Not applicable.
Not applicable.
A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or patent disclosure as it appears in the Patent and Trademark Office, patent file or records, but otherwise reserves all copyright rights whatsoever.
One or more embodiments of the invention generally relate to input/output platforms. More particularly, the invention relates to proximity detection devices for enhancing a graphical user interface on an input/output platform.
The following background information may present examples of specific aspects of the prior art (e.g., without limitation, approaches, facts, or common wisdom) that, while expected to be helpful to further educate the reader as to additional aspects of the prior art, is not to be construed as limiting the present invention, or any embodiments thereof, to anything stated or implied therein or inferred thereupon.
Myriad input devices for performing operations in an electronic system exist. The input process generally requires moving a cursor and making selections on a display screen. Input devices include buttons, switches, keyboards, mice, trackballs, touch pads, joy sticks, and touch screens. Each of these devices has advantages and disadvantages that are taken into account when designing the I/O platform.
A proximity sensor is a sensor capable of detecting the presence of nearby objects without any physical contact. A proximity sensor often emits an electromagnetic field or a beam of electromagnetic radiation (infrared, for instance), and looks for changes in the field or return signal. The object being sensed is often referred to as the proximity sensor's target, and most often is a finger or a small rod attached to a portable electronic device.
There are continuing efforts to improve the form, feel, and functionality of these devices. In view of the foregoing, it is clear that these traditional techniques are not perfect and leave room for more optimal approaches.
The present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:
Unless otherwise indicated illustrations in the figures are not necessarily drawn to scale.
The present invention is best understood by reference to the detailed figures and description set forth herein.
Embodiments of the invention are discussed below with reference to the Figures. However, those skilled in the art will readily appreciate that the detailed description given herein with respect to these figures is for explanatory purposes as the invention extends beyond these limited embodiments. For example, it should be appreciated that those skilled in the art will, in light of the teachings of the present invention, recognize a multiplicity of alternate and suitable approaches, depending upon the needs of the particular application, to implement the functionality of any given detail described herein, beyond the particular implementation choices in the following embodiments described and shown. That is, there are numerous modifications and variations of the invention that are too numerous to be listed but that all fit within the scope of the invention. Also, singular words should be read as plural and vice versa and masculine as feminine and vice versa, where appropriate, and alternative embodiments do not necessarily imply that the two are mutually exclusive.
It is to be further understood that the present invention is not limited to the particular methodology, compounds, materials, manufacturing techniques, uses, and applications, described herein, as these may vary. It is also to be understood that the terminology used herein is used for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention. It must be noted that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include the plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to “an element” is a reference to one or more elements and includes equivalents thereof known to those skilled in the art. Similarly, for another example, a reference to “a step” or “a means” is a reference to one or more steps or means and may include sub-steps and subservient means. All conjunctions used are to be understood in the most inclusive sense possible. Thus, the word “or” should be understood as having the definition of a logical “or” rather than that of a logical “exclusive or” unless the context clearly necessitates otherwise. Structures described herein are to be understood also to refer to functional equivalents of such structures. Language that may be construed to express approximation should be so understood unless the context clearly dictates otherwise.
Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Preferred methods, techniques, devices, and materials are described, although any methods, techniques, devices, or materials similar or equivalent to those described herein may be used in the practice or testing of the present invention. Structures described herein are to be understood also to refer to functional equivalents of such structures. The present invention will now be described in detail with reference to embodiments thereof as illustrated in the accompanying drawings.
From reading the present disclosure, other variations and modifications will be apparent to persons skilled in the art. Such variations and modifications may involve equivalent and other features which are already known in the art, and which may be used instead of or in addition to features already described herein.
Although Claims have been formulated in this application to particular combinations of features, it should be understood that the scope of the disclosure of the present invention also includes any novel feature or any novel combination of features disclosed herein either explicitly or implicitly or any generalization thereof, whether or not it relates to the same invention as presently claimed in any Claim and whether or not it mitigates any or all of the same technical problems as does the present invention.
Features which are described in the context of separate embodiments may also be provided in combination in a single embodiment. Conversely, various features which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination. The Applicants hereby give notice that new Claims may be formulated to such features and/or combinations of such features during the prosecution of the present application or of any further application derived therefrom.
References to “one embodiment,” “an embodiment,” “example embodiment,” “various embodiments,” etc., may indicate that the embodiment(s) of the invention so described may include a particular feature, structure, or characteristic, but not every embodiment necessarily includes the particular feature, structure, or characteristic. Further, repeated use of the phrase “in one embodiment,” or “in an exemplary embodiment,” do not necessarily refer to the same embodiment, although they may.
Headings provided herein are for convenience and are not to be taken as limiting the disclosure in any way.
The enumerated listing of items does not imply that any or all of the items are mutually exclusive, unless expressly specified otherwise.
The terms “a”, “an” and “the” mean “one or more”, unless expressly specified otherwise.
Devices that are in communication with each other need not be in continuous communication with each other, unless expressly specified otherwise. In addition, devices that are in communication with each other may communicate directly or indirectly through one or more intermediaries.
A description of an embodiment with several components in communication with each other does not imply that all such components are required. On the contrary a variety of optional components are described to illustrate the wide variety of possible embodiments of the present invention.
As is well known to those skilled in the art many careful considerations and compromises typically must be made when designing for the optimal manufacture of a commercial implementation any system, and in particular, the embodiments of the present invention. A commercial implementation in accordance with the spirit and teachings of the present invention may configured according to the needs of the particular application, whereby any aspect(s), feature(s), function(s), result(s), component(s), approach(es), or step(s) of the teachings related to any described embodiment of the present invention may be suitably omitted, included, adapted, mixed and matched, or improved and/or optimized by those skilled in the art, using their average skills and known techniques, to achieve the desired implementation that addresses the needs of the particular application.
A “computer” may refer to one or more apparatus and/or one or more systems that are capable of accepting a structured input, processing the structured input according to prescribed rules, and producing results of the processing as output. Examples of a computer may include: a computer; a stationary and/or portable computer; a computer having a single processor, multiple processors, or multi-core processors, which may operate in parallel and/or not in parallel; a general purpose computer; a supercomputer; a mainframe; a super mini-computer; a mini-computer; a workstation; a micro-computer; a server; a client; an interactive television; a web appliance; a telecommunications device with internet access; a hybrid combination of a computer and an interactive television; a portable computer; a tablet personal computer (PC); a personal digital assistant (PDA); a portable telephone; application-specific hardware to emulate a computer and/or software, such as, for example, a digital signal processor (DSP), a field-programmable gate array (FPGA), an application specific integrated circuit (ASIC), an application specific instruction-set processor (ASIP), a chip, chips, a system on a chip, or a chip set; a data acquisition device; an optical computer; a quantum computer; a biological computer; and generally, an apparatus that may accept data, process data according to one or more stored software programs, generate results, and typically include input, output, storage, arithmetic, logic, and control units.
Those of skill in the art will appreciate that where appropriate, some embodiments of the disclosure may be practiced in network computing environments with many types of computer system configurations, including personal computers, hand-held devices, multi-processor systems, microprocessor-based or programmable consumer electronics, network PCs, minicomputers, mainframe computers, and the like. Where appropriate, embodiments may also be practiced in distributed computing environments where tasks are performed by local and remote processing devices that are linked (either by hardwired links, wireless links, or by a combination thereof) through a communications network. In a distributed computing environment, program modules may be located in both local and remote memory storage devices.
“Software” may refer to prescribed rules to operate a computer. Examples of software may include: code segments in one or more computer-readable languages; graphical and or/textual instructions; applets; pre-compiled code; interpreted code; compiled code; and computer programs.
The example embodiments described herein can be implemented in an operating environment comprising computer-executable instructions (e.g., software) installed on a computer, in hardware, or in a combination of software and hardware. The computer-executable instructions can be written in a computer programming language or can be embodied in firmware logic. If written in a programming language conforming to a recognized standard, such instructions can be executed on a variety of hardware platforms and for interfaces to a variety of operating systems. Although not limited thereto, computer software program code for carrying out operations for aspects of the present invention can be written in any combination of one or more suitable programming languages, including an object oriented programming languages and/or conventional procedural programming languages, and/or programming languages such as, for example, Hyper text Markup Language (HTML), Dynamic HTML, Extensible Markup Language (XML), Extensible Stylesheet Language (XSL), Document Style Semantics and Specification Language (DSSSL), Cascading Style Sheets (CSS), Synchronized Multimedia Integration Language (SMIL), Wireless Markup Language (WML), Java™, Jini™, C, C++, Smalltalk, Perl, UNIX Shell, Visual Basic or Visual Basic Script, Virtual Reality Markup Language (VRML), ColdFusion™ or other compilers, assemblers, interpreters or other computer languages or platforms.
Computer program code for carrying out operations for aspects of the present invention may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
A network is a collection of links and nodes (e.g., multiple computers and/or other devices connected together) arranged so that information may be passed from one part of the network to another over multiple links and through various nodes. Examples of networks include the Internet, the public switched telephone network, the global Telex network, computer networks (e.g., an intranet, an extranet, a local-area network, or a wide-area network), wired networks, and wireless networks.
The Internet is a worldwide network of computers and computer networks arranged to allow the easy and robust exchange of information between computer users. Hundreds of millions of people around the world have access to computers connected to the Internet via Internet Service Providers (ISPs). Content providers (e.g., website owners or operators) place multimedia information (e.g., text, graphics, audio, video, animation, and other forms of data) at specific locations on the Internet referred to as webpages. Websites comprise a collection of connected, or otherwise related, webpages. The combination of all the websites and their corresponding webpages on the Internet is generally known as the World Wide Web (WWW) or simply the Web.
Aspects of the present invention are described below with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
The flowchart and block diagrams in the figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.
Further, although process steps, method steps, algorithms or the like may be described in a sequential order, such processes, methods and algorithms may be configured to work in alternate orders. In other words, any sequence or order of steps that may be described does not necessarily indicate a requirement that the steps be performed in that order. The steps of processes described herein may be performed in any order practical. Further, some steps may be performed simultaneously.
It will be readily apparent that the various methods and algorithms described herein may be implemented by, e.g., appropriately programmed general purpose computers and computing devices. Typically a processor (e.g., a microprocessor) will receive instructions from a memory or like device, and execute those instructions, thereby performing a process defined by those instructions. Further, programs that implement such methods and algorithms may be stored and transmitted using a variety of known media.
When a single device or article is described herein, it will be readily apparent that more than one device/article (whether or not they cooperate) may be used in place of a single device/article. Similarly, where more than one device or article is described herein (whether or not they cooperate), it will be readily apparent that a single device/article may be used in place of the more than one device or article.
The functionality and/or the features of a device may be alternatively embodied by one or more other devices which are not explicitly described as having such functionality/features. Thus, other embodiments of the present invention need not include the device itself.
The term “computer-readable medium” as used herein refers to any medium that participates in providing data (e.g., instructions) which may be read by a computer, a processor or a like device. Such a medium may take many forms, including but not limited to, non-volatile media, volatile media, and transmission media. Non-volatile media include, for example, optical or magnetic disks and other persistent memory. Volatile media include dynamic random access memory (DRAM), which typically constitutes the main memory. Transmission media include coaxial cables, copper wire and fiber optics, including the wires that comprise a system bus coupled to the processor. Transmission media may include or convey acoustic waves, light waves and electromagnetic emissions, such as those generated during radio frequency (RF) and infrared (IR) data communications. Common forms of computer-readable media include, for example, a floppy disk, a flexible disk, hard disk, magnetic tape, any other magnetic medium, a CD-ROM, DVD, any other optical medium, punch cards, paper tape, any other physical medium with patterns of holes, a RAM, a PROM, an EPROM, a FLASH-EEPROM, any other memory chip or cartridge, a carrier wave as described hereinafter, or any other medium from which a computer can read.
Various forms of computer readable media may be involved in carrying sequences of instructions to a processor. For example, sequences of instruction (i) may be delivered from RAM to a processor, (ii) may be carried over a wireless transmission medium, and/or (iii) may be formatted according to numerous formats, standards or protocols, such as Bluetooth, TDMA, CDMA, 3G.
Where databases are described, it will be understood by one of ordinary skill in the art that (i) alternative database structures to those described may be readily employed, (ii) other memory structures besides databases may be readily employed. Any schematic illustrations and accompanying descriptions of any sample databases presented herein are exemplary arrangements for stored representations of information. Any number of other arrangements may be employed besides those suggested by the tables shown. Similarly, any illustrated entries of the databases represent exemplary information only; those skilled in the art will understand that the number and content of the entries can be different from those illustrated herein. Further, despite any depiction of the databases as tables, an object-based model could be used to store and manipulate the data types of the present invention and likewise, object methods or behaviors can be used to implement the processes of the present invention.
A “computer system” may refer to a system having one or more computers, where each computer may include a computer-readable medium embodying software to operate the computer or one or more of its components. Examples of a computer system may include: a distributed computer system for processing information via computer systems linked by a network; two or more computer systems connected together via a network for transmitting and/or receiving information between the computer systems; a computer system including two or more processors within a single computer; and one or more apparatuses and/or one or more systems that may accept data, may process data in accordance with one or more stored software programs, may generate results, and typically may include input, output, storage, arithmetic, logic, and control units.
A “network” may refer to a number of computers and associated devices that may be connected by communication facilities. A network may involve permanent connections such as cables or temporary connections such as those made through telephone or other communication links. A network may further include hard-wired connections (e.g., coaxial cable, twisted pair, optical fiber, waveguides, etc.) and/or wireless connections (e.g., radio frequency waveforms, free-space optical waveforms, acoustic waveforms, etc.). Examples of a network may include: an internet, such as the Internet; an intranet; a local area network (LAN); a wide area network (WAN); and a combination of networks, such as an internet and an intranet.
As used herein, the “client-side” application should be broadly construed to refer to an application, a page associated with that application, or some other resource or function invoked by a client-side request to the application. A “browser” as used herein is not intended to refer to any specific browser (e.g., Internet Explorer, Safari, FireFox, or the like), but should be broadly construed to refer to any client-side rendering engine that can access and display Internet-accessible resources. A “rich” client typically refers to a non-HTTP based client-side application, such as an SSH or CFIS client. Further, while typically the client-server interactions occur using HTTP, this is not a limitation either. The client server interaction may be formatted to conform to the Simple Object Access Protocol (SOAP) and travel over HTTP (over the public Internet), FTP, or any other reliable transport mechanism (such as IBM®. MQSeries®. technologies and CORBA, for transport over an enterprise intranet) may be used. Any application or functionality described herein may be implemented as native code, by providing hooks into another application, by facilitating use of the mechanism as a plug-in, by linking to the mechanism, and the like.
Exemplary networks may operate with any of a number of protocols, such as Internet protocol (IP), asynchronous transfer mode (ATM), and/or synchronous optical network (SONET), user datagram protocol (UDP), IEEE 802.x, etc.
Embodiments of the present invention may include apparatuses for performing the operations disclosed herein. An apparatus may be specially constructed for the desired purposes, or it may comprise a general-purpose device selectively activated or reconfigured by a program stored in the device.
Embodiments of the invention may also be implemented in one or a combination of hardware, firmware, and software. They may be implemented as instructions stored on a machine-readable medium, which may be read and executed by a computing platform to perform the operations described herein.
More specifically, as will be appreciated by one skilled in the art, aspects of the present invention may be embodied as a system, method or computer program product. Accordingly, aspects of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” Furthermore, aspects of the present invention may take the form of a computer program product embodied in one or more computer readable medium(s) having computer readable program code embodied thereon.
In the following description and claims, the terms “computer program medium” and “computer readable medium” may be used to generally refer to media such as, but not limited to, removable storage drives, a hard disk installed in hard disk drive, and the like. These computer program products may provide software to a computer system. Embodiments of the invention may be directed to such computer program products.
An algorithm is here, and generally, considered to be a self-consistent sequence of acts or operations leading to a desired result. These include physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers or the like. It should be understood, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities.
Unless specifically stated otherwise, and as may be apparent from the following description and claims, it should be appreciated that throughout the specification descriptions utilizing terms such as “processing,” “computing,” “calculating,” “determining,” or the like, refer to the action and/or processes of a computer or computing system, or similar electronic computing device, that manipulate and/or transform data represented as physical, such as electronic, quantities within the computing system's registers and/or memories into other data similarly represented as physical quantities within the computing system's memories, registers or other such information storage, transmission or display devices.
In a similar manner, the term “processor” may refer to any device or portion of a device that processes electronic data from registers and/or memory to transform that electronic data into other electronic data that may be stored in registers and/or memory. A “computing platform” may comprise one or more processors.
Embodiments within the scope of the present disclosure may also include tangible and/or non-transitory computer-readable storage media for carrying or having computer-executable instructions or data structures stored thereon. Such non-transitory computer-readable storage media can be any available media that can be accessed by a general purpose or special purpose computer, including the functional design of any special purpose processor as discussed above. By way of example, and not limitation, such non-transitory computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to carry or store desired program code means in the form of computer-executable instructions, data structures, or processor chip design. When information is transferred or provided over a network or another communications connection (either hardwired, wireless, or combination thereof) to a computer, the computer properly views the connection as a computer-readable medium. Thus, any such connection is properly termed a computer-readable medium. Combinations of the above should also be included within the scope of the computer-readable media.
While a non-transitory computer readable medium includes, but is not limited to, a hard drive, compact disc, flash memory, volatile memory, random access memory, magnetic memory, optical memory, semiconductor based memory, phase change memory, optical memory, periodically refreshed memory, and the like; the non-transitory computer readable medium, however, does not include a pure transitory signal per se; i.e., where the medium itself is transitory.
In one embodiment, a proximity detector device 100 may include numerous sensors 115 for detecting position and movement of an input device 105. The sensors 115 may include, without limitation, optical, infrared, capacitive, electric field, inductive, hall effect, reed, eddy current, magneto resistive, optical shadow, optical visual light, optical color recognition, ultrasonic, acoustic emission, radar, heat, sonar, conductive or resistive and the like. The sensors 115 may generate a sensing field above the interface surface 110. When the sensing field is disturbed, a processor 120 may enhance graphical elements 125 in the interface surface 110.
In one embodiment, a graphical element 125 in an interface surface 110 may be enhanced when a sensor 115 senses an input device 105 in close proximity, but not touching, the interface surface 110. The graphical element 125 may be in any form, including, without limitation, text, photos, and tool bars in a window. Enhancements may include, without limitation, increased dimensions, targeted increased dimensions for graphical elements 125 in a desired section of the interface surface 110 while other graphical elements in other sections shrink, movement of graphical interface elements that are not in the desired section of the interface surface 110, overlapping graphical elements, and highlighting graphical elements with color. Enhancements may also include exposition of new UI layer or frame. For example, an enhanced version of a user interface part may include, without limitation, enlarged elements shown before and additional elements that were not shown, but may be shown in a detailed view. An enhancement may also include, without limitation, a sequence of enhancements based on proximity data. For example, if an input device 105 moves closer to an interface surface 110, more user interface elements may be shown.
In some embodiments, input devices 105 may be in the form of, without limitation, buttons, switches, dials, sliders, keys or keypads, navigation pads, touch pads, touch screens, and the like. Input devices 105 may generate a “fish eye” effect on the interface surface 110 to enlarge a portion of the interface surface 110. For example, without limitation, the fish eye can be circular, rectangular, triangular, or any shape conducive to enhancing a graphical element 125 of the interface surface 110. Other embodiments may highlight a portion of the interface surface 110 with a color.
In further embodiments, the input device 105 may be used in conjunction with other input devices to create a new, synergetic input effect that may have more varied results than when multiple inputs may be used individually. For example, without limitation, when using a touch device along with a proximity detection device, advanced gestures may be performed that may combine proximity gestures along with touch gestures. In other variant embodiments, multiple input devices, including, without limitation, a stylus and a scroller, may be used simultaneously on the interface surface 110.
Those skilled in the art will readily recognize, in light of and in accordance with the teachings of the present invention, that any of the foregoing steps and/or system modules may be suitably replaced, reordered, removed and additional steps and/or system modules may be inserted depending upon the needs of the particular application, and that the systems of the foregoing embodiments may be implemented using any of a wide variety of suitable processes and system modules, and is not limited to any particular computer hardware, software, middleware, firmware, microcode and the like. For any method steps described in the present application that can be carried out on a computing machine, a typical computer system can, when appropriately configured or designed, serve as a computer system in which those aspects of the invention may be embodied.
A communication system 300 includes a multiplicity of clients with a sampling of clients denoted as a client 302 and a client 304, a multiplicity of local networks with a sampling of networks denoted as a local network 306 and a local network 308, a global network 310 and a multiplicity of servers with a sampling of servers denoted as a server 312 and a server 314.
Client 302 may communicate bi-directionally with local network 306 via a communication channel 316. Client 304 may communicate bi-directionally with local network 308 via a communication channel 318. Local network 306 may communicate bi-directionally with global network 310 via a communication channel 320. Local network 308 may communicate bi-directionally with global network 310 via a communication channel 322. Global network 310 may communicate bi-directionally with server 312 and server 314 via a communication channel 324. Server 312 and server 314 may communicate bi-directionally with each other via communication channel 324. Furthermore, clients 302, 304, local networks 306, 308, global network 310 and servers 312, 314 may each communicate bi-directionally with each other.
In one embodiment, global network 310 may operate as the Internet. It will be understood by those skilled in the art that communication system 300 may take many different forms. Non-limiting examples of forms for communication system 300 include local area networks (LANs), wide area networks (WANs), wired telephone networks, wireless networks, or any other network supporting data communication between respective entities.
Clients 302 and 304 may take many different forms. Non-limiting examples of clients 302 and 304 include personal computers, personal digital assistants (PDAs), cellular phones and smartphones.
Client 302 includes a CPU 326, a pointing device 328, a keyboard 330, a microphone 332, a printer 334, a memory 336, a mass memory storage 338, a GUI 340, a video camera 342, an input/output interface 344 and a network interface 346.
CPU 326, pointing device 328, keyboard 330, microphone 332, printer 334, memory 336, mass memory storage 338, GUI 340, video camera 342, input/output interface 344 and network interface 346 may communicate in a unidirectional manner or a bi-directional manner with each other via a communication channel 348. Communication channel 348 may be configured as a single communication channel or a multiplicity of communication channels.
CPU 326 may be comprised of a single processor or multiple processors. CPU 326 may be of various types including micro-controllers (e.g., with embedded RAM/ROM) and microprocessors such as programmable devices (e.g., RISC or SISC based, or CPLDs and FPGAs) and devices not capable of being programmed such as gate array ASICs (Application Specific Integrated Circuits) or general purpose microprocessors.
As is well known in the art, memory 336 is used typically to transfer data and instructions to CPU 326 in a bi-directional manner. Memory 336, as discussed previously, may include any suitable computer-readable media, intended for data storage, such as those described above excluding any wired or wireless transmissions unless specifically noted. Mass memory storage 338 may also be coupled bi-directionally to CPU 326 and provides additional data storage capacity and may include any of the computer-readable media described above. Mass memory storage 338 may be used to store programs, data and the like and is typically a secondary storage medium such as a hard disk. It will be appreciated that the information retained within mass memory storage 338, may, in appropriate cases, be incorporated in standard fashion as part of memory 336 as virtual memory.
CPU 326 may be coupled to GUI 340. GUI 340 enables a user to view the operation of computer operating system and software. CPU 326 may be coupled to pointing device 328. Non-limiting examples of pointing device 328 include computer mouse, trackball and touchpad. Pointing device 328 enables a user with the capability to maneuver a computer cursor about the viewing area of GUI 340 and select areas or features in the viewing area of GUI 340. CPU 326 may be coupled to keyboard 330. Keyboard 330 enables a user with the capability to input alphanumeric textual information to CPU 326. CPU 326 may be coupled to microphone 332. Microphone 332 enables audio produced by a user to be recorded, processed and communicated by CPU 326. CPU 326 may be connected to printer 334. Printer 334 enables a user with the capability to print information to a sheet of paper. CPU 326 may be connected to video camera 342. Video camera 342 enables video produced or captured by user to be recorded, processed and communicated by CPU 326.
CPU 326 may also be coupled to input/output interface 344 that connects to one or more input/output devices such as such as CD-ROM, video monitors, track balls, mice, keyboards, microphones, touch-sensitive displays, transducer card readers, magnetic or paper tape readers, tablets, styluses, voice or handwriting recognizers, or other well-known input devices such as, of course, other computers.
Finally, CPU 326 optionally may be coupled to network interface 346 which enables communication with an external device such as a database or a computer or telecommunications or internet network using an external connection shown generally as communication channel 316, which may be implemented as a hardwired or wireless communications link using suitable conventional technologies. With such a connection, CPU 326 might receive information from the network, or might output information to a network in the course of performing the method steps described in the teachings of the present invention.
A communication system 400 includes a multiplicity of networked regions with a sampling of regions denoted as a network region 402 and a network region 404, a global network 406 and a multiplicity of servers with a sampling of servers denoted as a server device 408 and a server device 410.
Network region 402 and network region 404 may operate to represent a network contained within a geographical area or region. Non-limiting examples of representations for the geographical areas for the networked regions may include postal zip codes, telephone area codes, states, counties, cities and countries. Elements within network region 402 and 404 may operate to communicate with external elements within other networked regions or within elements contained within the same network region.
In some implementations, global network 406 may operate as the Internet. It will be understood by those skilled in the art that communication system 400 may take many different forms. Non-limiting examples of forms for communication system 400 include local area networks (LANs), wide area networks (WANs), wired telephone networks, cellular telephone networks or any other network supporting data communication between respective entities via hardwired or wireless communication networks. Global network 406 may operate to transfer information between the various networked elements.
Server device 408 and server device 410 may operate to execute software instructions, store information, support database operations and communicate with other networked elements. Non-limiting examples of software and scripting languages which may be executed on server device 408 and server device 410 include C, C++, C# and Java.
Network region 402 may operate to communicate bi-directionally with global network 406 via a communication channel 412. Network region 404 may operate to communicate bi-directionally with global network 406 via a communication channel 414. Server device 408 may operate to communicate bi-directionally with global network 406 via a communication channel 416. Server device 410 may operate to communicate bi-directionally with global network 406 via a communication channel 418. Network region 402 and 404, global network 406 and server devices 408 and 410 may operate to communicate with each other and with every other networked device located within communication system 400.
Server device 408 includes a networking device 420 and a server 422. Networking device 420 may operate to communicate bi-directionally with global network 406 via communication channel 416 and with server 422 via a communication channel 424. Server 422 may operate to execute software instructions and store information.
Network region 402 includes a multiplicity of clients with a sampling denoted as a client 426 and a client 428. Client 426 includes a networking device 434, a processor 436, a GUI 438 and an interface device 440. Non-limiting examples of devices for GUI 438 include monitors, televisions, cellular telephones, smartphones and PDAs (Personal Digital Assistants). Non-limiting examples of interface device 440 include pointing device, mouse, trackball, scanner and printer. Networking device 434 may communicate bi-directionally with global network 406 via communication channel 412 and with processor 436 via a communication channel 442. GUI 438 may receive information from processor 436 via a communication channel 444 for presentation to a user for viewing. Interface device 440 may operate to send control information to processor 436 and to receive information from processor 436 via a communication channel 446. Network region 404 includes a multiplicity of clients with a sampling denoted as a client 430 and a client 432. Client 430 includes a networking device 448, a processor 450, a GUI 452 and an interface device 454. Non-limiting examples of devices for GUI 438 include monitors, televisions, cellular telephones, smartphones and PDAs (Personal Digital Assistants). Non-limiting examples of interface device 440 include pointing devices, mousse, trackballs, scanners and printers. Networking device 448 may communicate bi-directionally with global network 406 via communication channel 414 and with processor 450 via a communication channel 456. GUI 452 may receive information from processor 450 via a communication channel 458 for presentation to a user for viewing. Interface device 454 may operate to send control information to processor 450 and to receive information from processor 450 via a communication channel 460.
For example, consider the case where a user interfacing with client 426 may want to execute a networked application. A user may enter the IP (Internet Protocol) address for the networked application using interface device 440. The IP address information may be communicated to processor 436 via communication channel 446. Processor 436 may then communicate the IP address information to networking device 434 via communication channel 442. Networking device 434 may then communicate the IP address information to global network 406 via communication channel 412. Global network 406 may then communicate the IP address information to networking device 420 of server device 408 via communication channel 416. Networking device 420 may then communicate the IP address information to server 422 via communication channel 424. Server 422 may receive the IP address information and after processing the IP address information may communicate return information to networking device 420 via communication channel 424. Networking device 420 may communicate the return information to global network 406 via communication channel 416. Global network 406 may communicate the return information to networking device 434 via communication channel 412. Networking device 434 may communicate the return information to processor 436 via communication channel 442. Processor 446 may communicate the return information to GUI 448 via communication channel 444. User may then view the return information on GUI 438.
All the features disclosed in this specification, including any accompanying abstract and drawings, may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise. Thus, unless expressly stated otherwise, each feature disclosed is one example only of a generic series of equivalent or similar features.
Having fully described at least one embodiment of the present invention, other equivalent or alternative methods of implementing input/output platforms according to the present invention will be apparent to those skilled in the art. Various aspects of the invention have been described above by way of illustration, and the specific embodiments disclosed are not intended to limit the invention to the particular forms disclosed. The particular implementation of the input/output platforms may vary depending upon the particular context or application. By way of example, and not limitation, the input/output platforms described in the foregoing were principally directed to graphical user interface implementations; however, similar techniques may instead be applied to any sensory devices, which implementations of the present invention are contemplated as within the scope of the present invention. The invention is thus to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the following claims. It is to be further understood that not all of the disclosed embodiments in the foregoing specification will necessarily satisfy or achieve each of the objects, advantages, or improvements described in the foregoing specification.
Claim elements and steps herein may have been numbered and/or lettered solely as an aid in readability and understanding. Any such numbering and lettering in itself is not intended to and should not be taken to indicate the ordering of elements and/or steps in the claims.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed.
The Abstract is provided to comply with 37 C.F.R. Section 1.72(b) requiring an abstract that will allow the reader to ascertain the nature and gist of the technical disclosure. It is submitted with the understanding that it will not be used to limit or interpret the scope or meaning of the claims. The following claims are hereby incorporated into the detailed description, with each claim standing on its own as a separate embodiment.
The present Utility patent application claims priority benefit of the U.S. provisional application for patent Ser. No. 61/623,496 entitled “Proximity Detection Enhancement Device, filed on 12 Apr. 2012 under 35 U.S.C. 119(e). The contents of this related provisional application are incorporated herein by reference for all purposes to the extent that such subject matter is not inconsistent herewith or limiting hereof.
Number | Date | Country | |
---|---|---|---|
61623496 | Apr 2012 | US |