, Ltd. 199 Fire Tower Drive, Tonawanda, New York. 14150-5890, 20 pages total (1990). |
Blu, et al., “Linear interpolation revitalized”, IEEE Trans. Image Proc., 13(5):710-719 (May 2004. |
Bourke, “Coordinate System Transformation,” (Jun. 1996), p. 1, retrieved from the Internet Nov. 5, 2004, URL< http://astronomy.swin.edu.au/—pbourke/prolection/coords>. |
Boyd et al., “Three Dimensional Diagnosis and Orthodontic Treatment of Complex Malocclusions With the lnvisalipn Appliance,” Semin. Orthod., 7(4):274-293 (Dec. 2001). |
Brandestini et al., “Computer Machined Ceramic Inlays: In Vitro Marginal Adaptation,” J. Dent. Res. Special Issue, Abstract 305, vol. 64, p. 208 (1985). |
Brook et al., “An Image Analysis System for the Determination of Tooth Dimensions from Study Casts: Comparison with Manual Measurements of Mesio-distal Diameter,” J. Dent. Res., 65(3):428-431 (Mar. 1986). |
Burstone et al., Precision Adjustment of the Transpalatal Lingual Arch: Computer Arch Form in Predetermination, Am, Journal of Orthodontics, vol. 79, No. 2 (Feb. 1981), pp. 115-133. |
Burstone (interview), “Dr. Charles J. Burstone on The Uses of the Computer in Orthodontic Practice (Part 1),” J. Clin. Orthod., 13(7):442-453 (Jul. 1979). |
Burstone (interview), “Dr. Charles J. Burstone on The Uses of the Computer in Orthodontic Practice (Part 2),” J. Clin. Orthod., 13(8):539-551 (Aug. 1979). |
Cardinal Industrial Finishes, Powder Coatings information posted at<http://www.cardinalpaint.com> on Aug. 25, 2000, 2 pages. |
Carnaghan, “An Alternative to Holograms for the Portrayal of Human Teeth,” 4th Int'l. Conf. On Holographic Systems, Components and Applications, Sep. 15, 1993, pp. 228-231. |
Chaconas et al., “The DigiGraph Work Station, Part 1, Basic Concepts,” JCO, pp. 360-367 (Jun. 1990). |
Chafetz et al., “Subsidence of the Femoral Prosthesis, A Stereophotogrammetric Evaluation,” Clin. Orthop. Relat. Res., No. 201, pp. 60-67 (Dec. 1985). |
Chiappone, (1980). Constructing the Gnathologic Setup and Positioner, J. Clin. Orthod, vol. 14, pp. 121-133. |
Cottingham, (1969). Gnathologic Clear Plastic Positioner, Am. J. Orthod, vol. 55, pp. 23-31. |
Crawford, “CAD/CAM in the Dental Office: Does It Work?”, Canadian Dental Journal, vol. 57, No. 2, pp. 121-123 (Feb. 1991). |
Crawford, “Computers in Dentistry: Part 1 CAD/CAM: The Computer Moves Chairside,” Part 2 F. Duret—A Man with a Vision,“Part 3 The Computer Gives New Vision—Literally,” Part 4 Bytes 'N Bites—The Computer Moves from the Front Desk to the Operatory, Canadian Dental Journal, vol. 54 (9), pp. 661-666 (1988). |
Crooks, “CAD/CAM Comes to USC,” USC Dentistry, pp. 14-17 (Spring 1990). |
Cureton, Correcting Malaligned Mandibular Incisors with Removable Retainers, J. Clin. Orthod, vol. 30, No. 7 (1996) pp. 390-395. |
Curry et al., “Integrated Three-Dimensional Craniofacial Mapping at the Craniofacial Research Instrumentation Laboratory/University of the Pacific,” Semin. Orthod., 7(4):258-265 (Dec. 2001). |
Cutting et a/., “Three-Dimensional Computer-Assisted Design of Craniofacial Surgical Procedures: Optimization and Interaction with Cephalometric and CT-Based Models,” Plast. 77(6):877-885 (Jun. 1986). |
DCS Dental AG, “The CAD/CAM 'DCS Titan System' for Production of Crowns/Bridges,” DSC Production AG, pp. 1-7 (Jan. 1992. |
Definition for gingiva. Dictionary.com pp. 1-3. Retrieved from the internet Nov. 5, 2004< http://reference.com/search/search?q=gingiva>. |
Defranco et al., “Three-Dimensional Large Displacement Analysis of Orthodontic Appliances,” J. Biomechanics, 9:793-801 (1976). |
Dental Institute University of Zurich Switzerland, Program for International Symposium JD on Computer Restorations: State of the Art of the CEREC-Method, May 1991, 2 pages total. |
Dentrac Corporation, Dentrac document, pp. 4-13 (1992). |
Dent-X posted on Sep. 24, 1998 at< http://www.dent-x.com/DentSim.htm>, 6 pages. |
Doyle, “Digital Dentistry,” Computer Graphics World, pp. 50-52, 54 (Oct. 2000). |
DuraClearTM product information, Allesee Orthodontic Appliances-Pro Lab, 1 page (1997). |
Duret et al., “CAD/CAM Imaging in Dentistry,” Curr. Opin. Dent., 1:150-154 (1991). |
Duret et al, “CAD-CAM in Dentistry,” J. Am. Dent. Assoc. 117:715-720 (Nov. 1988). |
Duret, “The Dental CAD/CAM, General Description of the Project,” Hennson International Product Brochure, 18 pages total, Jan. 1986. |
Duret,“Vers Une Prosthese Informatisee,” (English translation attached), Tonus, vol. 75, pp. 55-57 (Nov. 15, 1985). |
Economides, “The Microcomputer in the Orthodontic Office,” JCO, pp. 767-772 (Nov. 1979). |
Elsasser, Some Observations on the History and Uses of the Kesling Positioner, Am. J. Orthod. (1950) 36:368-374. |
English translation of Japanese Laid-Open Publication No. 63-11148 to inventor T. Ozukuri (Laid-Open on Jan. 18, 1998) pp. 1-7. |
Felton et al., “A Computerized Analysis of the Shape and Stability of Mandibular Arch Form,” Am. J. Orthod. Dentofacial Orthop., 92(6):478-483 (Dec. 1987). |
Friede et al., “Accuracy of Cephalometric Prediction in Orthognathic Surgery,” Abstract of Papers, J. Dent. Res., 70:754-760 (1987). |
Futterling et a/., “Automated Finite Element Modeling of a Human Mandible with Dental Implants,” JS WSCG '98 -Conference Program, retrieved from the Internet:< http://wscg.zcu.cz/wscg98/papers98/Strasser 98.pdf>, 8 pages. |
Gao et al., “3-D element Generation for Multi-Connected Complex Dental and Mandibular Structure,” Proc. Intl Workshop on Medical Imaging and Augmented Reality, pp. 267-271 (Jun. 12, 2001). |
Gim-Alldent Deutschland, “Das DUX System: Die Technik,” 2 pages total (2002). |
Gottleib et al., “JCO Interviews Dr. James A. McNamura, Jr., on the Frankel Appliance: Part 2: Clinical 1-1 Management,”J. Clin. Orthod., 16(6):390-407 (Jun. 1982). |
Grayson, “New Methods for Three Dimensional Analysis of Craniofacial Deformity, Symposium: JW Computerized Facial Imaging in Oral and Maxiiofacial Surgery,” AAOMS, 3 pages total, (Sep. 13, 1990). |
Guess et al., “Computer Treatment Estimates in Orthodontics and Orthognathic Surgery,” JCO, pp. 262-28 (Apr. 1989). |
Heaven et a/., “Computer-Based Image Analysis of Artificial Root Surface Caries,” Abstracts of Papers, J. Dent. Res., 70:528 (Apr. 17-21, 1991). |
Highbeam Research, “Simulating Stress Put on Jaw,” Tooling & Production [online], Nov. 1996, n pp. 1-2, retrieved from the Internet on Nov. 5, 2004, URL http://static.highbeam.com/t/toolingampproduction/november011996/simulatingstressputonfa . . . >. |
Hikage, “Integrated Orthodontic Management System for Virtual Three-Dimensional Computer Graphic Simulation and Optical Video Image Database for Diagnosis and Treatment Planning”, Journal of Japan KA Orthodontic Society, Feb. 1987, English translation, pp. 1-38, Japanese version, 46(2), pp. 248-269 (60 pages total). |
Hoffmann, et al., “Role of Cephalometry for Planning of Jaw Orthopedics and Jaw Surgery Procedures,” (Article Summary in English, article in German), Informatbnen, pp. 375-396 (Mar. 1991). |
Hojjatie et al., “Three-Dimensional Finite Element Analysis of Glass-Ceramic Dental Crowns,” J. Biomech., 23(11):1157-1166 (1990). |
Huckins, “CAD-CAM Generated Mandibular Model Prototype from MRI Data,” AAOMS, p. 96 (1999). |
Important Tip About Wearing the Red White & Blue Active Clear Retainer System, Allesee Orthodontic Appliances-Pro Lab, 1 page 1998). |
JCO Interviews, Craig Andreiko , DDS, MS on the Elan and Orthos Systems, JCO, pp. 459-468 (Aug. 1994). |
JCO Interviews, Dr. Homer W. Phillips on Computers in Orthodontic Practice, Part 2, JCO. 1997; 1983:819-831. |
Jerrold, “The Problem, Electronic Data Transmission and the Law,” AJO-DO, pp. 478-479 (Apr. 1988). |
Jones et al., “An Assessment of the Fit of a Parabolic Curve to Pre- and Post-Treatment Dental Arches,” Br. J. Orthod., 16:85-93 (1989). |
JP Faber et al., “Computerized Interactive Orthodontic Treatment Planning,” Am. J. Orthod., 73(1):36-46 (Jan. 1978). |
Kamada et.al., Case Reports On Tooth Positioners Using LTV Vinyl Silicone Rubber, J. Nihon University School of Dentistry (1984) 26(1): 11-29. |
Kamada et.al., Construction of Tooth Positioners with LTV Vinyl Silicone Rubber and Some Case KJ Reports, J. Nihon University School of Dentistry (1982) 24(1):1-27. |
Kanazawa et al., “Three-Dimensional Measurements of the Occlusal Surfaces of Upper Molars in a Dutch Population,” J. Dent Res., 63(11):1298-1301 (Nov. 1984). |
Kesling, Coordinating the Predetermined Pattern and Tooth Positioner with Conventional Treatment, KN Am. J. Orthod. Oral Surg. (1946) 32:285-293. |
Kesling et al., The Philosophy of the Tooth Positioning Appliance, American Journal of Orthodontics and Oral surgery. 1945; 31:297-304. |
Kleeman et al., The Speed Positioner, J. Clin. Orthod. (1996) 30:673-680. |
Kochanek, “Interpolating Splines with Local Tension, Continuity and Bias Control,” Computer Graphics, ri 18(3):33-41 (Jul. 1984). KM Oral Surgery (1945) 31 :297-30. |
Kunii et al., “Articulation Simulation for an Intelligent Dental Care System,” Displays 15:181-188 (1994). |
Kuroda et al., Three-Dimensional Dental Cast Analyzing System Using Laser Scanning, Am. J. Orthod. Dentofac. Orthop. (1996) 110:365-369. |
Laurendeau, et al., “A Computer-Vision Technique for the Acquisition and Processing of 3-D Profiles of 7 KR Dental Imprints: An Application in Orthodontics,” IEEE Transactions on Medical Imaging, 10(3):453-461 (Sep. 1991. |
Leinfelder, et al., “A New Method for Generating Ceramic Restorations: a CAD-CAM System,” J. Am. 1-1 Dent. Assoc., 118(6):703-707 (Jun. 1989). |
Manetti, et al., “Computer-Aided Cefalometry and New Mechanics in Orthodontics,” (Article Summary in English, article in German), Fortschr Kieferorthop. 44, 370-376 (Nr. 5), 1983. |
McCann, “Inside the ADA,” J. Amer. Dent. Assoc., 118:286-294 (Mar. 1989). |
McNamara et al., “Invisible Retainers,” J. Cfin. Orthod., pp. 570-578 (Aug. 1985). |
McNamara et al., Orthodontic and Orthopedic Treatment in the Mixed Dentition, Needham Press, pp. 347-353 (Jan. 1993). |
Moermann et al., “Computer Machined Adhesive Porcelain Inlays: Margin Adaptation after Fatigue Stress,” IADR Abstract 339, J. Dent. Res., 66(a):763 (1987). |
Moles, “Correcting Mild Malalignments—As Easy As One, Two, Three,” AOA/Pro Corner, vol. 11, No. 1, 2 pages (2002). |
Mormann et al., “Marginale Adaptation von adhasuven Porzellaninlays in vitro,” Separatdruck aus: Schweiz. Mschr. Zahnmed. 95: 1118-1129, 1985. |
Nahoum, “The Vacuum Formed Dental Contour Appliance,” N. Y. State Dent. J., 30(9):385-390 (Nov. 1964). |
Nash, “CEREC CAD/CAM Inlays: Aesthetics and Durability in a Single Appointment,” Dent. Today, 9(8):20, 22-23 (Oct. 1990). |
Nishiyama et al., “A New Construction of Tooth Repositioner by LTV Vinyl Silicone Rubber,” J. Nihon Univ. Sch. Dent., 19(2):93-102 (1977). |
Paul et al., “Digital Documentation of Individual Human Jaw and Tooth Forms for Applications in Orthodontics, Oral Surgery and Forensic Medicine” Proc. of the 24th Annual Conf. of the IEEE Industrial Electronics Society (IECON '98), Sep. 4, 1998, pp. 2415-2418. |
Pinkham, “Foolish Concept Propels Technology,” Dentist, 3 pages total, Jan./Feb. 1989. |
Pinkham, “Inventor's CAD/CAM May Transform Dentistry,” Dentist, 3 pages total, Sep. 1990. |
Ponitz, “Invisible Retainers,” Am. J. Orthod., 59(3):266-272 (Mar. 1971). |
Procera Research Projects, “Procera Research Projects 1993—Abstract Collection,” pp. 3-7; 28 (1993). |
Proffit et al., Contemporary Orthodontics, (Second Ed.), Chapter 15, Mosby Inc., pp. 470-533 (Oct. 1993. |
Raintree Essix & ARS Materials, Inc., Raintree Essix, Technical Magazine Table of contents and Essix Appliances,< http:// www.essix.com/magazine/defaulthtml> Aug. 13, 1997. |
Redmond et al., “Clinical Implications of Digital Orthodontics,” Am. J. Orthod. Dentofacial Orthop., 117(2):240-242 (2000). |
Rekow, “A Review of the Developments in Dental CAD/CAM Systems,” (contains references to Japanese efforts and content of the papers of particular interest to the clinician are indicated with a one line summary of their content in the bibliography), Curr. Opin. Dent., 2:25-33 (Jun. 1992). |
Rekow, “CAD/CAM in Dentistry: A Historical Perspective and View of the Future,” J. Can. Dent. Assoc., 58(4):283, 287-288 (Apr. 1992). |
Rekow, “Computer-Aided Design and Manufacturing in Dentistry: A Review of the State of the Art,” J. Prosthet. Dent., 58(4):512-516 (Oct. 1987). |
Rekow, “Dental CAD-CAM Systems: What is the State of the Art?”, J. Amer. Dent. Assoc., 122:43-48 1991. |
Rekow et al., “CAD/CAM for Dental Restorations—Some of the Curious Challenges,” IEEE Trans. Biomed. Eng., 38(4):314-318 (Apr. 1991). |
Rekow et al., “Comparison of Three Data Acquisition Techniques for 3-D Tooth Surface Mapping,” Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 13(1):344-345 1991. |
Rekow, “Feasibility of an Automated System for Production of Dental Restorations, Ph.D. Thesis,” Univ. of Minnesota, 244 pages total, Nov. 1988. |
Richmond et al., “The Development of a 3D Cast Analysis System,” Br. J. Orthod., 13(1):53-54 (Jan. 1986). |
Richmond et al., “The Development of the PAR Index (Peer Assessment Rating): Reliability and Validity,” Eur. J. Orthod., 14:125-139 (1992). |
Richmond, “Recording The Dental Cast In Three Dimensions,” Am. J. Orthod. Dentofacial Orthop., 92(3):199-206 (Sep. 1987). |
Rudge, “Dental Arch Analysis: Arch Form, A Review of the Literature,” Eur. J. Orthod., 3(4):279-284 1981. |
Sakuda et al., “Integrated Information-Processing System in Clinical Orthodontics: An Approach with Use of a Computer Network System,” Am. J. Orthod. Dentofacial Orthop., 101(3): 210-220 (Mar. 1992). |
Schellhas et al., “Three-Dimensional Computed Tomography in Maxillofacial Surgical Planning,” Arch. Otolamp!. Head Neck Sur9., 114:438-442 (Apr. 1988). |
Schroeder et al., Eds. The Visual Toolkit, Prentice Hall PTR, New Jersey (1998) Chapters 6, 8 & 9, (pp. 153-210,309-354, and 355-428, respectively. |
Shilliday, (1971). Minimizing finishing problems with the mini-positioner, Am. J. Orthod. 59:596-599. |
Siemens, “CEREC—Computer-Reconstruction,” High Tech in der Zahnmedizin, 14 pages total (2004). |
Sinclair, “The Readers' Corner,” J. Clin. Orthod., 26(6):369-372 (Jun. 1992). |
Sirona Dental Systems GmbH, Cerec 3D, Manuel utiiisateur, Version 2.0X (in French), 2003,114 pages total. |
Stoll et al., “Computer-aided Technologies in Dentistry,” (article summary in English, article in German), Dtsch Zahna'rztl Z 45, pp. 314-322 (1990). |
Sturman, “Interactive Keyframe Animation of 3-D Articulated Models,” Proceedings Graphics Interface '84, May-Jun. 1984, pp. 35-40. |
The Choice Is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment, Allesee HI Orthodontic Appliances-Pro Lab product information for doctors. http://ormco.com/aoa/appliancesservices/RWB/doctorhtml>, 5 pages (May 19, 2003). |
The Choice is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment, Allesee HJ Orthodontic Appliances-Pro Lab product information for patients,< http://ormco.com/aoa/appliancesservices/RWB/patients.html>, 2 pages (May 19, 2003). |
The Choice Is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment, Allesee Orthodontic Appliances-Pro Lab product information, 6 pages (2003). |
The Red, White & Blue Way to Improve Your Smile! Allesee Orthodontic Appliances-Pro Lab product information for patients, 2 pages 1992. |
Truax L., “Truax Clasp-Less(TM) Appliance System,” Funct. Orthod., 9(5):22-4, 26-8 (Sep.-Oct. 1992). |
Tru-Tain Orthodontic & Dental Supplies, Product Brochure, Rochester, Minnesota 55902, 16 pages total (1996). |
U.S. Department of Commerce, National Technical Information Service, “Automated Crown Replication Using Solid Photography SM,” Solid Photography Inc., Melville NY, Oct. 1977, 20 pages total. |
U.S. Department of Commerce, National Technical Information Service, “Holodontography: An Introduction to Dental Laser Holography,” School of Aerospace Medicine Brooks AFB Tex, Mar. 1973, 37 pages total. |
U.S. Appl. No. 60/050,342, filed on Jun. 20, 1997, 41 pages total. |
Van Der Linden, “A New Method to Determine Tooth Positions and Dental Arch Dimensions,” J. Dent. Res., 51(4):1104 (Jul.-Aug. 1972). |
Van Der Linden et al., “Three-Dimensional Analysis of Dental Casts by Means of the Optocom,” J. Dent. Res., p. 1100 (Jul.-Aug. 1972). |
Van Der Zel, “Ceramic-Fused-to-Metal Restorations with a New CAD/CAM System,” Quintessence Int., 24(11):769-778 (1993. |
Varady et al., “Reverse Engineering of Geometric Models—An Introduction,” Computer-Aided Design, 29(4):255-268,1997. |
Verstreken et al., “An Image-Guided Planning System for Endosseous Oral Implants,” IEEE Trans. Med. Imaging, 17(5):842-852 (Oct. 1998). |
Warunek et al., Physical and Mechanical Properties of Elastomers in Orthodonic Positioners, Am J. Orthod. Dentofac. Orthop, vol. 95, No. 5, (May 1989) pp. 399-400. |
Warunek et.al., Clinical Use of Silicone Elastomer Applicances, JCO (1989) XXIII(10):694-700. |
Wells, Application of the Positioner Appliance in Orthodontic Treatment, Am. J. Orthodont. (1970) 58:351-366. |
Williams, “Dentistry and CAD/CAM: Another French Revolution,” J. Dent. Practice Admin., pp. 2-5 (Jan./Mar. 1987). |
Williams, “The Switzerland and Minnesota Developments in CAD/CAM,” J. Dent. Practice Admin., pp. 50-55 (Apr./Jun. 1987. |
Wishan, “New Advances in Personal Computer Applications for Cephalometric Analysis, Growth Prediction, Surgical Treatment Planning and Imaging Processing,” Symposium: Computerized Facial Imaging in Oral and Maxilofacial Surgery Presented on Sep. 13, 1990. |
WSCG'98—Conference Program, “The Sixth International Conference in Central Europe on Computer Graphics and Visualization '98,” Feb. 9-13, 1998, pp. 1-7, retrieved from the Internet on Nov. 5, 2004, URL<http://wscg.zcu.cz/wscg98/wscg98.h>. |
Xia et al., “Three-Dimensional Virtual-Reality Surgical Planning and Soft-Tissue Prediction for Orthognathic Surgery,” IEEE Trans. Inf. Technol. Biomed., 5(2):97-107 (Jun. 2001). |
Yamamoto et al., “Optical Measurement of Dental Cast Profile and Application to Analysis of Three-Dimensional Tooth Movement in Orthodontics,” Front. Med. Biol. Eng., 1(2):119-130 (1988). |
Yamamoto et al., “Three-Dimensional Measurement of Dental Cast Profiles and Its Applications to Orthodontics,” Conf. Proc. IEEE Eng. Med. Biol. Soc., 12(5):2051-2053 (1990). |
Yamany et al., “A System for Human Jaw Modeling Using Intra-Oral Images,” Proc. of the 20th Annual Conf. of the IEEE Engineering in Medicine and Biology Society, Nov. 1, 1998, vol. 2, pp. 563-566. |
Yoshii, “Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); I. The D.P. Concept and Implementation of Transparent Silicone Resin (Orthocon),” Nippon Dental Review, 452:61-74 (Jun. 1980). |
Yoshii, “Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); II. The D.P. Manufacturing Procedure and Clinical Applications,” Nippon Dental Review, 454:107-130 (Aug. 1980). |
Yoshii, “Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); III. The General Concept of the D.P. Method and Its Therapeutic Effect, Part 1, Dental and Functional Reversed Occlusion Case Reports,” Nippon Dental Review, 457:146-164 (Nov. 1980). |
Yoshii, “Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); III.—The General Concept of the D.P. Method and Its Therapeutic Effect, Part 2. Skeletal Reversed Occlusion Case Reports,” Nippon Dental Review, 458:112-129 (Dec. 1980). |
You May Be A Candidate For This Invisible No-Braces Treatment, Allesee Orthodontic Appliances-Pro Lab product information for patients, 2 pages (2002). |
Number | Date | Country | |
---|---|---|---|
20180271622 A1 | Sep 2018 | US |
Number | Date | Country | |
---|---|---|---|
61202387 | Feb 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15426653 | Feb 2017 | US |
Child | 15926524 | US | |
Parent | 14567111 | Dec 2014 | US |
Child | 15426653 | US | |
Parent | 12656960 | Feb 2010 | US |
Child | 14567111 | US |