The invention is related to a method to diagnose an optical communication network comprising a control system, an optical hub and multiple optical network terminators, where the hub communicates with all the network terminators via an inband management channel.
In an optical communication network all network terminators are connected to an optical hub, where the connections from the hub to the network terminators are routed via one or more passive optical splitters. The directions of transmission are separated by different wavelengths of the optical signal.
By this topology all information from the hub is always sent simultaneously to the network terminators. In the opposite direction, from the network terminators to the hub, the information is transmitted in allocated time slots. Management information of the network is transferred via an inband management channel.
In a fault condition or by manipulation an optical network terminator can send a continuous signal or a disturbing signal, so that all allocated timeslots are disturbed and no network terminator in this optical network is able to transmit information to the hub.
As all network terminators are connected to one optical hub, the one bad network terminator, producing the disturbance, can not automatically be recognised and localised.
Due to the split of the transmission directions by different optical wavelengths, the network terminators can be reached by the hub, but through the disturbance of all timeslots in the direction from the network terminators to the hub no information for identifying the disturber or the functioning network terminators can be transmitted.
Up to now the localisation of a disturbing network terminator in an optical communication network could only be done by the stepwise disconnection of the point-to-point connections from the splitter to a particular network terminator. Therefore a technician has to disconnect separately and one after the other each optical connection from a splitter to the network terminator and in the path from the hub to the network terminator there can be more than one splitter. With every disconnection it has to be checked at the control system if the disturbed signal is still present or not.
This method is even more burdened by the fact that the splitters are not near to the control system. So another form of communication is necessary between the locations. The splitters are often hard to access, since a lot are mounted in cabinets on the floor or in cabinets/closures in the earth.
Splitters are designed to handle up to 128 connections. So such a number of network terminators can be connected to a splitter and so the tests are very time consuming. During the whole test procedure all the subscribers to the disturbed optical communication network do not have any service.
It is the goal of the invention to propose a method to find a bad network terminator in an optical communication network, which disturbs the communication between the hub and the network terminators without manually disconnecting the optical connections.
This goal is achieved by the features of the independent claim(s).
Embodiments of the invention are shown in the dependent claims.
The optical network in a tree configuration is shown in
The directions of communication are splitted by different wavelengths. In the direction from the hub to the network terminators all network terminators get the same signal, in the direction from the network terminators to the hub, each network terminator is allocated to a time slot on the optical lines.
The operation and maintenance commands are transmitted via an inband management channel from the control system.
Each network terminator is registered in the hub and in the control system in status lists and there exists also a list of non reachable network terminators. These can be non reachable due to broken optical lines, power supply faults etc.
If a disturbance signal is recognised by the hub, which corrupts the transmit signals of all the network terminators, a method to diagnose the network is started in the control system or in the hub. If the commands in the inband management channel are still carried out by the network terminators, one network terminator after the other can be deactivated and checked, if the disturbance is still present.
If the commands in the inband management channel are no more carried out by the network terminators, a method to detect the network terminator, which transmits a disturbance signal, is used.
This method uses a low frequency pulse mode signal which is sent by a network terminator an which is superimposed to the disturbance signal. Therefore a shut off command and afterwards a pulse mode command is sent to each network terminator. This is possible, as the directions of communication are split by wavelengths and only the direction to the hub is disturbed.
In the pulse mode the network terminator sends a low frequency signal PM, which is superimposed to the disturbance Signal DS and produces the superimposed signal SIS, as shown in
The optical receiver in the hub uses automatic gain control to adapt the receiver to different signal strengths due to the different distances of the connected network terminators. The gain control signal in the receiver is used to measure the signal strength. If the signal strength varies in low frequency, due to the superimposed signals, this can be detected by means of the gain control signal.
A low frequency signal is chosen to distinguish it from normal data signals. A frequency of 1 to 2 Hz is suitable. Filtering of such a signal is easy.
The received signal will be analyzed by the hub and if the pulse mode signal is present, it will be detected. If it is not present, the bad network terminator is found.
The method is shown in more detail in
If the method of diagnosis is entered, a counter of the network terminators is initialised to 1.
A shut off command is sent to the addressed network terminator. It is checked, if the disturbance signal is still present. If the disturbance has gone, the bad network terminator is found.
If the disturbance is still present, the pulse mode is activated in the network terminator. Now it is checked in the hub, if the superimposed signal is present.
If the superimposed signal is not present, this network terminator is looked up in the list of not reachable network terminators. If it is not registered there, the bad network terminator is found. If it is registered there or the superimposed signal is still present the next network terminator is checked with this method. This is done until all network terminators are tested.
The result of the tests shall deliver the bad network terminator.
The bad network terminator is shown in the control system together with the according path in the optical network.
Now it is easy to disconnect the bad network terminator at the last splitter or to exchange it, whatever can be done.
Number | Date | Country | Kind |
---|---|---|---|
07021033 | Oct 2007 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2008/064285 | 10/22/2008 | WO | 00 | 9/1/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/053390 | 4/30/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5760940 | Frigo | Jun 1998 | A |
7437076 | Song et al. | Oct 2008 | B2 |
8050554 | Jang et al. | Nov 2011 | B2 |
8224181 | Rohde et al. | Jul 2012 | B2 |
20020027688 | Stephenson | Mar 2002 | A1 |
20030170032 | Song et al. | Sep 2003 | A1 |
20040247057 | Park et al. | Dec 2004 | A1 |
20060093356 | Vereen et al. | May 2006 | A1 |
20070274719 | Ferguson et al. | Nov 2007 | A1 |
20080279554 | Kazawa et al. | Nov 2008 | A1 |
20090238564 | Rohde et al. | Sep 2009 | A1 |
20110008040 | Rosner et al. | Jan 2011 | A1 |
20110069955 | Hajduczenia et al. | Mar 2011 | A1 |
Number | Date | Country |
---|---|---|
1852057 | Oct 2006 | CN |
101043272 | Sep 2007 | CN |
1 345 468 | Sep 2003 | EP |
1 906 563 | Apr 2008 | EP |
2006 174270 | Jun 2006 | JP |
2009534888 | Sep 2009 | JP |
2009539290 | Nov 2009 | JP |
2010539836 | Dec 2010 | JP |
Entry |
---|
Structure. (2000). In Collins English Dictionary. Retrieved from http://www.credoreference.com/entry/hcengdict/structure. |
Listing. (2000). In Collins English Dictionary. Retrieved from http://www.credoreference.com/entry/hcengdict/listing. |
Number | Date | Country | |
---|---|---|---|
20110008040 A1 | Jan 2011 | US |