The invention relates to a process for making a reinforced or stiffened curved metallic structure, and also to the structure made by performing this process. The structure is said to be stiffened or reinforced in that it has ribs (also known as “stiffeners”) for reinforcing against deformation of the structure.
In general in the rest of the description, the term “thin sheets” means sheets less than 12.7 mm thick, sheets between 12.7 and 40 mm thick are referred to as “heavy-gauge” and sheets greater than 40 mm thick are referred to as “plate-gauge”.
Conventionally, this type of structure is made by rolling, dissolving at high temperature followed by hardening, drawing and maturing or tempering of elemental thin sheets formed from an aluminium alloy. Such a range of treatments allows the sheets to have radii of curvature suited to the conformation of the target structure. The sheets and stiffeners/reinforcers are then assembled by riveting to form the final structure. Thus, for example, for landing gear cases, the sheets are assembled as stiffened subassemblies riveted together. By mechanical, chemical or electrochemical machining of the thin sheets, material is removed from the surface so as to allow the structure to have the desired surface state. Reinforcers are also added by riveting to consolidate the sheet as a whole.
The dimensions of the target structures thus makes it necessary to assemble elemental thin sheets and to reinforce these sheets.
The current solutions have many drawbacks: a large number of manufacturing cycles of long duration relating to the assembly, riveting and reinforcer attachment operations, and generating high manufacturing costs. Furthermore, this assembly approach is detrimental to the freedom of design and adaptation of the structures.
Moreover, the approach consisting in making structures from heavy-gauge sheets made of the alloys usually used based on Al—Zn (AA7XXX) or Al—Cu (AA2XXX) leads to the production of pieces that have reduced mechanical properties following hot forming. The reason for this is that high temperatures may destroy the microstructure of the sheet, which is reflected by limited mechanical characteristics, as regards the tensile strength, the elasticity limit, the fatigue strength or the resistance to external pressures. On the other hand, during cold forming of these pieces, large internal stresses are created and are not or are poorly resorbed.
The invention is directed towards making integral metallic structures with sufficient mechanical properties so as to withstand external impacts and pressure.
To do this, the invention proposes to make structures of this type from a heavy-gauge or plate-gauge sheet of an aluminium alloy containing scandium. It has been notably found that a heavy-gauge or plate-gauge sheet formed from such an alloy can undergo shaping with high radii of curvature while at the same time maintaining satisfactory mechanical characteristics, by preserving the microstructures and while avoiding the generation of large residual stresses.
More specifically, one subject of the present invention is a process for making a stiffened metallic structure with a uniaxial or biaxial curvature in monobloc form referred to as an integral structure, which consists in machining a heavy-gauge or plate-gauge sheet of an aluminium alloy material containing scandium, for example by rolling or any other process for forming this material into the said sheet, and then in combining steps of forming and machining of the said sheet, the forming step giving the curvature(s) and the machining step producing a network of reinforcing ribs.
Under these conditions, it is no longer necessary to assemble several elemental sheets, since the monobloc form constitutes the integral structure.
According to particular embodiments:
The invention also relates to a reinforced curved metallic structure produced via the above process, especially for making an aircraft subassembly, in particular a landing gear case, an airtight underside (at the front end), an aircraft cockpit and an aircraft emergency exit.
Other data and advantages of the present invention will emerge on reading the description that follows, with reference to the attached figures, which show, respectively:
a to 4d, views in perspective of examples of metallic structures curved and reinforced according to the invention by implementing the process.
With reference to
In the preferred embodiment illustrated in
The scheme in cross section in
The forming then consists in moving the punch 4 against the die 6 of complementary shape with appropriate force. The punch then exerts a pressure on the sheet 2. Under the combined effect of this pressure and of the temperature, the sheet 2 becomes deformed in a convex configuration and marries the shape of the die 6 on its outer face 22, and the complementary shape of the punch 4 on its inner face 24, the outer and inner faces being substantially parallel.
The sheet 2 is then rapidly removed from the forming tools. The opposite free edges of the sheet 2 after forming are maintained equidistant by the insertion of welded bars so as to maintain the shape of the structure during cooling. This cooling is slow cooling in the open air to minimize the residual stresses by slow relaxation. In one variant, the cooling may be performed in a chamber suitable for slow cooling.
After this cooling—and referring again to
One of the advantages of the invention is that it can render redundant the steps of straightening and/or pressing for the folding of sheets, or of rolling for bending. The sheet obtained according to the process of the invention is in principle directly to size after the hot forming, and the envisaged machining should not modify this state. The machining 300 may optionally be followed, if necessary, by a finishing step 400 (cf.
The structure in
Other examples of reinforced, curved monobloc structures are illustrated, respectively, by
Alternatively, in another embodiment, the machining step 300 of FIG. 1—consisting in machining the rolled primary form from the first step 100—precedes the forming step 200.
The conditions for performing the machining and the forming are adapted to the order in which these operations follow each other, in particular the cooling conditions after forming and the forming tools when the sheet is already machined.
The invention is not limited to the production examples described and represented. It is possible, for example, to perform any type of forming and of machining suited to the structure to be made, as a function of the larger or smaller size, rib network density or radius of curvature criteria to be achieved. Furthermore, the invention is not limited to the aeronautical field, and may be applied to any field, for example to the field of marine or terrestrial transport or to the construction field.
Number | Date | Country | Kind |
---|---|---|---|
1051281 | Feb 2010 | FR | national |