The application claims priority to Chinese patent application No. 2022112224258, filed on Oct. 8, 2022, the entire contents of which are incorporated herein by reference.
The present disclosure is in the field of indoor positioning technology, and particularly relates to a method, system and terminal for wide-area acoustic indoor positioning based on radio frequency (RF) enhancement.
At present, traditional indoor positioning technologies such as Wi-Fi fingerprint matching, pedestrian dead reckoning, bluetooth iBeacon positioning and geomagnetic matching have been slowly fading out of the research field. With the market demand and promotion of IT giants such as Google, apple and Baidu, high-precision indoor positioning technology has been developed rapidly during the 13th five-year period, which is the mainstream of indoor positioning research. These technologies include Google's Wi-Fi RTT (Round-Trip-Time) ranging technology and Apple's Ultra Wide Band (UWB) positioning technology. In addition, high-precision indoor positioning technologies developed in recent years include acoustic positioning technology, 5G positioning technology, pseudo-satellite positioning technology, Bluetooth angle measurement technology and visual positioning technology, etc.
The acoustic positioning technology is a positioning technology for calculating the distance between the transmitter and the receiver by measuring the acoustic propagation time, and the working mode thereof is the same as the GNSS positioning, in both cases being a broadcast mode. With the characteristics of low cost, high precision and good compatibility, it provides a new possibility for indoor positioning based on smart phones of a consumer grade. Acoustic positioning technology can use the built-in microphone of smart phone to achieve high-precision positioning without changing existing mobile phone hardware.
Intelligent mobile phone indoor positioning technology based on acoustic signals has the characteristics of low cost, high accuracy and good compatibility, but in the limited acoustic bandwidth of intelligent devices, to identify and distinguish enough acoustic signals is the key technology to achieve wide-area coverage of acoustic positioning signals. Existing acoustic positioning systems, such as: the Criket system proposed by the Massachusetts Institute of Technology in 2000 combines electromagnetic waves and ultrasound to jointly estimate the time of arrival of ultrasound for positioning, which limits the number of access users. The research team of Nanjing University of Posts and Telecommunications has optimized the BeepBeep system and proposed the oneBeep system. The Guoguo system proposed by the team of San Jose State University adopts the broadcast architecture of code division multiple access (CDMA), and uses the orthogonal code modulation technique to estimate the time of arrival of the signal directly.
Through the foregoing analysis, the problems and defects of the prior art are as follows.
(1) Existing solutions and systems can achieve room-level positioning coverage, but it is difficult to meet the large-scale, multi-area indoor positioning requirements.
(2) The propagation speed of acoustic signals is slow and it is not possible to obtain statistical results from multiple measurements over a short period of time like RF signals, or to achieve accurate ranging through the interaction of a transmitter and a receiver. Thus, in a complex indoor multipath environment, the detection of the acoustic signal directly affects the accuracy of the positioning system.
(3) The frequency bands available on smartphones for positioning are very limited. In addition, factors such as signal-to-noise ratio (SNR), doppler-induced frequency shifts, and sampling make it difficult to recognize acoustic signals over long distances.
(4) Non-NLOS introduces measurement errors in acoustic signal ranging, which greatly affects the accuracy of positioning.
In view of the problems existing in the prior art, the present disclosure provides a wide-area indoor positioning method, system and terminal using acoustic signal based on RF enhancement.
The present disclosure is realized via a method for wide-area acoustic indoor positioning based on RF enhancement, which comprises:
Further, the frequency f0 of the acoustic signal of step 1 is selected in the range of 12 kHz˜23 kHz, and the expression is:
the modulation rate k0 and the signal period T being respectively set as 100 kHz/s and 50 ms;
furthermore, in order to reduce effect of the microphone diaphragm inertia, a Blackman window function being used to control an amplitude of an acoustic signal entering and leaving a channel, the expression of the Blackman window function being:
a denoting a number of samples and M denoting a window length.
Further, the hybrid multiple access transmission of step two identifies and distinguishes enough acoustic signals from the acoustic signal level and the overall system level using limited acoustic bandwidth. Combining three multiple access schemes of time, space and frequency, assisting a small amount of Bluetooth Low Energy (BLE) signals, and constructing a wide-area coverage capability of an acoustic positioning signal comprise:
Further, the FDMA sets two independent frequency bands and a specific guard frequency interval, and allocates a respective working frequency band to each acoustic base station;
the TDMA uses acoustic base stations of the same frequency band to perform time sharing in a non-overlapping interval;
the guard interval time and period are determined by a coverage area;
the SDMA performs multiplexing by spatially separating identical acoustic base stations, and distinguishes same by the acoustic base stations broadcasting Bluetooth information.
Further, the acoustic measurement based on RF enhancement of step 3 comprises a TOA estimation of an acoustic signal and area identification based on low-power Bluetooth Received Signal strength (RSS).
Further, the TOA estimation of the acoustic signal comprises:
(2.1) presence detection;
(2.2) fine time measurement;
and step (2.1) specifically comprises that:
(2.1.1) a local spectrum of s(t) is calculated by adding a window function γ(t) to a signal in a time domain.
(2.1.2) the time-frequency matrix Ψ(F, T) being rotated by angle θ=arctan(k0), and the transformed time-frequency matrix Ψθ(F′, T′) is expressed as:
Ψθ(F′, T′)=Tθ×Ψ(F, T)
(2.1.3) the statistical magnitudeΠ(F′n) of energy accumulation is expressed as:
Π(F′n)=Σ(n,m)Ψθ(F′n, T′m)
Ψθ(F′n, T′m) representing the transformed time-frequency matrix of n rows and m columns.
According to the threshold method, an existence time of acoustic signal is detected:
ΔΠ(F′n) representing a change of Π(F′n), Yan representing a detection threshold, ΔΠ(F′n−1) representing a change of Π(F′n−1), and ΔΠ(F′n+1) representing a change of Π(F′n+1).
(2.1.4) The time of arrival {circumflex over (τ)}p of the signal is obtained by inverse rotation transformation of the angle θ.
Step (2.2) specifically comprises that:
(2.2.1) the filtered acoustic signal x′p(t) is obtained according to the time of arrival {circumflex over (τ)}p, of the signal, and the cross-correlation (CC) with the reference signal s(t) is calculated:
rxs(τ)=E[x′p(t)s(t)]
(2.2.2) a maximum value of CC function rxs(c) is taken as an initial time, and a first peak is inversely searched according to the threshold method with the following expression:
{circumflex over (τ)}0=min{|rxs({circumflex over (τ)}n)|≥α max[|rxs(τ)|]}
wherein α represents a threshold coefficient and α=0.3 is taken.
Further, the area identification based on low-power Bluetooth RSS comprises:
utilizing the Bluetooth signal broadcast by a Bluetooth module carried by an acoustic base station deployed by each unit in a unit array to distinguish the unit array, and based on a spatial distribution and a propagation rule of the Bluetooth RF signal, establishing a weighting matrix of a Bluetooth update frequency and a signal strength:
where ηn,m represents the number of RF signals scanned by each unit, η is a total number of RF signals scanned at the current moment, {tilde over (γ)}n,m is an average value of RSS in a sliding window, and γ is a system configuration parameter (the recommended setting is 100-120).
The corresponding unit array with the highest comprehensive weighted value R is calculated to distinguish the current area:
R=arg max(Π(r))
Further, the robust fusion positioning of the inertial sensor and multi-source measurement of step 4 comprises: pedestrian walking speed estimation, multi-source heterogeneous measurement, acoustic measurement compensation and correction, measurement quality evaluation and control.
Further, the pedestrian walking speed estimation includes that: the two-dimensional pedestrian walking speed is estimated by interpolating relative step frequency points, and the pedestrian walking speed estimation is expressed as follows:
where SLk and SFk denote the step size and the step frequency at step k, respectively, and Ψk and ΔΨk denote heading (azimuth) and the change in heading, respectively.
Further, the multi-source heterogeneous measurement comprises that:
(3.2.1) the double base station TDOA measurement expression zkTDOA is as follows.
wherein c represents a propagation speed of an acoustic signal, R represents a current area, Γ represents a guard time, i represents a base station of no. i, and j represents a base station of no. j.
By using Taylor extension and ignoring higher order errors, the acoustic TDOA measurement model is shown as:
wherein rL=[EL NL UL] represents a position vector of the Lth base station, rL−1=[EL−1 NL−1 UL−1] represents a position vector of the (L−1)th base station, and Pk=[ek nk uk] represents a position predicted by the system in the epoch k;
(3.2.2) a single base station relative ranging expression zkRR is as follows:
zkRR=[c×(TOAkL−TOAk−1L−0)+∥rL−{circumflex over (x)}k−1∥]T
where θ is the period of the TDMA, determined by the coverage area, and the present disclosure takes θ=1000 ms.
Similarly, the measurement model for single base station relative ranging is shown as:
(3.2.3) According to the attenuation rule of the RF signal, the expression of the low-power Bluetooth RSS ranging is as follows:
wherein R0 represents an RSS value measured at a reference point one meter away from a base station, Rk represents an RSS value measured at an epoch k, and b represents a path loss index related to an indoor environment;
the measurement model for low-power Bluetooth RSS ranging is shown as:
Further, the acoustic measurement compensation and correction comprises:
(3.3.1) Asynchronous Compensation
TDMA allows acoustic signals to be broadcast at non-overlapping time intervals, and furthermore, it makes the TOA detection of pedestrians while walking asynchronous. Therefore, the present disclosure proposes a simplified method to cope with the measurement error of TOA, and by converting the base station positioning in the direction of pedestrian walking speed, the TOA estimated from Base Station (ST) Ak can be kept consistent with the TOA of STAk+1;
The converted coordinates STA′k are expressed as:
STA′k=STAk+{right arrow over (v)}k·(TOAiR−TOAjR
wherein vk represents a pedestrian walking speed, and TOAiR and TOAjR represent TOA of the reference base station and TOA of the measurement base station respectively;
(3.3.2) Doppler Correction
Based on the Doppler effect, the frequency of the received signal is different from that of the transmitted signal. The Doppler shift Δf is expressed as:
where fc and c denote the transmitted signal frequency and the speed of sound, respectively. Δvp represents a projection of a walking speed of a pedestrian on {right arrow over (P)}=∥xn−STAk∥, and {right arrow over (p)} represents an axis of a smart phone pointing to the base station;
Therefore, considering the effect of Doppler shift, the compensated TOA measurement TOA′k is expressed as:
wherein F represents a frequency range of the base station, and T represents an acoustic signal period.
Further, the measurement quality evaluation and control includes that:
(3.4.1) based on the typical accuracy and statistical results of the measurement, the duration including the acoustic measurement is defined as reliable update, and the other conditions are general update, and the expression is as follows:
(3.4.2) an adjustment mechanism for the expansion of the variance-covariance matrix is established to reduce unreliable observed values in the state estimation, and the equivalent variance-covariance matrix
wherein Λk represents a variance expansion matrix of epoch k;
(3.4.3) in order to determine the magnitude of the expansion, a residual vector is selected to evaluate and control the quality of the measurement, an innovation vector is used for a general update, and the variance expansion factor λij is an element of Λk, expressed as:
where k0 and k1 are constants, taking k0=1.0, k1=4.5. vi indicates Θk of the observed value zk
An adaptive robust combined fusion platform based on a Kalman filter framework using the above-mentioned method, wherein a position vector [ek nk uk] and a difference angle αk in a northeast sky coordinate are used as states of a system for positioning and tracking;
xk=[eknkukαk]T
A system state transition matrix is:
wherein [vepdr vnpdr vupdr] represents a three-dimensional pedestrian walking speed vector calculated by interpolating PDR relative step number points.
Another object of the present disclosure is to provide a system for wide-area acoustic indoor positioning based on RF enhancement implementing the method for wide-area acoustic indoor positioning based on RF enhancement, the system comprising:
Another object of the present disclosure is to provide a computer device comprising a memory and a processor, the memory storing a computer program which, when executed by the processor, causes the processor to perform the steps of the method for wide-area acoustic indoor positioning based on RF enhancement.
Another object of the present disclosure is to provide a computer readable storage medium storing a computer program which, when executed by a processor, causes the processor to perform the steps of the method for wide-area acoustic indoor positioning based on RF enhancement.
Another object of the present disclosure is to provide an information data processing terminal for implementing the system for wide-area acoustic indoor positioning based on RF enhancement.
By combining the above-mentioned technical solution and the technical problem to be solved, the claimed technical solution of the present disclosure has the following advantages and positive effects.
In order to achieve accurate acoustic signal detection in typical wide-area scenes, a two-step TOA estimation method based on short-time Fourier transform and enhanced cross-correlation is proposed.
The acoustic signal hybrid transmission scheme provided by the present disclosure recognizes and distinguishes enough acoustic signals in the limited acoustic bandwidth of a smart phone, and designs and builds a mixed broadcasting architecture of space, time and frequency division multiple access based on acoustic signals starting from a wide-area coverage application, so as to form a low-cost and scalable acoustic signal coverage capability.
The present disclosure develops a powerful integrated platform and associated positioning algorithms for consumer-level smart phone positioning that closely couples heterogeneous observation data from acoustic signals, BLE signals, and low-cost inertial sensors. In addition, a measurement quality evaluation and control strategy is established to evaluate the quality of each observation datum in real time before it is fed into the adaptive filter.
The indoor positioning technology of smart phones based on acoustic signal provided by the present disclosure has the characteristics of low cost, high accuracy and good compatibility, which is beneficial to form an indoor scheme with wide coverage, high accuracy and low cost.
The expected profit and commercial value after the conversion of the technical solution of the present disclosure are that the technical solution of the present disclosure provides a new possibility for an indoor positioning application based on a consumer-grade smart phone, which can be applied to a large complex, an exhibition centre, a transportation hub and the like in a general amount of indoor space.
Whether the technical solution of the present disclosure solves the technical problem that people have been eager to solve but have never succeeded: acoustic positioning technology is a low-cost, high-precision positioning technology with good compatibility. Existing acoustic-based positioning schemes and systems can achieve room-level positioning coverage, but it is difficult to meet the large-scale, multi-area indoor positioning requirements. The present disclosure can achieve wide-area coverage of acoustic positioning signals through a hybrid multiple access transmission scheme with limited acoustic bandwidth.
In order that the objects, technical solutions and advantages of the present disclosure will become more apparent, a more particular description of the disclosure will be rendered by reference to specific embodiments thereof. It should be understood that the particular embodiments described herein are illustrative only and are not limiting to the present disclosure.
In order for those skilled in the art to fully understand how the disclosure may be embodied, this section is an illustrative embodiment that expands on the claimed technical solutions.
As shown in
Further, the frequency f0 of the acoustic signal of step 1 is selected in the range of 12 kHz˜23 kHz, and the expression is:
the modulation rate k0 and the signal period T being respectively set as 100 kHz/s and 50 ms;
furthermore, in order to reduce effect of the microphone diaphragm inertia, a Blackman window function being used to control an amplitude of an acoustic signal entering and leaving a channel, the expression of the Blackman window function being:
a denoting a number of samples and M denoting a window length.
Further, the hybrid multiple access transmission of step 2 utilizes a limited acoustic bandwidth, as shown in
Further, the FDMA is provided with two independent frequency bands and a specific guard frequency interval and each acoustic base station is assigned with a respective operating frequency band. In the embodiments of the present disclosure, two frequency bands are respectively set, one being a guard frequency interval of 12 kHz˜13.5 kHz and 14.5 kHz 16 kHz, and 1 kHz, the other being a guard frequency interval of 16.5 kHz 19 kHz and 20 kHz 22.5 kHz, and 1 kHz;
the TDMA uses acoustic base stations of the same frequency band to perform time sharing in a non-overlapping interval;
the guard interval time and period are determined by the coverage area. In the embodiment of the present disclosure, 150 ms and 1000 ms are set respectively;
the SDMA performs multiplexing by spatially separating identical acoustic base stations, and distinguishes same by the acoustic base stations broadcasting Bluetooth information.
Further, the acoustic measurement based on RF enhancement of step 3 comprises a TOA estimation of an acoustic signal and area identification based on low-power Bluetooth RSS.
Further, the TOA estimation of the acoustic signal comprises:
(2.1) presence detection;
(2.2) fine time measurement;
step (2.1) specifically comprises that:
(2.1.1) a local spectrum of s(t) is calculated by adding a window function γ(t) to a signal in a time domain.
(2.1.2) the time-frequency matrix Ψ(F, T) is rotated for θ=arctan(k0), and the transformed time-frequency matrix Ψθ(F′, T′) is expressed as:
Ψθ(F′,T′)=Tθ×Ψ(F,T)
(2.1.3) the statistical magnitudeΠ(F′n) of energy accumulation is expressed as:
Π(F′n)=Σ(n,m)Ψθ(F′n,T′m)
Ψθ(F′n, T′m) representing the transformed time-frequency matrix of n rows and m columns.
According to the threshold method, an existence time of acoustic signal is detected:
ΔΠ(F′n) representing a change of Π(F′), Yan representing a detection threshold, ΔΠ(F′n−1) representing a change of Π(F′n−1), and ΔΠ(F′n+1) representing a change of Π(F′n+1).
(2.1.4) The time of arrival {circumflex over (t)}p of the signal is obtained by inverse rotation transformation of the angle θ.
step (2.2) specifically comprises that:
(2.2.1) the filtered acoustic signal x′p(t) is obtained according to the time of arrival {circumflex over (τ)}p of the signal, and the cross-correlation (CC) with the reference signal s(t) is calculated:
rxs(τ)=E[x′p(t)s(t)]
(2.2.2) the maximum value of CC function rxs (τ) is taken as the initial time, and the first peak is inversely searched according to the threshold method with the following expression:
{circumflex over (τ)}0=min{|rxs({circumflex over (τ)}n)|≥α max[|rxs(τ)|]}
wherein α represents a threshold coefficient and α=0.3 is taken.
Further, the area identification based on low-power Bluetooth RSS comprises:
distinguishing the Bluetooth signal broadcast by a Bluetooth module carried by an acoustic base station deployed by each unit in a unit array to distinguish the unit array, and based on a spatial distribution and a propagation rule of the Bluetooth RF signal, establishing a weighting matrix of a Bluetooth update frequency and a signal strength:
where ηn,m represents the number of RF signals scanned by each unit, η is a total number of RF signals scanned at the current moment, {tilde over (γ)}n,m is an average value of RSS in the sliding window, and γ is a system configuration parameter (the recommended setting is 100-120).
The corresponding unit array with the highest comprehensive weighted value R is calculated to distinguish the current area:
R=arg max(Π(r))
Further, the robust fusion positioning of the inertial sensor and the multi-source measurement of the step 4 comprises pedestrian walking speed estimation, multi-source heterogeneous measurement, acoustic measurement compensation and correction, measurement quality evaluation and control.
The present disclosure proposes an adaptive robust combined fusion platform based on the Kalman filter framework, wherein the position vector [ek nk uk] and the difference angle αk in the northeast sky coordinate are used as the states of the system for positioning and tracking:
xk=[eknkukαk]T
The system state transition matrix is:
[vepdr vnpdr vupdr] representing a three-dimensional pedestrian walking speed vector calculated by interpolating PDR relative step points;
Further, the pedestrian walking speed estimation includes that: the two-dimensional pedestrian walking speed is estimated by interpolating relative step frequency points, and the pedestrian walking speed estimation is expressed as follows:
where SLk and SFk denote the step size and the step frequency at step k, respectively, and Ψk and ΔΨk denote heading (azimuth) and the change in heading, respectively.
Further, the multi-source heterogeneous measurement comprises that:
(3.2.1) the double base station TDOA measurement expression zkTDOA is as follows.
zkTDOA=[c×TDOAi,j]T
=[c×(TOAiR−TOAjR+(i−j)*Γ)]T,i≥j
wherein c represents a propagation speed of an acoustic signal, R represents a current area, Γ represents a guard time, i represents a base station of no. i, and j represents a base station of no. j.
By using Taylor extension and ignoring higher order errors, the acoustic TDOA measurement model is shown as:
wherein rL=[EL NL UL] represents a position vector of the Lth base station, rL−1=[EL−1 NL−1 UL−1] represents a position vector of the (L−1)th base station, and Pk=[ek nk uk] represents a position predicted by the system in the epoch k;
(3.2.2) a single base station relative ranging expression zkRR is as follows:
zkRR=[c×(TOAkL−TOAk−1L-Θ)+∥rL−{circumflex over (x)}k−1∥]T
where Θ is a period of the TDMA, determined by a coverage area, and the present disclosure takes Θ=1000 ms.
Similarly, the measurement model for single base station relative ranging is shown as:
(3.2.3) According to the attenuation rule of the RF signal, the expression of the low-power Bluetooth RSS ranging is as follows:
wherein R0 represents an RSS value measured at a reference point one meter away from a base station, Rk represents an RSS value measured at an epoch k, and b represents a path loss index related to an indoor environment;
the measurement model for low-power Bluetooth RSS ranging is shown as:
Further, the acoustic measurement compensation and correction comprises:
(3.3.1) Asynchronous Compensation
TDMA allows acoustic signals to be broadcast at non-overlapping time intervals, and furthermore, it makes the TOA detection of pedestrians while walking asynchronous. Therefore, the present disclosure proposes a simplified method to cope with the TOA measurement error, and as shown in
The converted coordinates STA′k are expressed as:
STA′k=STAk+{right arrow over (v)}k·(TOAiR-TOAjR)
wherein {right arrow over (v)}k represents a pedestrian walking speed, and TOAiR and TOAjR represent TOA of the reference base station and TOA of the measurement base station respectively;
(3.3.2) Doppler Correction
Based on the Doppler effect, the frequency of the received signal is different from that of the transmitted signal. The Doppler shift Δf is expressed as:
where fc and c denote the transmitted signal frequency and the speed of sound, respectively. As shown in
Therefore, considering the effect of Doppler shift, the compensated TOA measurement TOA′k is expressed as:
wherein F represents a frequency range of the base station, and T represents an acoustic signal period.
Further, the measurement quality evaluation and control includes that:
(3.4.1) based on the typical accuracy and statistical results of the measurement, the duration including the acoustic measurement is defined as reliable update, and the other conditions are general update, and the expression is as follows:
(3.4.2) an adjustment mechanism for the expansion of the variance-covariance matrix is established to reduce unreliable observed values in the state estimation, and the equivalent variance-covariance matrix
wherein Λk represents a variance expansion matrix of epoch k;
(3.4.3) in order to determine the magnitude of the expansion, a residual vector is selected to evaluate and control the quality of the measurement, an innovation vector is used for a general update, and the variance expansion factor λij is an element of Λk, expressed as:
where k0 and k1 are constants, taking k0=1.0, k1=4.5. vi indicates Θk of the observed value zk
An embodiment of the present disclosure further provides a system for wide-area acoustic indoor positioning based on RF enhancement implementing the method for wide-area acoustic indoor positioning based on RF enhancement, the system comprising:
In order to prove the inventive step and technical value of the technical solution of the present disclosure, this part is an application embodiment of the technical solution of the claims on specific products or related technologies.
The present disclosure evaluates the performance of the proposed method and system in wide-area indoor scenes by performing static ranging experiments and positioning performance experiments in laboratory scenes and typical indoor scenes, respectively.
Static ranging experiments were performed at the National Optoelectronic Rangefinder Calibration Center. In this experiment, Huawei Honor 8 and P9 Plus are used, the detection range is 1.9 m˜37 m, and the ground real value is measured by dual-frequency laser interferometer (HP5529B).
The positioning performance experiments were carried out in three typical indoor scenes, as shown in
The positioning performance experiments are divided into static positioning performance experiments and dynamic positioning performance experiments.
Static positioning experiments were performed under scene 1 and scene 2, respectively, as shown in
Dynamic positioning experiments were performed under scene 1, scene 2 and scene 3, respectively, and the positioning method of the present disclosure was compared with the positioning results of least square method (TRI), standard Kalman filter (SKF), traceless Kalman filtering (UKF) and particle filtering (PF). Huawei mate9, Tongyao 8, P9 Plus, google Pixel 3 and Xiaomi 10 were used in this experiment.
Embodiments of the present disclosure achieve some positive results in their development or use, and indeed provide significant advantages over the prior art, and are described below in connection with experimental process data, charts, etc.
The embodiments of she present disclosure evaluated the following performances:
1) Static Ranging Performance
2) Static Positioning Performance
3) Dynamic Positioning Performance
Table 2 lists the positioning performance of different smart phones in different wide-area scenes for the system of the present disclosure. The results show that there is no significant difference in positioning, and all the devices achieved stable sub-meter accuracy. By combining the results of static ranging and positioning, it is found that the accuracy difference caused by microphone hardware of smart phone is relatively small.
In summary, experimental results show that the positioning method of the present disclosure achieves an average positioning accuracy of 0.34 m (static) and 0.67 m (dynamic). The overall performance, repeatability and stability are excellent for different scenes and devices. In contrast to existing acoustic positioning schemes, the system of the present disclosure enables sub-micron positioning in typical wide-area indoor scenes, such as conference centers, parking lots, and canteen halls. This has a significant impact on potential indoor positioning services and applications.
It should be noted that embodiments of the present disclosure may be implemented in hardware, software, or a combination of hardware and software. The hardware part may be implemented using dedicated logic; the software component may be stored in a memory and executed by a suitable instruction execution system, such as a microprocessor or dedicated design hardware. Those skilled in the art will appreciate that the apparatus and methods described above may be implemented using computer-executable instructions and/or embodied in processor control code, for example, provided on a carrier medium such as a disk, CD or DVD-ROM, programmable memory such as read-only memory (firmware), or a data carrier such as an optical or electronic signal carrier. The device of the present disclosure and its modules may be implemented by hardware circuits such as very large scale integrated circuits or gate arrays, semiconductors such as logic chips, transistors, etc. or programmable hardware devices such as field programmable gate arrays, programmable logic devices, etc. by software executed by various types of processors, or by a combination of the above-mentioned hardware circuits and software, e.g. firmware.
The foregoing is only the detailed embodiments of the present disclosure, but the scope of protection of the present disclosure is not limited thereto. Various modifications, equivalent substitutions, and improvements made by those skilled in the art within the technical scope of the present disclosure, without departing from the spirit and principle of the present disclosure, shall be covered by the scope of protection of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
202211222425.8 | Oct 2022 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
20030144010 | Dollinger | Jul 2003 | A1 |
20100250170 | Kalinin | Sep 2010 | A1 |
20180261084 | Tsai | Sep 2018 | A1 |
20180288016 | Stein | Oct 2018 | A1 |
20200294401 | Kerecsen | Sep 2020 | A1 |
20210356279 | Szigeti | Nov 2021 | A1 |
Number | Date | Country |
---|---|---|
103347297 | Oct 2013 | CN |
104535962 | Apr 2015 | CN |
106793072 | May 2017 | CN |