METHOD TO CONTROL SPIDER MITES

Abstract
The present invention relates to a method of controlling spider mites on plants. More specifically, the invention relates to plants expressing RNAi of one or more essential genes of the spider mite, and the use of those plants to control the spider mite proliferation into pest proportions. In a preferred embodiment, the spider mite is Tetranychus urticae.
Description
TECHNICAL FIELD

The present invention relates to a method to control spider mites on plants. More specifically, the invention relates to plants, expressing RNAi of one or more essential genes of the spider mite, and the use of those plants to control the spider mite proliferation into pest proportions. In a preferred embodiment, the spider mite is Tetranychus urticae.


BACKGROUND

Spider mites are arthropods, belonging to the subphylum of chelicerates (scorpions, horseshoe crabs, spiders, mites and ticks). The mites include different species that can be parasitic on vertebrate and invertebrate hosts, predators, or plant feeding. Within the mites, the spider mites group the web-spinning species that feed on plants.


Spider mites, and particularly T. urticae (two-spotted spider mite) is one of the major pests in agriculture. It is extremely polyphagous and feed on over 1000 plant species. Moreover, it shows a rapid development (generation time of seven days in a hot season). T. urticae represent a key pest for greenhouse crops, annual field crops and many horticultural crops, such as peppers, tomatoes, potatoes, beans, corn, strawberries and roses. It is widespread all over the world, and occurs freely in nature in regions with a warm and dry climate.


Spider mites cause yellow flecks on the leaf surface, and upon heavy infestation, leaves become pale, brittle and covered in webbing. This damage can cause severe reduction in yield.


Spider mites are particularly important pests for vegetables. Spider mites cause significant damage to greenhouse tomato, cucumber and pepper crops.


Given the short generation time and high reproduction rate of spider mites, it is expected that spider mites, with the climate change, will become one of the major pests for crops as well. Devastating effects of spider mites are already creating enormous problems for the agricultural production in Southern Europe.


Spider mite control, currently, is mainly done by specific miticides, as normal insecticides have normally little effect on mites. Miticides have been disclosed, amongst others, in WO03014048 and in WO2007000098. However, miticides are polluting chemicals, and the application may not always be efficient, as spider mites are often protected by a web under the leaves.


Recently, the RNA interference (RNAi) technology was developed as an attractive alternative in the control of insect pests (Gordon and Waterhouse, 2007; Baum et al., 2007; Mao et al., 2007). RNAi is based on sequence-specific gene silencing that is triggered by the presence of double-stranded RNA (dsRNA). RNAi can be used in plants, animals and insects, but the mechanism depends upon endogenous enzymes present and the efficacy depends upon the host organism used (Gordon and Waterhouse, 2007). Khila and Grbic (2007) demonstrated that dsRNA and short interfering RNA (siRNA) can be used for gene silencing in T. urticae, by using a maternal injection protocol to deliver interfering RNAs into the maternal abdomen. This methodology has been used to silence Distal-less, a conserved gene involved in appendage specification in metazoans.


However, gene silencing has never been used in pest control for spider mites. One reason is the uncertainty whether RNAi, supplied in the food, would be functional. Another reason is the lack of sequence data of spider mites, making a selection of mite-specific genes that are lethal when knocked out by RNAi impossible.


DISCLOSURE

We sequenced and annotated the genome of T. urticae. This effort allowed us to pinpoint a set of essential mite-specific genes without relevant plant or mammalian orthologs. From these sequences, RNAi loops were designed that were specific for one essential mite gene, without interfering with the expression in plants or in mammals. Surprisingly, we found that expressing RNAi in a plant derived from those genes, is sufficient to interfere with the spider mite's development and physiology that is feeding on this plant, resulting in death as a consequence.


A first aspect of the invention is a transgenic plant expressing RNAi derived from a spider mite. Preferably, RNAi is derived from an essential gene of the spider mite. Even more preferably, the RNAi is derived from a gene-specific region (GSR) of the essential genes. A “transgenic plant” can be any plant that is, as wild-type, sensitive to spider mite infection, including, but not limited to, members of the citrus family (lemon, oranges, . . . ), grapefruit, different varieties of Vitis, corn, as well as Solanaceae like tomatoes, cucumber, . . . and ornamental flowers. “Derived” as used here, means that the gene region that is transcribed (including the non-coding regions) is used to design the RNAi; preferably, the RNAi comprises an antisense fragment of the transcribed region. Even more preferably, it consists of an antisense region of the transcribed region. The RNAi comprises only a part of the transcribed mRNA. A “GSR” is a gene region without homology with other mite genes and without homology with the host genome, as determined according to Example 1. A GSR allows the design of RNAi that is specific for the target gene, without interfering with other mite genes or with plant or mammalian genes. An “essential gene” as used here means that the inactivation of the gene is blocking growth and/or development of the mite and may result in the death of the mite. Preferably, the essential gene is selected from the group consisting of GABA receptor gene, stem cell gene, neutralized gene, HOX gene, DEV gene, Cytochrome C gene, Hedgehog gene, NADH dehydrogenase gene, Ryanoid receptor gene, sodium channel gene, acetylcholine esterase gene, son of sevenless gene, prospero gene, acetyl choline receptor gene and distal-less gene (Dll). Preferably, the spider mite is T. urticae. In one preferred embodiment, the RNAi is derived from the T. urticae distal-less gene (RNAi indicated as Tetur17g02200-SEQ ID NO:86); preferably, it is comprising the sequence between the primers as shown in FIG. 1. In another preferred embodiment, the RNAi is comprising a sequence selected from the group consisting of SEQ ID NOS:1-87. Even more preferred, the RNAi is comprising a sequence; even more preferably, consisting of a sequence selected from the group consisting of SEQ ID NOS:1, 2, 4, 6, 9, 14, 18, 20, 21, 22, 24, 33, 34, 35, 36, 37, 38, 39, 46, 49, 50, 63, 75, 86 and 87. Most preferably, the RNAi is comprising a sequence; even more preferably, consisting of a sequence selected from the group consisting of SEQ ID NOS:2, 18, 22, 75 and 86.


Although, preferably, the inactivation of the mites is obtained by expressing a single RNAi species, it is clear for the person skilled in the art that the same effect may be obtained by expressing more than one RNAi species, in order to obtain a stronger inhibition.


Another aspect of the invention is a method to improve mite resistance in plants, comprising the expression of RNAi derived from spider mite. Preferably; the RNAi is derived from an essential gene from spider mite; even more preferably, the RNAi is derived from a gene-specific region (GSR) of the essential gene. Preferably, the essential gene is selected from the group consisting of GABA receptor gene, stem cell gene, neutralized gene, HOX gene, DEV gene, Cytochrome C gene, Hedgehog gene, NADH dehydrogenase gene, Ryanoid receptor gene, sodium channel gene, acetylcholine esterase gene, son of sevenless gene, prospero gene, acetyl choline receptor and distal-less gene (Dll). Preferably, the spider mite is T. urticae. In one preferred embodiment, the RNAi is derived from the T. urticae distal-less gene; preferably it is comprising the sequence between the primers as shown in FIG. 1. In another preferred embodiment, the RNAi is derived from a sequence comprising a sequence selected from the group consisting of SEQ ID NOS:1-87. Even more preferred, the RNAi is comprising a sequence; even more preferably, consisting of a sequence selected from the group consisting of SEQ ID NOS:1, 2, 4, 6, 9, 14, 18, 20, 21, 22, 24, 33, 34, 35, 36, 37, 38, 39, 46, 49, 50, 63, 75, 86 and 87. Most preferably, the RNAi is comprising a sequence; even more preferably, consisting of a sequence selected from the group consisting of SEQ ID NOS:2, 18, 22, 75 and 86.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1: Sequence of the Tetranychus urticae distal-less gene (Dll) (SEQ ID NO:264) and the primers used (TuDII_ARBF and TuDII_ARBR) (SEQ ID NO:265 and 266, respectively). The primer regions in the distal-less sequence are underlined. The fragment in between the primers is used in the RNAi construct. The amino acid sequence is identified as SEQ ID NO:268.



FIG. 2: Construct used to express TuDll-RNAi transgene in Arabidopsis.



FIG. 3: Arabidopsis plants expressing dsRNA against Tu-D11 suppress mite development. A) Northern blot analysis showing siRNAs against TuDll spider mite gene; Col is a control, not expressing the transgene. B) Effect of plant-produced TuDll-RNAi (Lines 1-5) on spider mite development. Note that number of eggs deposited on transgenic plants is lower than in the Col control. Also, the number of eggs correlates with the amount of TuDll-RNAi expressed.



FIG. 4: Plasmid map of pB-AGRIKOLA-Tetur17g02200.





DETAILED DESCRIPTION OF THE INVENTION
Examples
Example 1
Growth Inhibition of T. urticae by Feeding on TuDll-RNAi Transgenic Arabidopsis

The T. urticae ortholog of the drosophila Dll distal-less gene was identified in the genomic sequence, using the motifs of the distal-less family (Fonseca et al., 2009). Distal-less is a transcription factor that plays an important role in neuronal development (Cobos et al., 2005). An RNAi fragment is designed on the base of its specificity (no significant homology with other T. urticae genes, neither with the Arabidopsis genome). The RNAi fragment, as well as the primers used to isolate it, is shown in FIG. 1. The fragment was amplified, and cloned under control of the CaMV 35S promoter, to result in the Ti-based plasmid pFGC5941 (FIG. 2). The plasmid was transformed using the Agrobacterium-mediated transformation into Arabidopsis thaliana (Col). The expression of the RNAi in different transformed lines was tested by Northern blot (FIG. 3, Panel A). Spider mites were allowed to feed on five transformed lines and a control plant. All transformed plants showed an inhibition of mite development, both of the moving stages and the number of eggs on the plant. A correlation between the expression level of RNAi and the number of eggs on the transgenic plants was found (FIG. 3, Panel B), proving that the expression in plants of RNAi of an essential spider mite gene is indeed an efficient way to control the pest.


Example 2
RNAi Design for Other Essential Genes

From a list of candidate Tetranychus urticae target genes, coding sequences (CDS, from start-to-stop codons) were collected from the available predicted genes. For each of those genes, overlapping 21mer sequences were designed covering the whole CDS sequences. This was done by extracting, starting from the first nucleotide of the CDS, sub-sequences of 21 nt, with a sliding window, with steps of one nt. For each CDS from the target genes, n−20 oligos of 21 nt were designed, whereby n is the length of the CDS.


Each of these 21mers was blasted (using BLASTN) against the whole Tetranychus urticae genome. In the case of a perfect match, an e-value of 1e−4 is obtained. To allow some mismatch the threshold was set at 0.01. The threshold was lowered to ensure that no 21mer would hit another region on the genome with a small sequence difference of 1 or 2 nt, thereby ensuring the gene specificity for the RNAi.


Gene-specific regions (GSR), ideally being between 150 and 500 nt, were identified as regions for which, over the whole region, none of the consecutive 21mers derived from this region gave a hit with another sequence from the T. urticae (using the threshold as described above).


The GSR that did meet the above conditions were subsequently blasted (BLASTN, same thresholds) against the Arabidopsis genome. Arabidopsis was chosen, as it is used as host in the proof of principle experiments. This step is to make sure that no Arabidopsis genes could be targeted by the RNAi constructs introduced and that might thus affect Arabidopsis directly; GSR can be blasted against other genomes for optimizing the RNAi in other plant hosts.


All GSR that fulfilled the above criteria (SEQ ID NOS:1-85) were then used as input for primer design. The primers where designed using the OSP perl package, and as a parameter, the melting temperature was set at the 55° C. to 65° C. range in a first run (Table 1). Those targeted GSR that did not succeed in obtaining a primer pair were submitted again to the same design procedure, with slightly more relaxed primer lengths allowed (Table 2). If, with those conditions, still no primers could be designed, melting temperature range was relaxed (50° C. to 70° C.) for a third attempt (Table 3).









TABLE 1







primers designed after 1 run









SEQ_ID
5_PRIMER
3_PRIMER





   0_197_
ATAAAATCTCCAAGCATAGTACGAGTT (SEQ ID NO: 88)
TTAACCACAGTCACTCGACCTTCA (SEQ ID NO: 89)


Tetur41g00290







   0_228_
No Primers could be designed with these



Tetur30g02230
criteria






1066_1216_
TGATTGAATTCACTTTTTCGCACAT (SEQ ID NO: 90)
AAATAACTGAATCTGGCCAAGTTATTA (SEQ ID NO: 91)


Tetur01g13610







1126_1276_
No Primers could be designed with these



Tetur19g01440
criteria






 114_520_
CTAAAAATCTAATTGCAGTGGTAG (SEQ ID NO: 92)
CGTTTATCTGGCAATGGAG (SEQ ID NO: 93)


Tetur01g13610







1173_1324_
AATGTTTTCTTTGTGCAAGTTTCTTATC (SEQ ID NO: 94)
GCTGGAAGAGTAAAATGTTTAGGT (SEQ ID NO: 95


Tetur01g21600







1186_1376_
ACCTGAGAATCTTTGAGACC (SEQ ID NO: 96)
ATCCTCATCACAACAACCTGAC (SEQ ID NO: 97)


Tetur14g00120







1204_1399_
TAACCTCTTGATCCAGTAAAGCTTCAAT (SEQ ID NO: 98)
GTTTATTAGCTGGTCGTTATGCAC (SEQ ID NO: 99)


Tetur09g01840







1224_1532_
CAAGGAGGTTTCATCAGGATA (SEQ ID NO: 100)
ATGAACATAATTAAAACCTGGTCTTTCG (SEQ ID NO: 101)


Tetur31g00990







1236_1391_
No Primers could be designed with these



Tetur20g01760
criteria






1266_1490_
CTGTCGATTGAACCCTGCAT (SEQ ID NO: 102)
TGTGAACATTGTTCCCATCAACAT (SEQ ID NO: 103)


Tetur16g00420







1326_1516_
No Primers could be designed with these



Teturl9g01440
criteria






1506_1673_
TAAGCATAATAAGTTCTGATAACATCC (SEQ ID NO: 104)
TCTTTGAATGTTGAGTCGGAATG (SEQ ID NO: 105)


Tetur01g13610







1564_1794_
No Primers could be designed with these



Tetur20g01760
criteria






 161_321_
CACAAACATAACTTGGCCTAAATCT (SEQ ID NO: 106)
AAGATCATCGTTTAATGGTAATGTTGT (SEQ ID NO: 107)


Tetur02g06230







 173_391_
CCACTGTTGGTGTAAGTTGTGAAT (SEQ ID NO: 108)
TTCAATCACTTGTCGATATGAGC (SEQ ID NO: 109)


Tetur01g12090







1761_1957_
TGGATTGTTGATGGTTAGACTC (SEQ ID NO: 110)
GCTGCTGCGGCTGCAACT (SEQ ID NO: 111)


Tetur01g13860







1812_1966_
No Primers could be designed with these



Tetur06g02480
criteria






1821_1979_
TGATTGGCAACAATTACTCGATAT (SEQ ID NO: 112)
TTTAATGTTGCTAAAAGTGGGCCCAAC (SEQ ID NO: 113)


Tetur20g01760







 185_411_
TGGGCTACTGATACCGAGTT (SEQ ID NO: 114)
GCCTGACATAGATGGATGGGA (SEQ ID NO: 115)


Tetur05g05120







 200_356_
TGAGATGAGTATTTACAGGGG (SEQ ID NO: 116)
TTACGTTCTTCCTCCTATTCTTCA (SEQ ID NO: 117)


Tetur01g12340







2025_2185_
AATTATTGTTGTCACTAATTTCGTGTAC (SEQ ID NO:
CACCATCATCAAAAAGTAAATGATTCC (SEQ ID NO: 119)


Tetur23g02710
118)






 210_397_
ATGGTAACCAAGTTTCAGCTAGA (SEQ ID NO: 120)
CAAATCAGGTTAGCTCATACAGACA (SEQ ID NO: 121)


Tetur12g05390







2129_2321_
No Primers could be designed with these



Tetur20g01760
criteria






 226_459_
AACATAACCATAAACATCACCACC (SEQ ID NO: 122)
GTGTAACTGTTGGTGATCCAGTTC (SEQ ID NO: 123)


Tetur01g21600







2296_2467_
No Primers could be designed with these



Tetur01g13860
criteria






 232_580_
CAACAAATCCATATTCAGTCAAGA (SEQ ID NO: 124)
TTCAGAAGATTCAAGTTACTCATGTC (SEQ ID NO: 125)


Tetur13g05360







2353_2823_
CCTGATTTTTAGTAAGCCCATAAATCC (SEQ ID NO: 126)
CATTTTATAATTATTTGACTGCCTGGGT (SEQ ID NO: 127)


Tetur06g02480







2371_2583_
GATAAATTTGTCCCAATAACATTCGTAA (SEQ ID NO:
AATATGAAGATGATTCATCATACTCTG (SEQ ID NO: 129)


Tetur23g02710
128)






2380_2694_
ATAAGCAGGAGGAGGTTGA (SEQ ID NO: 130)
TTAAACGAAAAAGAAGTCGAACTGG (SEQ ID NO: 131)


Tetur16g00420







 409_2604_
CAGTTCAAAGTCACAATTCTCTTTACC (SEQ ID NO: 132)
CAACTACTTGAATCGTTAAGAATTTTCC (SEQ ID NO: 133)


Tetur19g01440







 246_442_
No Primers could be designed with these



Tetur01g08220
criteria






2581_2750_
No Primers could be designed with these



Tetur01g13860
criteria






2582_2766_
No Primers could be designed with these



Tetur20g01760
criteria






 259_421_
No Primers could be designed with these



Tetur07g08130
criteria






2651_2803_
CAACGATTTCTCTCTCCAACCA (SEQ ID NO: 134)
TGCCAGGCAATTGACTTTGTACGA (SEQ ID NO: 135)


Tetur19g01440







2685_2839_
TGTTTGACTGCCGATGAGA (SEQ ID NO: 136)
TTGTTGAATGAAGAAGACGACCTTT (SEQ ID NO: 137)


Tetur19g0154







2753_2877_
ATGAATGCTTTTGCCAACGG (SEQ ID NO: 138)
GTTAATATTTGTTCTAGCTCTAACTAG (SEQ ID NO: 139)


Tetur06g02480







2809_2985_
AATCAATTTTTTATGCTTAGGATGGAG (SEQ ID NO: 140)
GAGAAATCGTTGAAACGGTCAACTT (SEQ ID NO: 141)


Tetur19g01440







 281_523_
TAATGGGCAAAGGAATGGGCGA (SEQ ID NO: 142)
CTTTTCAATCTTTTTGTATATACGACTC (SEQ ID NO: 143)


Tetur16g02700







3048_3213_
TGAAACTAAATTATGATGGTGTCGCTT (SEQ ID NO: 144)
TACATTTTTTCTGGAGCGGTTG (SEQ ID NO: 145)


Tetur06g02480







3059_3244_
CAAGAGAAGCTTTTCTAACAACTA (SEQ ID NO: 146)
GGTACTCATCTCTGCTCACCAA (SEQ ID NO: 147)


Tetur20g01760







 305_460_
TTGAACCCAATCCATCTGAATTG (SEQ ID NO: 148)
TGGAGTGGCCTTAATTGGAGT (SEQ ID NO: 149)


Tetur16g00420







3221_3403_
No Primers could be designed with these



Tetur06g02480
criteria






 329_689_
AATTTGTCCACATTTTGTCGTAAAG (SEQ ID NO: 150)
CAACAACTTATCACCAATAACAGCA (SEQ ID NO: 151)


Tetur01g13860







3380_3547_
GTTCTAAATTTTTGAAGGCAGCTA (SEQ ID NO: 152)
AAATGATTCTGTTATACCAACAGCAGT (SEQ ID NO: 153)


Tetur20g01760







 339_590_
GGTATAGTAATCTCGGGTCCTAA (SEQ ID NO: 154)
CAAACACCAAACAATGACAATCAA (SEQ ID NO: 155)


Tetur06g02480







3466_3739_
TTGTTGTTGTTGGTGAAACAGTTGC (SEQ ID NO: 156)
CATTACCCACATCAACATTTATGG (SEQ ID NO: 157)


Tetur19g01440







 347_817_
GAGCATCGGAGGTGTCAA (SEQ ID NO: 158)
GACAAAAAAAGGTTATGTTCGTGG (SEQ ID NO: 159)


Tetur18g02240







 365_571_
No Primers could be designed with these



Tetur21g03340
criteria






 372_523_
CTGAAGAGTGAAATGCTGATGATCGG (SEQ ID NO: 160)
CATCATCATCACCACAAGTCA (SEQ ID NO: 161)


Tetur19g01540







3732_3946_
CAGAGTCAATTGGTGAACCTT (SEQ ID NO: 162)
CAGGCACAGCAACATCAA (SEQ ID NO: 163)


Teturl9g01540







3986_4372_
No Primers could be designed with these



Tetur19g01540
criteria






 417_589_
CCCAACCTTTAACAAAAGAAAGCCTA (SEQ ID NO: 164)
ATGCAACAACAAGCTGCTTCA (SEQ ID NO: 165)


Tetur08g00500







 418_692_
TCATAATCATCCTCTTCGCCA (SEQ ID NO: 166)
GCATAAATAATAATCGTGATCCTTTAG (SEQ ID NO: 167)


Tetur19g01440







 445_650_
TGTTTCAATGTTGATTCCAATGCACT (SEQ ID NO: 168)
AAAATGTACAAAATGCTAGACCTGA (SEQ ID NO: 169)


Tetur31g01810







4484_4770_
AAAGTCAACAACAAGTTCTACATAAGAT (SEQ ID NO:
TCTTTACAAGGAAACTCGTGATCCTG (SEQ ID NO: 171)


Tetur20901760
170)






 463_801_
AACATCTTTAGCCATTTGACTGGCTG (SEQ ID NO: 172)
CCACGATTACAGATGGACCTGA (SEQ ID NO: 173)


Tetur04g03690







4678_4905_
TTGAAGAGGAATTGAATTGCCGCAAA (SEQ ID NO: 174)
ATCATCATCAAGCAGCCAC (SEQ ID NO: 175)


Tetur19g01540







 467_666_
TTGCCATTCAGCATATTTGACAGGAT (SEQ ID NO: 176)
CTTCACCAAGAATGGCCAC (SEQ ID NO: 177)


Tetur10g00660







  46_199_
TTGTTGTGGTTGTCGTTATAACCT (SEQ ID NO: 178)
GCGATTTAACCACACTTTTCCT (SEQ ID NO: 179)


Tetur14g00860







4755_5024_
TCCTCTTCATCGTCACCGAAACA (SEQ ID NO: 180)
ACCACAACCATCACATTGAAC (SEQ ID NO: 181)


Tetur01g13860







  47_255_
AAGGTAAGAGTTGAAAACAAATCCAAG (SEQ ID NO: 182)
AGATGATGCAGAAAGACAAACTCAG (SEQ ID NO: 183)


Tetur26g02710







*494_599_
TACTCCACTAGAGTTATATCATGAGTCT (SEQ ID NO:
AATGGACGATGAACTGGTTAAATT (SEQ ID NO: 185)


Tetur01g08060
184)






  50_206_
No Primers could be designed with these



Tetur01g21600
criteria






 518_697_
ACCAATAAACATTTCCTTGTGGTG (SEQ ID NO: 186)
CGAGAAATTTTTGGCTCGTGAT (SEQ ID NO: 187)


Tetur01g07940







 545_715_
CAAATTTACACTCTCGAGCGCGAGTT (SEQ ID NO: 188)
TTTGCTGGTTGTTGTTCCTAAAGCAT (SEQ ID NO: 189)


Tetur30g02230







5574_6004_
AAATCATTAATGGTAAGCCTTCAC (SEQ ID NO: 190)
AAACGAGAAAAGGCAACTAAATTGG (SEQ ID NO: 191)


Tetur20g01760







 566_774_
No Primers could be designed with these



Tetur07g01500
criteria






 588_759_
No Primers could be designed with these



Tetur07g05390
criteria






   5_168_
ACAAGTGATTGAATTGAATCGACAAA (SEQ ID NO: 192)
CAATGTGAACCAAAACACCTCT (SEQ ID NO: 193)


Tetur01g12090







6075_6322_
No Primers could be designed with these



Tetur20g01760
criteria






 643_815_
TATTTTTTTGCCTCGGGCTGAGGT (SEQ ID NO: 194)
ATCGTTATGATGATGAATTGGGTA (SEQ ID NO: 195)


Tetur13g05360







 653_806_
No Primers could be designed with these



Tetur19g01540
criteria






 694_948_
TTTACCTTTACGGGGAACCAA (SEQ ID NO: 196)
ATGTGGACAAATTTATGAACGAATCGCT (SEQ ID NO: 197)


Tetur01g13860







 701_937_
TCATTCGATTGGTAATGAATCGTATCT (SEQ ID NO: 198)
TGGTTTACCTTGTGATCAACTTAATCT (SEQ ID NO: 199)


Tetur21g03340







 719_896_
No Primers could be designed with these



Tetur01g12340
criteria






*747_1103_
CGAGTCGAGGTTGACCCACAG (SEQ ID NO: 200)
ATTTTTGTCTCCATTAACTATCGTGTTG (SEQ ID NO: 201)


Tetur18g02240







 747_966_
TCTTCTTTGTTGTTTCTTATTGGG (SEQ ID NO: 202)
CAATACAATGAACAAGAAATTGCAGAT (SEQ ID NO: 203)


Tetur30g02230







 748_1010_
TAAACTGGAGTGGTTCGCCGTA (SEQ ID NO: 204)
CTCAACAGCAGCAACATGAT (SEQ ID NO: 205)


Tetur16g02700







 751_910_
AAATTTTGGTGAATTCATATTCAGACTG (SEQ ID NO:
ATGGAAAAATCTTTGAGGTTAAACATGC (SEQ ID NO: 207)


Tetur31g01810
206)






 762_1003_
CACCTTTAACTCCTACTGGAA (SEQ ID NO: 208)
GGTTTAATGGATGACATTTATCAATGG (SEQ ID NO: 209)


Tetur07g08130







 764_938_
No Primers could be designed with these



Tetur07g05390
criteria






 819_1066_
CTTCCAACACTTGACGAG (SEQ ID NO: 210)
AATAAACATACAAACCGTGAGCC (SEQ ID NO: 211)


Tetur06g02480







 868_1056_
No Primers could be designed with these



Tetur14g00860
criteria






 943_1154_
TAAAGATCACCGGTTGTCTTGTA (SEQ ID NO: 212)
TTGGTGTTGGTGGCTCGT (SEQ ID NO: 213)


Tetur07g05390







 944_1108_
CAAATTCAACATTTTCGGCCATC (SEQ ID NO: 214)
TAAGCCATTAATTAGTGAGAAAGACAT (SEQ ID NO: 215)


Tetur19g01440







  94_564_
TACTTGGTGCACTTGTAACAATACGG (SEQ ID NO: 216)
TAACCACAGGCGATATGAG (SEQ ID NO: 217)


Tetur01g08060
















TABLE 2







primers designed after two runs









SEQ_ID
5_PRIMER
3_PRIMER





   0_228_
ATTTTTGTTTTCAAAGATATCGTGGATACAGG (SEQ ID NO:
AGTGAATTTTGGCTCATCTCAG (SEQ ID NO: 219)


Tetur30g02230
218)






1126_1276_
ATTTTGGTAAAATATACTTGGCAGAAAGA (SEQ ID NO: 220)
AAGTATTTGAAAAATATACCCTTGATATG (SEQ ID


Tetur19g01440

NO: 221)





1236_1391_
GCACCAACACTGAAATAACCCCAAA (SEQ ID NO: 222)
AATGATAATCCAATTGACTTCAAATTAGGAC (SEQ ID


Tetur20g01760

NO: 223)





1326_1516_
TTTTGTTCAACATATTTCTTTTGTTTTTACTC (SEQ ID NO:
TATTTTGATTACATGAAGTTACTGATGAGCC (SEQ ID


Tetur19g01440
224)
NO: 225)





1564_1794_
TACATTTTCGTAGATTAGTTCAACATTAAC (SEQ ID NO:
TATTAGAAACGGAAGCTTTCCAG (SEQ ID NO: 227)


Tetur20g01760
226)






1812_1966_
ATTGTTTTTGGTTATGGAGGAATCG (SEQ ID NO: 228)
TATTTACCTTTATTCCATGGAAGATTTTT (SEQ ID NO:


Tetur06g02480

229)





2129_2321_
GCAGAATCAGTTTCACTAGGATTTTTTCCCA (SEQ ID NO:
GAAAATGATAATGACATTAACAACTTCAG (SEQ ID NO:


Tetur20g01760
230)
231)





2296_2467_
ATTGGGATAAAAGTGAATTTGTAATTGATTG (SEQ ID NO:
CATCATCTTCTTCCACCTC (SEQ ID NO: 233)


Tetur01g13860
232)






 246_442_
TACTGTTATTATTGTTAGGTTGATTGGCGG (SEQ ID NO:
ACCAATAATAATGGTAGTCTTTATTCAAGT (SEQ ID NO:


Tetur01g08220
234)
235)





2581_2750_
AGAAACATTTTCATTCTAATGAAAGGTTC (SEQ ID NO: 236)
ATACTGAAGACATCGTCAAGAAGG (SEQ ID NO: 237)


Tetur01g13860







2582_2766_
TTTAAGTAAATCTTGAACACAACTTCTTAAAC (SEQ ID NO:
TGCCAAGAATATAACCGCTG (SEQ ID NO: 239)


Tetur20g01760
238)






 259_421_
GAGTATATGTTTTATATTCCATCAGTTTT (SEQ ID NO: 240)
AGCCTCATGAAAAAGTGATCCAA (SEQ ID NO: 241)


Tetur07g08130







3221_3403_
TATCATCAGGTAAATGTGAGGTAGT (SEQ ID NO: 242)
TTTAGTTTCATATTCACGACGTATTTATC (SEQ ID NO:


Tetur06g02480

243)





 365_571_
No Primers could be designed with these



Tetur21g03340
criteria






3986_4372_
No Primers could be designed with these



Tetur19g01540
criteria






  50_206_
GATGTTTCTTCATAAACTTGAATGGTTGCT (SEQ ID NO:
AAATGAAAAATTATACGGATATGTCCAAGGAG (SEQ ID


Tetur01g21600
244)
NO: 245)





 566_774_
No Primers could be designed with these



Tetur07g01500
criteria






 588_759_
No Primers could be designed with these



Tetur07g05390
criteria






6075_6322_
CAATAATCTTTTTACAGATAACGTCATTT (SEQ ID NO: 246)
CTGAAATTTGGTGCTCAAATCGT (SEQ ID NO: 247)


Tetur20g01760







 653_806_
TTACAGCTAATATTGTTCTCTTTGTATTG (SEQ ID NO: 248)
GTCACCATCATCTAGTTACGCCCTACCA (SEQ ID NO:


Tetur19g01540

249)





 719_896_
TAAACAGGAGAAATGGTGACATTTAT (SEQ ID NO: 250)
AGAAAAATTTATTTATCGTCTCGAATTAAAC (SEQ ID


Tetur01g12340

NO: 251)





 764_938_
CCACCAACACCAACGGAT (SEQ ID NO: 252)
TGAAGCTTTTTTCAAACTTTTCTATTACT (SEQ ID NO:


Tetur07g05390

253)





 868_1056_
TTCACTTTTAGGTTGCTGTGG (SEQ ID NO: 254)
TTCAATCACATCATTACAATGTTAAAACACG (SEQ ID


Tetur14g00860

NO: 255)
















TABLE 3







primers designed after 3 runs









SEQ_ID
5_PRIMER
3_PRIMER





 365_571_
TATTAACAATATTATTAACATTGGTAGGA (SEQ ID NO:
GCAACATTGGAATACCAT (SEQ ID NO: 257)


Tetur21g03340
256)






3986_4372_
CTGCCGCTGCTGCAGCCG (SEQ ID NO: 258)
TGACTTGAGTGATTTAGCAAGTGA (SEQ ID NO: 259)


Tetur19g01540







 566_774_
GTTGGTCACTTTGAAAATACGA (SEQ ID NO: 260)
TAATGCTAATATATTTTTTGTGATACT (SEQ ID NO: 261)


Tetur07g01500







 588_759_
GAAAAAAGCTTCAGCAAAGT (SEQ ID NO: 262)
TCTAATATTTGTGTTTATATATCATCAT (SEQ ID NO: 263)


Tetur07g05390









Example 3
Expression of RNAi in Plants

Similar to the RNAi distal-less construct, RNAi constructs of the other essential genes are placed under control of the CaMV 35 S promoter, in pB-Agrikola. The plasmid map of pB Agrikola (carrying the RNAi construct of Tetur17g02200-SEQ ID NO:86) is given in FIG. 4; the sequence of the plasmid is given in SEQ ID NO:267. In a similar way, constructs were made for the RNAi of SEQ ID NOS:2, 18, 22 and 75. The resulting constructs were agro-infiltrated into Arabidopis. RNAi expression is checked by Northern blot. RNAi positive lines are further cultivated to be used in a feeding test.


Example 4
Feeding Tests with T. urticae


Arabidopsis plants expressing dsRNA from the selected genes are used in spider mite food tests, and the effect on mite development is measured, as described in Example 1. A reduction in living mites, as well in eggs, on the plants is obtained.


REFERENCES



  • Baum J. A., T. Bogaert, W. Clinton, G. R. Heck, P. Feldmann, O. Ilagan, S. Johnson, G. Plaetinck, T. Munyikwa, M. Pleau, T. Vaughn and J. Roberts (2007). Control of coleopteran insect pests through RNA interference. Nature Biotech. 25:1322-1326.

  • Cobos I., V. Broccoli, and J. L. Rubenstein (2005). The vertebrate ortholog of Aristaless is regulated by Dlx genes in the developing forebrain. J. Comp. Neurol. 483:292-303.

  • Fonseca N. A., C. P. Vieira, and J. Vieira (2009). Gene classification based on amino acid motifs and residues: the DLX (distal-less) test case. PLoS One, 4:e5748.

  • Gordon K. H. J and P. M. Waterhouse (2007). RNAi for insect-proof plants. Nature Biotech. 25:1231-1232.

  • Mao Y. B., W. J. Cai, J. W. Wang, G. J. Hong, X. Y. Tao, L. J. Wang, Y. P. Huang, and X. Y. Chen (2007). Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat. Biotechnol. 25:1307-1313.


Claims
  • 1. A transgenic plant expressing RNAi derived from a spider mite.
  • 2. The transgenic plant according to claim 1, wherein said RNAi is derived from an essential gene of said spider mite.
  • 3. The transgenic plant according to claim 1, wherein said RNAi is derived from the distal-less gene.
  • 4. The transgenic plant according to claim 2, wherein said RNAi is derived from a gene specific region (GSR) from said essential gene.
  • 5. The transgenic plant according to claim 4, wherein said spider mite is Tetranychus urticae.
  • 6. The transgenic plant of claim 5, wherein said RNAi is derived from a GSR selected from the group consisting of SEQ ID NO:1 through SEQ ID NO:87.
  • 7. A method to improve spider mite resistance in a plant, the method comprising: expressing RNAi derived from spider mite in the plant.
  • 8. The method according to claim 7, wherein said RNAi is derived from an essential gene of said spider mite.
  • 9. The method according to claim 8, wherein said RNAi is derived from the distal-less gene.
  • 10. The method according to claim 8, wherein said RNAi is derived from a a gene specific region (GSR) from said essential gene.
  • 11. The method according to claim 7, wherein said spider mite is Tetranychus urticae.
  • 12. The method according to claim 11, wherein said RNAi is derived from a molecule selected from the group consisting of SEQ ID NO:1 through SEQ ID NO:87.
  • 13. The method according to claim 11, wherein said RNAi is derived from a molecule selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:9, SEQ ID NO:14, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:46, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:63, SEQ ID NO:75, and SEQ ID NO:86.
  • 14. The method according to claim 11, wherein said RNAi is derived from a molecule selected from the group consisting of SEQ ID NO:2, SEQ ID NO:18, SEQ ID NO:22, SEQ ID NO:75 and SEQ ID NO:86.
  • 15. A transgenic plant expressing an RNAi derived from a molecule selected from the group consisting of SEQ ID NO:1 through SEQ ID NO:87.
  • 16. The transgenic plant of claim 15, wherein the molecule is selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:9, SEQ ID NO:14, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:46, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:63, SEQ ID NO:75, and SEQ ID NO:86.
  • 17. The transgenic plant of claim 16, wherein the molecule is selected from the group consisting of SEQ ID NO:2, SEQ ID NO:18, SEQ ID NO:22, SEQ ID NO:75, and SEQ ID NO:86.
  • 18. The transgenic plant of claim 2, wherein the RNAi is derived from the distal-less gene.
  • 19. The transgenic plant of claim 3, wherein the spider mite is Tetranychus urticae.
  • 20. The transgenic plant of claim 18, wherein the spider mite is Tetranychus urticae.
Priority Claims (1)
Number Date Country Kind
09173040.8 Oct 2009 EP regional
CROSS-REFERENCE TO RELATED APPLICATIONS

This is a national phase entry under 35 U.S.C. §371 of international Patent Application PCT/EP2010/065311 filed on Oct. 13, 2010, published in English as International Patent Publication No. WO 2011/045333, which claims the benefit under Article 8 of the Patent Cooperation Treaty to European Patent Application Serial No. 09173040.8, filed Oct. 14, 2009.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP2010/065311 10/13/2010 WO 00 7/25/2012