These and other features of this invention will be more readily understood from the following detailed description of the various aspects of the invention taken in conjunction with the accompanying drawings in which:
The drawings are not necessarily to scale. The drawings are merely schematic representations, not intended to portray specific parameters of the invention. The drawings are intended to depict only typical embodiments of the invention, and therefore should not be considered as limiting the scope of the invention. In the drawings, like numbering represents like elements.
For convenience, the Detailed Description of the Invention has the following sections:
I. General Description
II. Computerized Implementation
The present invention provides a method, system, and program product for modeling processes such as business processes. Specifically, under the present invention, a process having multiple variations is modeled as a placeholder process, and is associated with an annotation that maps the multiple variations to different contexts of the placeholder process. Thereafter, process variations can be generated based on the different contexts of the placeholder process. Integrity checks can also be performed to determine if any of the process variations has an error so that the generation of any corresponding process will be prevented.
Referring now to
As will be further described below, the variations of a process are typically differentiated by the data sets they input and/or export. That is, one variation of the process might receive input data set D1, while the other variation might receive input data set D2. To this extent, placeholder process 22 is similar to a normal process from the outside in that it has defined inputs and outputs. However, placeholder process 22 does not have an implementation (e.g., what is inside P1.2.2 is not formally defined). As such, the actual process for P1.2.2 is defined by its variations. This is further illustrated in
Another feature of the present invention is generation of a process for a context. This is illustrated in
Referring to
Referring to
Among other advantages, this invention avoids the necessity of duplicating the processes up a process tree as described; it avoids the management and maintenance issues as described above; it presents a much better user experience than the previous approaches where business users in one context would see process variations of all contexts; the generated business processes for a context is now syntactically correct and potentially can run through simulation; the generated business processes for a context would allow the potential of generating to process flow runtime (e.g. BPEL) for execution and UML artifacts for implementation; the ability to generate business processes for a new context is provided by adding context to variation mapping information to the model; etc.
Referring now to
As shown, computer system 104 includes a processing unit 106, a memory 108, a bus 110, and input/output (I/O) interfaces 112. Further, computer system 104 is shown in communication with external I/O devices/resources 114 and storage system 116. In general, processing unit 106 executes computer program code, such as process system 120, which is stored in memory 108 and/or storage system 116. While executing computer program code, processing unit 106 can read and/or write data to/from memory 108, storage system 116, and/or I/O interfaces 112. Bus 110 provides a communication link between each of the components in computer system 104. External devices 114 can comprise any devices (e.g., keyboard, pointing device, display, etc.) that enable a user to interact with computer system 104 and/or any devices (e.g., network card, modem, etc.) that enable computer system 104 to communicate with one or more other computing devices.
Computerized implementation 102 is only illustrative of various types of computer infrastructures for implementing the invention. For example, in one embodiment, computer implementation 102 comprises two or more computing devices (e.g., a server cluster) that communicate over a network to perform the various process steps of the invention. Moreover, computer system 104 is only representative of various possible computer systems that can include numerous combinations of hardware. To this extent, in other embodiments, computer system 104 can comprise any specific purpose computing article of manufacture comprising hardware and/or computer program code for performing specific functions, any computing article of manufacture that comprises a combination of specific purpose and general purpose hardware/software, or the like. In each case, the program code and hardware can be created using standard programming and engineering techniques, respectively. Moreover, processing unit 106 may comprise a single processing unit, or be distributed across one or more processing units in one or more locations, e.g., on a client and server. Similarly, memory 108 and/or storage system 116 can comprise any combination of various types of data storage and/or transmission media that reside at one or more physical locations. Further, I/O interfaces 112 can comprise any system for exchanging information with one or more external interfaces 114. Still further, it is understood that one or more additional components (e.g., system software, math co-processing unit, etc.) not shown in
Storage system 116 can be any type of system (e.g., a database) capable of providing storage for information under the present invention. To this extent, storage system 116 could include one or more storage devices, such as a magnetic disk drive or an optical disk drive. In another embodiment, storage system 116 includes data distributed across, for example, a local area network (LAN), wide area network (WAN) or a storage area network (SAN) (not shown). In addition, although not shown, additional components, such as cache memory, communication systems, system software, etc., may be incorporated into computer system 104.
Shown in memory 108 of computer system 104 is process system 120, which includes a modeler tool 52, a mapping tool 54, and a generator 58. These systems perform the functions of the present invention as discussed above. Specifically, modeler tool 52 for is for modeling processes such as process 122 that allow the above methodology in specifying placeholder process 22 (
While shown and described herein as a method and system for modeling processes, it is understood that the invention further provides various alternative embodiments. For example, in one embodiment, the invention provides a computer-readable/useable medium that includes computer program code to enable a computer infrastructure to control access to personal attributes across enterprise domains. To this extent, the computer-readable/useable medium includes program code that implements each of the various process steps of the invention. It is understood that the terms computer-readable medium or computer useable medium comprises one or more of any type of physical embodiment of the program code. In particular, the computer-readable/useable medium can comprise program code embodied on one or more portable storage articles of manufacture (e.g., a compact disc, a magnetic disk, a tape, etc.), on one or more data storage portions of a computing device, such as memory 108 (
In another embodiment, the invention provides a business method that performs the process steps of the invention on a subscription, advertising, and/or fee basis. That is, a service provider, such as a Solution Integrator, could offer to model processes. In this case, the service provider can create, maintain, support, etc., a computer infrastructure, such as computer implementation 102 (
In still another embodiment, the invention provides a computer-implemented method for modeling processes. In this case, a computer infrastructure, such as computer implementation 102 (
As used herein, it is understood that the terms “program code” and “computer program code” are synonymous and mean any expression, in any language, code or notation, of a set of instructions intended to cause a computing device having an information processing capability to perform a particular function either directly or after either or both of the following: (a) conversion to another language, code or notation; and/or (b) reproduction in a different material form. To this extent, program code can be embodied as one or more of: an application/software program, component software/a library of functions, an operating system, a basic I/O system/driver for a particular computing and/or I/O device, and the like.
The foregoing description of various aspects of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and obviously, many modifications and variations are possible. Such modifications and variations that may be apparent to a person skilled in the art are intended to be included within the scope of the invention as defined by the accompanying claims.