METHOD, SYSTEM, AND PROGRAM PRODUCT FOR MODELING PROCESSES

Information

  • Patent Application
  • 20070283318
  • Publication Number
    20070283318
  • Date Filed
    May 31, 2006
    18 years ago
  • Date Published
    December 06, 2007
    17 years ago
Abstract
The present invention provides a method, system, and program product for modeling processes such as business processes. Specifically, under the present invention, a process having multiple variations is modeled as a placeholder process, and is associated with an annotation that maps the multiple variations to different contexts of the placeholder process. Thereafter, process variations can be generated based on the different contexts of the placeholder process. Integrity checks can also be performed to determine if any of the process variations has an error so that the generation of any corresponding process will be prevented.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features of this invention will be more readily understood from the following detailed description of the various aspects of the invention taken in conjunction with the accompanying drawings in which:



FIG. 1 depicts a first process tree according to the prior art.



FIG. 2 depicts a second process tree according to the prior art



FIG. 3 depicts a third process tree according to the prior art.



FIG. 4 depicts a placeholder scheme for modeling a process according to the present invention.



FIG. 5 depicts two process variations according to the present invention.



FIG. 6 depicts the generation of a process according to the present invention.



FIG. 7 depicts an integrity check process according to the represent invention.



FIG. 8 depicts the generation of a process in response to an integrity check according to the present invention.



FIG. 9 depicts an architectural diagram according to the present invention.



FIG. 10 depicts a more specific computerized implementation according to the present invention.





The drawings are not necessarily to scale. The drawings are merely schematic representations, not intended to portray specific parameters of the invention. The drawings are intended to depict only typical embodiments of the invention, and therefore should not be considered as limiting the scope of the invention. In the drawings, like numbering represents like elements.


DETAILED DESCRIPTION OF THE INVENTION

For convenience, the Detailed Description of the Invention has the following sections:


I. General Description


II. Computerized Implementation


I. General Description

The present invention provides a method, system, and program product for modeling processes such as business processes. Specifically, under the present invention, a process having multiple variations is modeled as a placeholder process, and is associated with an annotation that maps the multiple variations to different contexts of the placeholder process. Thereafter, process variations can be generated based on the different contexts of the placeholder process. Integrity checks can also be performed to determine if any of the process variations has an error so that the generation of any corresponding process will be prevented.


Referring now to FIG. 4, a placeholder scheme 20 for modeling a process according to the present invention is shown. Specifically, as indicated above, a process can have multiple variations 26. In this example, a first variation of the process is P1.2.2.x and a second variation of the process is P1.2.2.y. Under the present invention, these multiple variations are addressed by modeling the multi-variant process as a placeholder process 22. To this extent, a placeholder will replace the variant value of the original process (e.g., the x and y in this example). Thereafter, an annotation 24 that maps the multiple variations 26 to different contexts 28 of placeholder process 22 will be associated with placeholder process 22. As shown, context C1 is mapped to variation P1.2.2.x and content C2 is mapped to variation P1.2.2.y. As further shown in FIG. 4, placeholder process 22 receives input data sets D1 and D2 and sends output data set D3.


As will be further described below, the variations of a process are typically differentiated by the data sets they input and/or export. That is, one variation of the process might receive input data set D1, while the other variation might receive input data set D2. To this extent, placeholder process 22 is similar to a normal process from the outside in that it has defined inputs and outputs. However, placeholder process 22 does not have an implementation (e.g., what is inside P1.2.2 is not formally defined). As such, the actual process for P1.2.2 is defined by its variations. This is further illustrated in FIG. 5, which shows examples of two process variations 30A-B. As shown, variation 30A receives input data sets D1, D2, and D4, while variation 30B receives input data sets D1 and D2. In this example, D4 denotes an OR condition in that variation 30A takes either D1 and D2, or D4 as input. It should be noted that the input and output data sets of both process variations 30A-B as well as placeholder process 22 (FIG. 4) do not have to be matched exactly. The key is that the usage of process variations 30A-B in placeholder process 22 is valid. Integrity checking will be done to ensure the data type and logic criteria of both inputs and outputs are valid for usage of process variations 30A-B in place of placeholder process 22.


Another feature of the present invention is generation of a process for a context. This is illustrated in FIG. 6. Specifically, FIG. 6 shows the generation of processes 40A-B corresponding to contexts C1 and C2 (FIG. 4), respectively. In an illustrative embodiment of the present invention, processes 40A-B are business processes that are variations of one another. One variation can represent a B2B business process, while the other variation can represent a B2C business process. Because the mappings were associated with the placeholder process in FIG. 4, the variations are mapped to specific contexts, namely, C1 and C2.


Referring to FIG. 7, a slightly different example is shown that illustrates the integrity check and exception/error functions of the present invention. Specifically, the invention performs an integrity check on scheme 20 to determine if any of the process variations 30A-B has an exception/error. In the example shown in FIG. 7, an error has been detected relative to variation 30B, context C2 based on input data stream D4. Specifically, the integrity check determined that there would be an error if process variation P2.1.y is used in place of the placeholder process P2.1 because the input sets do not match. When such an error is detected, generation of the corresponding process will be prevented. This is further illustrated in FIG. 8 in which the process 44B for variation 30B, context C2 will not be generated due to an error registered for input data set D4. Since no error was detected for variation 30A, context C1, process 44A will still be generated.


Referring to FIG. 9, an architectural diagram 50 of the functional blocks of the present invention is shown. Specifically, the system has the following components: a modeler tool 52 for modeling processes that allow the above methodology in specifying placeholder process 22 (FIG. 4) and process variations 30A-B (FIG. 5) for different contexts; a mapping (management) tool 54 for specifying and managing the context to process variation mapping 24 (FIG. 4); a model 56 that captures processes with the notion of placeholder process 22, process variations 30A-B, and (context to variation) mapping 24; and a generator 58 that produces processes 44A-B (FIG. 8) for a specified context based on the methodology described above for substituting placeholder processes 22 with the appropriate process variations 30A-B to yield processes 44A-B. Generator 58 can also perform integrity checks and error detection as part of the process generation function of the present invention. It should be understood that the configuration of components shown in FIG. 9 and FIG. 10 below are intended to be illustrative and that the functionality of the present invention could be implemented with a different configuration.


Among other advantages, this invention avoids the necessity of duplicating the processes up a process tree as described; it avoids the management and maintenance issues as described above; it presents a much better user experience than the previous approaches where business users in one context would see process variations of all contexts; the generated business processes for a context is now syntactically correct and potentially can run through simulation; the generated business processes for a context would allow the potential of generating to process flow runtime (e.g. BPEL) for execution and UML artifacts for implementation; the ability to generate business processes for a new context is provided by adding context to variation mapping information to the model; etc.


II. Computerized Implementation

Referring now to FIG. 10, a more detailed diagram of a computerized implementation 100 of the present invention is shown. As depicted, implementation 100 includes a computer system 104 deployed within a computer implementation 102. This is intended to demonstrate, among other things, that the present invention could be implemented within a network environment (e.g., the Internet, a wide area network (WAN), a local area network (LAN), a virtual private network (VPN), etc.), or on a stand-alone computer system. In the case of the former, communication throughout the network can occur via any combination of various types of communications links. For example, the communication links can comprise addressable connections that may utilize any combination of wired and/or wireless transmission methods. Where communications occur via the Internet, connectivity could be provided by conventional TCP/IP sockets-based protocol, and an Internet service provider could be used to establish connectivity to the Internet. Still yet, computer implementation 102 is intended to demonstrate that some or all of the components of implementation 100 could be deployed, managed, serviced, etc. by a service provider who offers to implement and/or perform the functions of the present invention for others.


As shown, computer system 104 includes a processing unit 106, a memory 108, a bus 110, and input/output (I/O) interfaces 112. Further, computer system 104 is shown in communication with external I/O devices/resources 114 and storage system 116. In general, processing unit 106 executes computer program code, such as process system 120, which is stored in memory 108 and/or storage system 116. While executing computer program code, processing unit 106 can read and/or write data to/from memory 108, storage system 116, and/or I/O interfaces 112. Bus 110 provides a communication link between each of the components in computer system 104. External devices 114 can comprise any devices (e.g., keyboard, pointing device, display, etc.) that enable a user to interact with computer system 104 and/or any devices (e.g., network card, modem, etc.) that enable computer system 104 to communicate with one or more other computing devices.


Computerized implementation 102 is only illustrative of various types of computer infrastructures for implementing the invention. For example, in one embodiment, computer implementation 102 comprises two or more computing devices (e.g., a server cluster) that communicate over a network to perform the various process steps of the invention. Moreover, computer system 104 is only representative of various possible computer systems that can include numerous combinations of hardware. To this extent, in other embodiments, computer system 104 can comprise any specific purpose computing article of manufacture comprising hardware and/or computer program code for performing specific functions, any computing article of manufacture that comprises a combination of specific purpose and general purpose hardware/software, or the like. In each case, the program code and hardware can be created using standard programming and engineering techniques, respectively. Moreover, processing unit 106 may comprise a single processing unit, or be distributed across one or more processing units in one or more locations, e.g., on a client and server. Similarly, memory 108 and/or storage system 116 can comprise any combination of various types of data storage and/or transmission media that reside at one or more physical locations. Further, I/O interfaces 112 can comprise any system for exchanging information with one or more external interfaces 114. Still further, it is understood that one or more additional components (e.g., system software, math co-processing unit, etc.) not shown in FIG. 10 can be included in computer system 104. However, if computer system 104 comprises a handheld device or the like, it is understood that one or more external interfaces 114 (e.g., a display) and/or storage system 116 could be contained within computer system 104, not externally as shown.


Storage system 116 can be any type of system (e.g., a database) capable of providing storage for information under the present invention. To this extent, storage system 116 could include one or more storage devices, such as a magnetic disk drive or an optical disk drive. In another embodiment, storage system 116 includes data distributed across, for example, a local area network (LAN), wide area network (WAN) or a storage area network (SAN) (not shown). In addition, although not shown, additional components, such as cache memory, communication systems, system software, etc., may be incorporated into computer system 104.


Shown in memory 108 of computer system 104 is process system 120, which includes a modeler tool 52, a mapping tool 54, and a generator 58. These systems perform the functions of the present invention as discussed above. Specifically, modeler tool 52 for is for modeling processes such as process 122 that allow the above methodology in specifying placeholder process 22 (FIG. 4) and process variations 30A-B (FIG. 5) for different contexts; mapping tool 54 is for specifying and managing the context to process variation mapping 24 (FIG. 4); model 56 captures processes such as process 122 with the notion of placeholder process 22, process variations 30A-B, and (context to variation) mapping 24; and generator 58 is for producing processes 44A-B for a specified context based on the methodology described above for substituting placeholder processes 22 with the appropriate process variations 30A-B to yield processes 44A-B. Generator 58 can also perform integrity checks and error detection as part of the process generation function of the present invention.


While shown and described herein as a method and system for modeling processes, it is understood that the invention further provides various alternative embodiments. For example, in one embodiment, the invention provides a computer-readable/useable medium that includes computer program code to enable a computer infrastructure to control access to personal attributes across enterprise domains. To this extent, the computer-readable/useable medium includes program code that implements each of the various process steps of the invention. It is understood that the terms computer-readable medium or computer useable medium comprises one or more of any type of physical embodiment of the program code. In particular, the computer-readable/useable medium can comprise program code embodied on one or more portable storage articles of manufacture (e.g., a compact disc, a magnetic disk, a tape, etc.), on one or more data storage portions of a computing device, such as memory 108 (FIG. 10) and/or storage system 116 (FIG. 10) (e.g., a fixed disk, a read-only memory, a random access memory, a cache memory, etc.), and/or as a data signal (e.g., a propagated signal) traveling over a network (e.g., during a wired/wireless electronic distribution of the program code).


In another embodiment, the invention provides a business method that performs the process steps of the invention on a subscription, advertising, and/or fee basis. That is, a service provider, such as a Solution Integrator, could offer to model processes. In this case, the service provider can create, maintain, support, etc., a computer infrastructure, such as computer implementation 102 (FIG. 10) that performs the process steps of the invention for one or more customers. In return, the service provider can receive payment from the customer(s) under a subscription and/or fee agreement and/or the service provider can receive payment from the sale of advertising content to one or more third parties.


In still another embodiment, the invention provides a computer-implemented method for modeling processes. In this case, a computer infrastructure, such as computer implementation 102 (FIG. 10), can be provided and one or more systems for performing the process steps of the invention can be obtained (e.g., created, purchased, used, modified, etc.) and deployed to the computer infrastructure. To this extent, the deployment of a system can comprise one or more of (1) installing program code on a computing device, such as computer system 104 (FIG. 10), from a computer-readable medium; (2) adding one or more computing devices to the computer infrastructure; and (3) incorporating and/or modifying one or more existing systems of the computer infrastructure to enable the computer infrastructure to perform the process steps of the invention.


As used herein, it is understood that the terms “program code” and “computer program code” are synonymous and mean any expression, in any language, code or notation, of a set of instructions intended to cause a computing device having an information processing capability to perform a particular function either directly or after either or both of the following: (a) conversion to another language, code or notation; and/or (b) reproduction in a different material form. To this extent, program code can be embodied as one or more of: an application/software program, component software/a library of functions, an operating system, a basic I/O system/driver for a particular computing and/or I/O device, and the like.


The foregoing description of various aspects of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and obviously, many modifications and variations are possible. Such modifications and variations that may be apparent to a person skilled in the art are intended to be included within the scope of the invention as defined by the accompanying claims.

Claims
  • 1. A method for modeling processes, comprising: modeling a process having multiple variations as a placeholder process; andassociating an annotation with the placeholder process that maps the multiple variations to different contexts of the placeholder process.
  • 2. The method of claim 1, further comprising generating process variations based on the different contexts of the placeholder process.
  • 3. The method of claim 2, the generating comprising providing distinct input sets for each of the different contexts of the placeholder process.
  • 4. The method of claim 2, further comprising performing integrity checks to determine if any of the process variations has an error.
  • 5. The method of claim 4, further comprising preventing the generation of any process determined to have an error.
  • 6. The method of claim 1, wherein the process is a business process, and wherein at least one of the multiple variations corresponds to a business to business process and at least one of the multiple variations corresponds to a business to consumer process.
  • 7. A system for modeling processes, comprising: a modeler tool for modeling a process having multiple variations as a placeholder process; anda mapping tool for associating an annotation with the placeholder process that maps the multiple variations to different contexts of the placeholder process.
  • 8. The system of claim 7, further comprising a generator for generating process variations based on the different contexts of the placeholder process.
  • 9. The system of claim 8, the system for generating providing distinct input sets for each of the different contexts of the placeholder process.
  • 10. The system of claim 8, wherein the system performs integrity checks to determine if any of the process variations has an error.
  • 11. The system of claim 10, wherein the system prevents the generation of any process determined to have an error.
  • 12. The system of claim 7, wherein the process is a business process, and wherein at least one of the multiple variations corresponds to a business to process and at least one of the multiple variations corresponds to a business to consumer process.
  • 13. A program product stored on a computer readable medium for modeling processes, the computer readable medium comprising program code for causing a computer system to perform the following steps: modeling a process having multiple variations as a placeholder process; andassociating an annotation with the placeholder process that maps the multiple variations to different contexts of the placeholder process.
  • 14. The program product of claim 13, the computer readable medium further comprising program code for causing the computer system to perform the following step: generating process variations based on the different contexts of the placeholder process.
  • 15. The program product of claim 14, the generating comprising providing distinct input sets for each of the different contexts of the placeholder process.
  • 16. The program product of claim 14, the computer readable medium further comprising program code for causing the computer system to perform the following step: performing integrity checks to determine if any of the process variations has an error.
  • 17. The program product of claim 16, the computer readable medium further comprising program code for causing the computer system to perform the following step: preventing the generation of any processing determined to have an error.
  • 18. The program product of claim 13, wherein the process comprises a business process, and wherein at least one of the multiple variations corresponds to a business to business process and at least one of the multiple variations corresponds to a business to consumer process.
  • 19. A method for deploying an application for modeling processes, comprising: providing a computer infrastructure being operable to: model a process having multiple variations as a placeholder process; andassociate an annotation with the placeholder process that maps the multiple variations to different contexts of the placeholder process.
  • 20. The method of claim 19, the computer infrastructure being further operable to generate process variations based on the different contexts of the placeholder process.