1. Field of the Invention
The present invention relates to a method, system, and program for executing data transfer requests.
2. Description of the Related Art
In storage environments, data access commands are communicated from a host system to a storage controller, which manages access to the disks. The storage controller may be a card inside the host system or a separate device. The Internet Small Computer Systems Interface (iSCSI) protocol is used for storage networks that utilize Ethernet connections, including Ethernet switches and routers. The term “iSCSI” as used herein refers to the syntax and semantic of the iSCSI protocol defined by the IETF (Internet Engineering Task Force) standards body, and any variant of that protocol. In current storage networks where iSCSI is utilized, the packet configuration comprises an Ethernet package encapsulating an Internet Protocol (IP) and Transmission Control Protocol (TCP) package layers, which further encapsulate an iSCSI package that includes one or more SCSI commands. The Ethernet protocol provides for link-level error checking as the packets flow from point-to-point on any network segment (link) to determine whether data has been corrupted while passing on a link. In network data transmission operations, an initiator device transmits data or commands over the network to a target device. The TCP/IP package includes an error detection code to perform an end-to-end checking to determine at the opposite end whether the transmitted packet has changed during the transmission as the packet passes through switches and routers. A receiving device detecting an error will send a negative acknowledgment to the sending device to request retransmission of those packets in which errors were detected.
The Remote Direct Memory Access (RMDA) protocol provides the capability of one computer to directly place information in another computer's memory with minimal demands on memory bus bandwidth and processor overhead. RDMA over TCP/IP (also known as iWARP) defines the interoperable protocols to support RDMA operations over standard TCP/IP networks. An RDMA Network Interface Card (RNIC) network adaptor card implements the RDMA protocol and performs RDMA operations to transfer data to local and remote memories. Further details of the RDMA protocol are described in the specifications entitled “RDMA Protocol Verbs Specification (Version 1.0)”, published by the RDMA Consortium (April, 2003); “Direct Data Placement over Reliable Transports (Version 1.0)”, published by RDMA Consortium (October 2002); and “Marker PDU Aligned Framing for TCP Specification (Version 1.0)”, published by the RDMA Consortium (October 2002), and which specifications are incorporated herein by reference in their entirety.
One specification entitled “iSCSI Extensions for RDMA Specification (Version 1.0), by Michael Ko et al., released by the RDMA Consortium (July, 2003), which specification is incorporated herein in its entirety, defines a protocol for providing the RDMA data transfer capabilities to iSCSI by layering iSCSI on top of RDMA.
Data transfer systems, including the RDMA and others described above, typically require the intervention of kernel mode processes to handle the read and write operations to and from the storage devices.
Referring now to the drawings in which like reference numbers represent corresponding parts throughout:
Provided are a method, system, and program for transferring data between an initiator node and target node. A request is received conforming to a first data transfer protocol at the initiator node to transmit to the target node. A reference to a memory location is obtained to use to transfer the request to the target node. At least one function is called that executes in a user address space of the initiator node, wherein the initiator node includes a kernel address space and the user address space. The at least one function executing in the user address space interfaces with an adaptor to transmit the request and reference to the memory location to the target node using a second data transfer protocol.
In the following description, reference is made to the accompanying drawings which form a part hereof and which illustrate several embodiments of the present invention. It is understood that other embodiments may be utilized and structural and operational changes may be made without departing from the scope of the present invention.
The nodes 2a, 2b . . . 2n in
An application 14 executes in the user space 10, where the application 14 comprises a user application, such as a database program, server program, etc. To perform an I/O operation, the application 14 would make a call to a SCSI layer 16 to generate a protocol data unit (PDU) comprising the I/O request, which in turn would make a call to an iSCSI layer 18, which in turn would call a function from the iSER library 20. Certain functions in the iSER library 20 would call an RNIC driver 22 executing in the kernel space 12, while others will invoke the RNIC directly from the user space 10. A RNIC 24 includes an RDMA layer 26 and network layers 28, such as a TCP layer, IP layer, and Ethernet layer, to package a packet in the transport layer for transmission over the network 4 or unpackage packets received from the network 4.
In certain embodiments, to perform I/O operations, the iSER functions called to handle the I/O request needs to register a memory location in memory 30 to use for the I/O operation. The application 14 may register a memory location, which includes memory regions and memory windows. The RNIC 24 may directly access the registered memory location (locally or locally and remotely) in a logically contiguous fashion. A defined memory location, such as a memory region or memory window, is identified by a steering tag (“STag”) created by the RNIC 24 and used to reference the registered memory location. In certain embodiments, a memory region or subset of a memory region referred to as a memory window may be registered, where a separate STag would be associated with each registered memory location (region or window). The RNIC 24 uses the STag to access the referenced memory location. In certain embodiments, the iSER functions in the iSER library would call the RNIC 22 to register the memory regions by calling an RNIC driver 22 executing in the kernel space 12. The RNIC driver 22 comprises the device driver to interface the operating system 8 with the RNIC adaptor 24. In response to the call from the function in the iSER library to declare and register a memory location, e.g., memory region or window, the RNIC driver 22 would call the RNIC 24. The RNIC Driver 22 (also sometimes called the “Verb” layer) along with the RDMA layer 26 in the RNIC 24 pins the memory location to register, such as memory regions (MRs) 32, and generates an STag for the memory region/window.
The RNIC 24 RDMA layer 26 maintains a memory translation table 34, and when registering a memory region/window, would add an entry to the memory translation table 34 identifying the registered memory region and the STag generated to reference that memory region to enable the RNIC 24 to associate the STag with the memory region. The memory translation table 34 may be maintained within buffers in the RNIC 24 or within the memory 30. The STags would be returned to the iSER functions requesting the registration to use for I/O operations.
After the RNIC 24 generates and returns STags to the iSER functions handling the I/O operation, the iSER functions may proceed with the I/O operation. The iSER functions would wrap the packet received from the iSCSI layer 18 with header information and the STag received from the RNIC 24 and pass the packet to the RNIC 24 to transfer. The iSER library 20 functions that interface with the RNIC 24 to perform the RDMA data transfer operation, execute in the user address space 10, thereby bypassing the RNIC driver 22 executing in the kernel space 12.
To manage RDMA data transfers, the RNIC 24 maintains a send queue 36, a receive queue 38, and a complete queue 40. The send queue 36 and receive queue 38 comprise the work queues that the RNIC 24 uses to manage RDMA data transfer requests. The complete queue 40 may comprise a sharable queue containing one or more entries having completion entries to provide a single point of completion notification for multiple work queues. The queues 36, 38, and 40 may be allocated by the RNIC 24 in the memory 30 or within buffers in the RNIC 24.
The target node upon receiving the iSER/iSCSI PDU, unpacks the underlying SCSI write. The target SCSI layer 16 will setup the buffers in memory for the data being written by the initiator and then return a request to the iSCSI layer to begin transmitting data. The target iSCSI layer would then package the request into an iSCSI header. The target iSER layer would intercept the iSCSI request from the target for the data to write and by extracting the STag from the iSER header will be able to issue RDMA Read commands that will cause the referenced data to be read from the Initiators memory. In certain embodiments, the target node iSER/RDMA calls may be entirely or partially included in the kernel address space. (Key of invention is initiator has to use the user space for the iSER, iSCSI, and SCSI functions.) After writing all the data from the initiator, the SCSI/iSCSI process on the target builds a Status PDU which describes the completion status of the SCSI operation, and uses iSER to send the PDU to the Initiator via an RDMA “Send-with-Invalidate” message (which contains the STag to be invalidated.)
In the described operations, the iSCSI layer 18 called functions in the iSER library 20. In alternative embodiments, other layers, such as the SCSI layer 16 or application 14, may build their own iSCSI PDUs and call the iSER layer 20 to implement SCSI read and write requests through RDMA calls made through the iSER library 20. Likewise, some applications may contain the function of the SCSI layer within their own code.
Further, the iSCSI layer 18 may invoke additional types of RDMA operations than those described above through calls to the iSER library 20 that are made through the user space 10, without the need to call the RNIC driver 22 executing in the kernel space 12. Yet further, the RNIC may return status and other information by invoking functions in the iSER library 20 executed in the user space 10, to return the status and messages to the iSCSI layer 18 without going through the kernel space 12.
The embodiments described herein may be implemented as a method, apparatus or article of manufacture using standard programming and/or engineering techniques to produce software, firmware, hardware, or any combination thereof. The term “article of manufacture” as used herein refers to code or logic implemented in hardware logic (e.g., an integrated circuit chip, Programmable Gate Array (PGA), Application Specific Integrated Circuit (ASIC), etc.) or a computer readable medium, such as magnetic storage medium (e.g., hard disk drives, floppy disks, tape, etc.), optical storage (CD-ROMs, optical disks, etc.), volatile and non-volatile memory devices (e.g., EEPROMs, ROMs, PROMs, RAMs, DRAMs, SRAMs, firmware, programmable logic, etc.). Code in the computer readable medium is accessed and executed by a processor. The code in which preferred embodiments are implemented may further be accessible through a transmission media or from a file server over a network. In such cases, the article of manufacture in which the code is implemented may comprise a transmission media, such as a network transmission line, wireless transmission media, signals propagating through space, radio waves, infrared signals, etc. Thus, the “article of manufacture” may comprise the medium in which the code is embodied. Additionally, the “article of manufacture” may comprise a combination of hardware and software components in which the code is embodied, processed, and executed. Of course, those skilled in the art will recognize that many modifications may be made to this configuration without departing from the scope of the present invention, and that the article of manufacture may comprise any information bearing medium known in the art.
The described operations may be performed by circuitry, where “circuitry” refers to either hardware or software or a combination thereof. The circuitry for performing the operations of the described embodiments may comprise a hardware device, such as an integrated circuit chip, Programmable Gate Array (PGA), Application Specific Integrated Circuit (ASIC), etc. The circuitry may also comprise a processor component, such as an integrated circuit, and code in a computer readable medium, such as memory, wherein the code is executed by the processor to perform the operations of the described embodiments.
In described embodiments, the iSER layer was used to implement the RDMA transfer capabilities through the user space 10 to perform iSCSI read and write operations. In additional embodiments, the iSCSI layer may invoke the iSER layer to perform RDMA transfer operations to perform operations other than read and write operations, such as for providing status, messages, etc.
In the described implementations, the physical layer utilized the Ethernet protocol. In alternative implementations, alternative protocols providing link-to-link checksumming/CRC (or other data protection techniques) of the packet may be used instead of Ethernet, such as Serial Advanced Technology Attachment (SATA), Infiniband, serial attached SCSI cable, etc.
In described implementations, the transport layer comprised the iSCSI protocol. In alternative implementations other protocols known in the art for transmitting I/O commands in packets and providing end-to-end checksumming/CRC (or other data protection techniques) may be used.
In the described implementations, the packaged I/O commands comprised SCSI commands. In alternative implementations, the commands may be in different I/O command formats than SCSI, such as Advanced Technology Attachment (ATA) commands.
In described embodiments, the iSCSI layer made calls to the iSER layer to access the RDMA data transfer capabilities through the user space. In additional embodiments, data transfer protocol layers other than iSCSI executing in the user space, such as an application or other data transfer protocols, may call the iSER layer directly to access RDMA data transfer capabilities.
The foregoing description of the implementations has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. It is intended that the scope of the invention be limited not by this detailed description, but rather by the claims appended hereto. The above specification, examples and data provide a complete description of the manufacture and use of the composition of the invention. Since many implementations of the invention can be made without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended.
Number | Name | Date | Kind |
---|---|---|---|
5495614 | Brent et al. | Feb 1996 | A |
6032224 | Blumenau | Feb 2000 | A |
6360282 | Langerman et al. | Mar 2002 | B1 |
6374248 | Nazari | Apr 2002 | B1 |
6490632 | Vepa et al. | Dec 2002 | B1 |
6721806 | Boyd et al. | Apr 2004 | B2 |
6947970 | Berry | Sep 2005 | B2 |
7003586 | Bailey et al. | Feb 2006 | B1 |
7043578 | Hufferd | May 2006 | B2 |
7089293 | Grosner et al. | Aug 2006 | B2 |
7103626 | Recio et al. | Sep 2006 | B1 |
7103744 | Garcia et al. | Sep 2006 | B2 |
7111147 | Strange et al. | Sep 2006 | B1 |
7171484 | Krause et al. | Jan 2007 | B1 |
7197588 | Tsao et al. | Mar 2007 | B2 |
7231430 | Brownell et al. | Jun 2007 | B2 |
7245627 | Goldenberg et al. | Jul 2007 | B2 |
7263568 | Shah et al. | Aug 2007 | B2 |
7299266 | Boyd et al. | Nov 2007 | B2 |
7350028 | Cameron et al. | Mar 2008 | B2 |
7398300 | Elzur | Jul 2008 | B2 |
7428730 | Mountain | Sep 2008 | B2 |
20020029281 | Zeidner et al. | Mar 2002 | A1 |
20020059309 | Loy et al. | May 2002 | A1 |
20020059451 | Haviv | May 2002 | A1 |
20020095547 | Watanabe et al. | Jul 2002 | A1 |
20020124137 | Ulrich et al. | Sep 2002 | A1 |
20030014544 | Pettey | Jan 2003 | A1 |
20030041211 | Merkey et al. | Feb 2003 | A1 |
20030046396 | Richter et al. | Mar 2003 | A1 |
20030058870 | Mizrachi et al. | Mar 2003 | A1 |
20030061402 | Yadav | Mar 2003 | A1 |
20030067913 | Georgiou et al. | Apr 2003 | A1 |
20030070043 | Merkey | Apr 2003 | A1 |
20030084209 | Chadalapaka | May 2003 | A1 |
20030084243 | Hoshina et al. | May 2003 | A1 |
20030099254 | Richter | May 2003 | A1 |
20030101239 | Ishizaki | May 2003 | A1 |
20030131228 | Twomey | Jul 2003 | A1 |
20030135514 | Patel et al. | Jul 2003 | A1 |
20030135692 | Noya et al. | Jul 2003 | A1 |
20030165160 | Minami et al. | Sep 2003 | A1 |
20030169690 | Mott | Sep 2003 | A1 |
20030172169 | Cheng | Sep 2003 | A1 |
20040034725 | Elzur | Feb 2004 | A1 |
20040073622 | McDaniel et al. | Apr 2004 | A1 |
20040093411 | Elzur et al. | May 2004 | A1 |
20040098369 | Elzur | May 2004 | A1 |
20040158651 | Fan et al. | Aug 2004 | A1 |
20040193833 | Hampton et al. | Sep 2004 | A1 |
20050027868 | Dodson et al. | Feb 2005 | A1 |
20050066046 | Chadalapaka | Mar 2005 | A1 |
20050114455 | Conroy et al. | May 2005 | A1 |
20050226248 | Modi et al. | Oct 2005 | A1 |
20050240678 | Hufferd et al. | Oct 2005 | A1 |
Number | Date | Country |
---|---|---|
10257162 | Sep 1998 | JP |
WO 02096028 | Nov 2002 | WO |
03104943 | Dec 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20050240941 A1 | Oct 2005 | US |