The present invention relates generally to semiconductor fabrication, and in particular, to methods that address carbon incorporation in an interpoly oxide.
Uncontaminated substrates are critical to obtaining high yields in microelectronic device fabrication. While the fabrication process is generally designed to address as many sources of contamination as possible, often, the source of the contamination will be one of the processing steps. For example, multilayer layer resist masks are often used to pattern substrates. As prior art masks often comprise polymeric resins, photo-sensitizers, and organic solvents, residual polymers, organic components and particles are typically left on the surface of the device after the ashing process.
Prior art cleaning techniques to remove such contaminates include elongated dry-strips or regular wet-chemistries using solutions such as Piranha (H2SO4/H2O2) or SC1 (H2O/H2O2/NH4OH) solutions. Although these cleaning techniques have been suitable for their intended purposes, they have not been suitable in all cleaning situations.
It is against the above background that the present invention provides improvements and advancements over the prior art. In particular, the present invention overcomes the limitations of the prior art by washing a microelectronic substrate with either an ozonated ammonia water solution or hot phosphoric acid after a dry stripping process to address interfacial carbon chemisorbed on polysilicon during deposition of an amorphous carbon mask.
In one exemplary embodiment, a method of removing interfacial carbon from a semiconductor wafer comprises providing the semiconductor wafer with interfacial carbon and using a first cleaning solution to perform a first cleaning process to remove the interfacial carbon on or near a surface of the semiconductor wafer. The first cleaning solution being either deionized water (DI water) containing ozone (O3) and ammonia (NH3), or a solution of hot phosphoric acid (H3PO4). The method also includes using a second cleaning solution to perform a second cleaning process to remove the residual first cleaning solution on the surface of the semiconductor wafer, the second cleaning solution being DI water, and spin-drying the semiconductor wafer.
These and other features and advantages of the invention will be more fully understood from the following description of preferred embodiments of the invention taken together with the accompanying drawings.
The following detailed description of the embodiments of the present invention can be best understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals and in which:
In the following description, certain specific details are set forth in order to provide a thorough understanding of various embodiments of the present invention. However, one skilled in the art will understand that the present invention may be practiced without these details. In other instances, well-known structures, processes, and materials associated with microelectronic device fabrication have not been shown in detail in order to avoid unnecessarily obscuring the description of the embodiments of the invention.
In embodiments represented by
In the illustrated embodiment, multiple layers 122 and 124 are formed by growing or deposition or by other known processes. For example, in one embodiment, the tunneling oxide layer 122 may be formed either by a thermal oxidation of the semiconductor substrate 110 or by a chemical vapor deposition (CVD) process. In one embodiment, the polysilicon layer 124 is deposited using a low-pressure CVD process.
Patterned amorphous carbon layer 130 of device 100 is formed with a thickness T2 which is sufficient to properly etch a device structure, such as device structure 120. In this example, the patterned amorphous carbon layer 130 is used as a mask to etch either a portion of device structure 120, or the entire device structure 120. In some embodiments, at least a portion of substrate 110 is also etched using the amorphous carbon layer 130 as a mask.
In using amorphous carbon layer 130 as a mask, the inventors have found that interfacial carbon 126, in the form of strongly bonded silicon-carbon bonds, is present in layer 124 when comprising polysilicon. It has been found that the interfacial carbon 126 originated during the deposition of the amorphous (or transparent) carbon layer in which the organic precursor used to form the amorphous carbon layer 130, forms chemisorbed carbon at temperatures above 300° C. It has also been determined by the inventors that the presence of the interfacial carbon 126 if not addressed (e.g., greatly reduced or substantially eliminated), will retard oxide growth in later processing steps, such as for example, providing a dielectric layer on polysilicon layer 124 that is used to form a gate on the substrate surface. Carbon remaining in the oxide dielectric can also be a source of traps and lead to degradation of device reliability through dielectric leakage and breakdown voltages.
After mask 130 is removed as shown in
In some embodiments, multiple layers 122, 124, and 128 are arranged in an order different from the order shown in
Referring
As mentioned above, device 100 comprises mask 130 (
Next the device 100 is subjected to a first cleaning process, in step 320a (
In the first cleaning process, in one embodiment ozone is introduced into a tank 250 containing a mixture of DI water and diluted ammonia. If desired, water may be used in place of DI water. The ozone may be introduced through dispersion tubes 260 located in the bottom of the tank 250. The mixture is allowed to become saturated with ozone for about 3 minute prior to being pumped by pump 270 and sprayed onto the device 100 via nozzle 220 with the resulting first cleaning solution.
In step 330, a second cleaning process utilizing a horizontal rotational rate ranging from 50 to 2500 rpm and having a duration of ranging from about 20 to about 300 seconds, is performed on the surface of the device 100. A second cleaning solution, comprising DI water, is sprayed onto the surface of the device 100 via the second nozzle 230 to remove the residual first cleaning solution on the surface of the device.
In step 340, it is determined if optional cleaning processes should be carried out. If so, in step 350 an optional third cleaning process, utilizing a horizontal rotational speed of the device 100 ranging from 500 to 2500 rpm and having a duration of approximately 5 to 40 seconds, is performed on the surface of the device 100. A third cleaning solution, comprising a standard cleaning solution (SC-1), such as 5:1:1 solution of water, hydrogen peroxide (H2O2), and ammonium hydroxide (NH4OH), is sprayed onto the surface of the semiconductor wafer 100 via the third nozzle 240 to remove residual particles on the surface of the device 100.
In step 360, an optional fourth cleaning process, utilizing a horizontal rotational speed of the device 100 ranging from 500 to 2000 rpm and having a duration of approximately 5 to 40 seconds, is performed on the surface of the device 100. The second cleaning solution, comprising DI water, is sprayed onto the surface of the device 100 via the second nozzle 230 to remove the residual third cleaning solutions from the surface of the device 100.
Finally, in step 370 the device 100 is spun dry at a horizontal rotational speed ranging from 2000 to 2500 rpm for approximately 10 to 20 seconds.
In another embodiment of the present invention depicted by
After the hot phosphoric acid cleaning process, the remaining cleaning processes 330, 340, 370 may then be carried out including the optional cleaning processes 350 and 360, if desired. In another embodiment, a rinse may be performed by, for example, placing the device in a cascade overflow of DI water for approximately 5 minutes after immersion in the hot phosphoric acid. Ozone may be introduced in the cascading DI water rinse. The rinse steps may be performed in a manner other than a cascade overflow bath, such as immersion in a dump rinser, centrifugal spray cleaning, or through the use of rinser dryer devices.
The cleaning process of the present invention may be used for initially preparing the surface of the substrate 110, or may be used at other points in the fabrication process where interfacial carbon may be present and a clean surface is desired. In one embodiment, the cleaning step is used after dry-strip and prior to deposition of a dielectric oxide on a polysilicon layer. In such an embodiment, no retardation in oxide growth on the polysilicon layer was observed by using the above disclosed cleaning process. The first cleaning solution has an extremely high selectivity to polysilicon and oxide which is extremely important for flash memory manufacturing having a design scale below 70 nm.
Additionally, it is to be appreciated that undensified high density plasma (HDP) TEOS, formed by HDPCVD, in the field and polysilicon of a floating gate are exposed after patterning and mask removal. The first cleaning process using the described ammonia-ozonated DI water has an etch-rate of less than 1 A/min of polysilicon and less than 1.5 A/min for undensified HDP. The processes of the present invention thus enable the formation of a high-quality gate stack when using amorphous carbon to pattern a floating poly for use in NAND flash cell geometries. The present invention also reduces the requirement of using extra processing to reduce carbon formation—such as the use of any barrier layer (such as nitride) between the polysilicon and amorphous carbon to minimize interfacial carbon formation during deposition of the mask.
Although specific embodiments of, and examples for, the present invention are described herein for illustrative purposes, various equivalent modifications can be made without departing from the spirit and scope of the invention, as will be recognized by those skilled in the relevant art. The teachings provided herein of the present invention can be applied to other processes for microelectronic device fabrication, not necessarily the exemplary microelectronic device fabrication process generally described above. For example, rinse steps may be added or deleted while realizing the advantages of the invention.
These and other changes can be made to the invention in light of the above detailed description. In general, in the following claims, the terms used should not be construed to limit the invention to the specific embodiments disclosed in the specification and the claims, but should be construed to include all processes and compositions that operate in accordance with the claims to provide a method for manufacturing microelectronic devices. Accordingly, the invention is not limited by the disclosure, but instead its scope is to be determined entirely by the following claims.
This application is a continuation of U.S. patent application Ser. No. 10/951,997, filed Sep. 28, 2004.
Number | Name | Date | Kind |
---|---|---|---|
4738935 | Shimbo et al. | Apr 1988 | A |
5789360 | Song et al. | Aug 1998 | A |
5821158 | Shishiguchi | Oct 1998 | A |
5966611 | Jost et al. | Oct 1999 | A |
6100198 | Grieger et al. | Aug 2000 | A |
6133109 | Nam | Oct 2000 | A |
6273108 | Bergman et al. | Aug 2001 | B1 |
6416586 | Ohmi et al. | Jul 2002 | B1 |
6423146 | Fukazawa | Jul 2002 | B1 |
6579810 | Chang | Jun 2003 | B2 |
6607967 | Pallinti et al. | Aug 2003 | B1 |
6624022 | Hurley et al. | Sep 2003 | B1 |
6690051 | Hurley et al. | Feb 2004 | B2 |
6756631 | Wu | Jun 2004 | B2 |
6760252 | Mikolajick | Jul 2004 | B2 |
6884733 | Dakshina-Murthy et al. | Apr 2005 | B1 |
20010037822 | Elsawy et al. | Nov 2001 | A1 |
20020066717 | Verhaverbeke et al. | Jun 2002 | A1 |
20020189635 | Bodet et al. | Dec 2002 | A1 |
20030206445 | Forbes | Nov 2003 | A1 |
20040002430 | Verhaverbeke | Jan 2004 | A1 |
20040194813 | Riggs et al. | Oct 2004 | A1 |
20050074986 | Autryve et al. | Apr 2005 | A1 |
20050085072 | Kim et al. | Apr 2005 | A1 |
Number | Date | Country |
---|---|---|
1235258 | Aug 2002 | EP |
Number | Date | Country | |
---|---|---|---|
20060260646 A1 | Nov 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10951997 | Sep 2004 | US |
Child | 11493053 | US |