This present application relates generally to methods for center locating cutter teeth on turbine blades. More specifically, but not by way of limitation, the present application relates to methods for replacing cutter teeth positioned on the suction side of the tip shroud with cutter teeth positioned in the center of the tip shroud.
A turbine assembly, such as that used in power generation, typically generates rotating shaft power by expanding hot compressed gas produced by combustion of a fuel. Gas turbine buckets or blades generally have an airfoil shape designed to convert the thermal and kinetic energy of the flow path gases into mechanical rotation of the rotor.
The turbine buckets are frequently provided with tip shrouds. The tip shroud prevents failure of the airfoil in high cycle fatigue due to vibratory stresses. Further, a tip shroud seal typically projects radially outwardly from the outermost surface of the shroud, and extends circumferentially between opposite ends of the shroud in the direction of rotation of the turbine rotor. The tip shroud seal conventionally extends radially into a groove formed in a stationary shroud opposing the rotating tip shroud. In some designs, the stationary shroud has a honeycomb pathway. Rather than providing a zero tolerance seal between the tip shroud and the stationary shroud, resulting in instability of the airfoil, it has been found desirable to provide a leakage path over the tip shroud seal which will remove such instability. Typically, a cutter tooth is provided at the leading edge (also referred to as the suction side) of the tip shroud seal so as to cut a wider groove in the honeycomb pathway of the stationary shroud than the width of the tip shroud seal. This enables leakage flow between the high and low pressure regions on opposite sides of the tip shroud seal within the groove. While this results in an undesirable decrease in pressure drop across the airfoil with resulting diminishment of sealing capability, the lost efficiency is compensated by an increase in the stability of the airfoil.
Tip shrouds, however, are subject to creep damage due to the combination of high temperatures and centrifugally induce bending stresses. The failure of a single bucket or blade may cause the entire turbine to be taken offline. In addition to the downtime, such a repair of a bucket is time consuming and/or expensive. There is a desire, therefore, for a turbine blade shroud with improved ability to handle temperature and stress. Such a turbine blade shroud should provide increased lifetime while also increasing the efficiency of the turbine system as whole.
The present application thus describes a method for extending the operating life of a tip shrouded turbine blade that includes: 1) removing an end located cutter tooth from a seal rail of a tip shroud; and 2) attaching a center located cutter tooth to the seal rail of the tip shroud. The end located cutter tooth may include a cutter tooth located at the end of one of the suction side and pressure side of the seal rail of the tip shroud. The center located cutter tooth may include a cutter tooth that is located in the approximate center of the seal rail of the tip shroud.
In some embodiments, the removing the end located cutter tooth includes machining the end located cutter tooth until the thickness of the end located cutter tooth is approximately the same as the thickness of the other areas of the seal rail. In some embodiments, the attaching the center located cutter tooth may include welding the center located cutter tooth to the seal rail. In other embodiments, the attaching the center located cutter tooth may include brazing the center located cutter tooth to the seal rail. In other embodiments, the attaching the center located cutter tooth may include building up material by one of welding and brazing.
In some embodiments, the center located cutter tooth may include a generally rectangular shape. Once attached, an outer radial edge of the center located cutter tooth may align with an outer radius of the seal rail. The center located cutter tooth may extend radially inward to the approximate location of the beginning of a seal rail fillet. The radial height of the center located cutter tooth may be approximately half of the radial height of the seal rail. The center located cutter tooth may extend approximately halfway down the height of the seal rail.
In some embodiments, the center located cutter tooth may be attached to the seal rail such that the center located cutter tooth is inside the airfoil if it were projected radially outward from the narrowest point below a tip shroud fillet. In other embodiments, the center located cutter tooth may be attached to the seal rail such that the center located cutter tooth is inside the tip shroud fillet if it were projected radially outward.
The tip shrouded turbine blade may be configured to operate in conjunction with one of a honeycomb shroud and an abradable coating shroud. The tip shrouded turbine blade may be configured to operate in a gas turbine. The tip shrouded turbine blade may be configured to operate in a 9FA+e turbine.
The present application further describes a method for extending the operating life of a tip shrouded turbine blade that includes the steps of: 1) removing an end located cutter tooth from a seal rail of a tip shroud, the end located cutter tooth including a cutter tooth located at the end of one of the suction side and pressure side of the seal rail of the tip shroud; and 2) attaching a center located cutter tooth to the seal rail of the tip shroud, the center located cutter tooth including a cutter tooth that is located in the approximate center of the seal rail of the tip shroud. In such method, the center located cutter tooth may be attached to the seal rail such that the center located cutter tooth is inside the airfoil if it were projected radially outward from the narrowest point below a tip shroud fillet. The attaching the center located cutter tooth may include building up material by one of welding and brazing.
The present application further describes a method for extending the operating life of a tip shrouded turbine blade that includes the steps of: 1) removing an end located cutter tooth from a seal rail of a tip shroud, the end located cutter tooth including a cutter tooth located at the end of one of the suction side and pressure side of the seal rail of the tip shroud; and 2) attaching a center located cutter tooth to the seal rail of the tip shroud, the center located cutter tooth including a cutter tooth that is located in the approximate center of the seal rail of the tip shroud. In such a method, the center located cutter tooth may be attached to the seal rail such that the center located cutter tooth is inside the tip shroud fillet if it were projected radially outward.
These and other features of the present application will become apparent upon review of the following detailed description of the preferred embodiments when taken in conjunction with the drawings and the appended claims.
Referring now to the drawings, in which like numbers refer to like elements throughout the several views,
A tip shroud 14 may be positioned at the top of the airfoil 12. The tip shroud 14 essentially is a flat plate supported towards its center by the airfoil 12. Positioned along the top of the tip shroud 14 may be a seal rail 16. The seal rail 16, as described above, prevents the passage of flow path gases through the gap between the tip shroud 14 and the inner surface of the surrounding components.
Positioned on the seal rail 130 may be the cutter teeth 104. In this example, the cutter teeth 104 are positioned about the center of the seal rail 130. A first cutter tooth 150 and a second cutter tooth 160 are shown. As illustrated, in some embodiments, the cutter teeth 104 may be positioned about the center of the seal rail 130 such that they are within the phantom lines of the airfoil 110. In other embodiments, the cutter teeth 104 may be positioned about the center of the seal rail 130 such that they are within the phantom lines of the tip shroud fillet 122. As shown, the first tooth 150 and the second tooth 160 may be offset somewhat so as to accommodate the overall shape of the tip shroud 1.20. As one of ordinary skill in the art will appreciate, this center location may extend the life of the turbine bucket 100 by decreasing the stress present in the tip shroud fillet 122 below the tip shroud 120. This location also provides a more symmetrical design to the tip shroud 120 as a whole.
Thus, as shown in
With the cutter teeth 206 removed, one or more center located cutter teeth 220, which may include a first center located cutter tooth 222 and a second center located cutter tooth 224, may be attached to the seal rail 204. As used herein, the term “center located cutter teeth” is defined to include cutter teeth that are located in the approximate center of the seal rail. The center located cutter teeth 220 may be attached pursuant to conventional processes, including welding or brazing. As used herein, attaching via welding includes both welding a piece to the seal rail and creating a center tooth with weld buildup. As used herein, attaching via brazing includes both brazing a piece to the seal rail and creating a center tooth with brazing buildup. In some embodiments, the shape of the center located cutter teeth 220 may be rectangular when viewed axially from either the front or rear of the component, though those of ordinary skill in the art will appreciate that other shapes are possible. Once installed on the seal rail 204, the outer radial edge of the center located cutter teeth 220 may align with the outer radius of the seal rail. From there the center located cutter teeth 220 may extend radially inward to the approximate location of the beginning of the seal rail fillet 228, which constitutes the transition fillet between the seal rail 204 and the tip shroud 202. In general, this means the center located cutter tooth 220 extends approximately halfway down the height of the seal rail 204, as shown in
As previously described, the center located cutter teeth 220 may be positioned along the seal rail 204 such that they are inside the airfoil if it were projected radially outward from the narrowest point below the tip shroud fillet (see
From the above description of preferred embodiments of the invention, those skilled in the art will perceive improvements, changes and modifications. Such improvements, changes and modifications within the skill of the art are intended to be covered by the appended claims. Further, it should be apparent that the foregoing relates only to the described embodiments of the present application and that numerous changes and modifications may be made herein without departing from the spirit and scope of the application as defined by the following claims and the equivalents thereof.