Method to fabricate tunneling magnetic recording heads with extended pinned layer

Information

  • Patent Grant
  • 9318130
  • Patent Number
    9,318,130
  • Date Filed
    Friday, August 9, 2013
    11 years ago
  • Date Issued
    Tuesday, April 19, 2016
    8 years ago
Abstract
A method of fabricating a magnetic device includes forming a sensor having a pinned layer and a free layer. A first reactive ion etch of a sensor stack patterns a hard mask layer with a photoresist image to form a first hard mask. Then a second reactive ion etch is performed to form an extended pinned layer. The method also includes depositing an insulating layer after the second reactive ion etch to protect exposed edges of the sensor stack, and then providing a chemical mechanical planarization (CMP) stop layer on the insulating layer. Subsequently, a CMP of the sensor stack is performed to remove a portion of the insulating layer. The resulting structure is substantially free of residue on the back edges of the sensor.
Description
BACKGROUND

Prior methods for fabricating an extended pinned layer are limited by an inadequate milling margin, possibly caused by the barrier layer thickness (approximately 10 angstroms), and the poor selectivity between the different materials in the TMR stack. In addition, use of a photoresist (PR) with ion beam milling may be responsible for producing free layer and bias residue on the back edge of the read head during definition of the sensor stripe. FIG. 1A illustrates a transmission electron microscope (TEM) image of a read sensor along an APEX direction. The TEM image of FIG. 1A shows a sensor stack that includes a barrier layer and a free layer (FL). In addition, a thick layer of FL residue is shown behind the sensor stripe. A different view of a read sensor along the ABS direction is illustrated in FIG. 1B. A TEM image of a different read sensor is shown in FIG. 1B along the ABS direction. A thick layer of bias residue is shown behind the sensor stripe of FIG. 1B produced using a prior process. The residue contamination shown in FIGS. 1A and 1B impairs the reliability and performance of conventionally-processed TMR heads. Therefore, a need exists for a process that overcomes the aforementioned limitations.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a TEM image of a magnetoresistive element in the APEX direction.



FIG. 1B is a TEM image of a magnetoresistive element in the ABS direction.



FIGS. 2A and 2B illustrate a TMR read head with an extended pin layer.



FIGS. 3A-3Z illustrate a sequence of structures produced according to one embodiment.



FIG. 4 illustrates a cross-sectional image of a structure formed according to another embodiment.





DETAILED DESCRIPTION

To address the stringent requirements of TMR magnetic recording head with areal density of 800 G/in2 and beyond, extended pin layer (XPL) structures are disclosed. A method for forming the XPL structures is also disclosed. Although the method may be described in the context of a single recording transducer, it is understood that the method can be implemented in the fabrication of multiple transducers at substantially the same time. The transducers described herein contain a device region, in which the magnetoresistive structure is formed, and a field region distal from the magnetoresistive structure.



FIG. 2A illustrates an example of an intermediate structure formed in accordance with one embodiment of the invention. The structure is comprised of a stack of layers 307-311 on a seed layer 302. An antiferromagnetic (AFM) layer 308 is provided over the seed layer 302, followed by pinned layers P1 and P2 (collectively 307 or PL). A barrier layer 309 is deposited over the pinned layers PL 307. Subsequently, a free layer and capping layer 311 are placed over the barrier layer 309. An MR1 masking process defines a stripe height (SH) with back edge 130, and an extended pin layer 110 (XPL) having an upper surface 120. Residue tends to form on the back edge 130 and upper surface 120 of the XPL in prior processes. A bias material (not shown) is disposed within layers 307-311 of the sensor stack 300. FIG. 2B is a plan view of the mask layout for the structure of FIG. 2A where the bias material 342 is shown. After an etching process, SH may have a shorter length than the XPL as shown in both FIGS. 2A and 2B. The residue typically formed in prior processes is substantially eliminated in several embodiments of the present disclosure.


One embodiment of the new process will be explained in conjunction with FIG. 2A and FIGS. 3A-3Z. Some portions of the process are omitted in FIGS. 3A-3Z for clarity. FIGS. 3A, 3C, 3E, 3G, 3I, 3K, 3M, 3O, 3Q, 3S, 3U, 3W, 3X and 3Z are plan views of intermediate structures formed during one embodiment of the new process. FIGS. 3B, 3D, 3F, 3H, 3J, 3L, 3N, 3P, 3R, 3T, 3V, 3X and 3Z illustrate two cross-sectional views of the associated plan views of FIGS. 3A, 3C, 3E, 3G, 3I, 3K, 3M, 3O, 3Q, 3S, 3U, 3W, 3X and 3Z. For example, the top drawing of FIG. 3D illustrates the APEX view of FIG. 3C; while the bottom drawing of FIG. 3D illustrates the ABS view of FIG. 3C. The top drawing in FIGS. 3B, 3D, 3F, 3H, 3J, 3L, 3N, 3P, 3R, 3T, 3V, 3X and 3Z corresponds to an APEX view of their respective plan views. In addition, the bottom drawing of FIGS. 3B, 3D, 3F, 3H, 3J, 3L, 3N, 3P, 3R, 3T, 3V, 3X and 3Z corresponds to the ABS view of their respective plan views in FIGS. 3A, 3C, 3E, 3G, 3I, 3K, 3M, 3O, 3Q, 3S, 3U, 3W, 3X and 3Z.



FIG. 3A illustrates upper layers 311 of sensor stack 300. The cross-sectional view of the FIG. 3A structure is shown in FIG. 3B, which is a pre-patterned magnetoresistive structure. Sensor stack 300 includes a bottom shield (shield 305), pinned layers 307 and anti-ferromagnetic layer (AFM) 308, barrier layer (BL 309) and upper layers 311. The upper layers 311 comprise a free layer (FL) and a capping layer (CL). A photoresist 320 is deposited and then patterned to form the structure as shown in FIG. 3C. Cross-sectional views of FIG. 3C are shown in FIG. 3D. In the ABS view of FIG. 3D, lateral openings 315 are present. Next, the underlying sensor layers 307-311 are etched using the patterned PR 320 as a mask to extend lateral openings 315 down to the upper surface of shield 305. Afterwards, a side gap layer (not shown) is deposited to line the lateral openings 315 to protect sensor stack 300 from shorting subsequently deposited material. Side gap layer may be a low dielectric constant insulating material such as silicon nitride (SiNx), hydrogenated silicon nitride, silicon oxynitride (SiOxNy), hydrogenated silicon oxynitride, or silicon oxide (SiOx). Then, bias material 342 is deposited into openings 315 to form the structures of FIGS. 3E and 3F. Bias material 342 may be either a hard bias or soft bias material. For simplicity, the embodiments described herein will refer to bias material 342 as a soft bias (or SB) with the understanding that bias material 342 is not limited to the use of solely soft bias materials. Soft bias material 342 comprises a permanent magnetic material. The permanent magnetic nature of the soft bias material 342 may generate a soft bias field pointing in a direction substantially parallel to the planes of the sensor layers 307-311 to bias the magnetization of the free layer 311. Although the permanent magnetic material comprises a nickel iron (NiFe) alloy in the illustrated embodiment of FIG. 3F, other permanent magnetic materials such as an alloy of cobalt, platinum, and chrome (CoPtCr) or an alloy of iron and platinum (FePt) may be alternatively used.


The bias field generated by the soft bias material 342 passes through and sets up a sufficiently effective bias field inside the patterned sensor stack 300 that is perpendicular to the stack layers. The effective bias field in turn affects transfer characteristics (e.g., TMR ratio versus an external magnetic field) of the sensor stack 300 by affecting the behavior of the free layer magnetization.


After providing the SB material adjacent to shield 305, a hard mask layer 325 is deposited over sensor stack 300 of FIG. 3F to produce the structure illustrated in FIG. 3G. In one embodiment, hard mask layer 325 may be tantalum. In other embodiments, hard mask layer 325 may be selected from titanium, titanium nitride, alumina, tantalum oxide, or silicon dioxide. A photoresist mask 377 is placed over the hard mask layer 325 in FIG. 3I to enable the PR pattern to be reproduced on hard mask layer 325. A first reactive ion etch (RIE) (etch selectivity of Ta:Ru˜1:10 and Ta:NiFe˜1:20) is performed using a halogenated-based chemistry. The first RIE stops at the sensor top surface 329 and at the soft bias surface 327. The photoresist is removed leaving hard mask (HM) 330 as shown in FIGS. 3K and 3L.


At this point, a masking process (MR1) may be performed to begin patterning the sensor stack 300. MR1 defines a stripe height (SH) of the magnetoresistive sensor and a back edge 130, the locations of which are labeled in FIG. 2A. A second RIE process is performed to form the structures of FIGS. 3M and 3N. The second RIE process may use a methanol-based chemistry. During the second RIE, the FL 311 is etched at an angle. Etching may be stopped, in certain embodiments, at the barrier layer 309, to be further defined with subsequent etching as described below. The barrier layer 309 is a layer through which charge carriers may tunnel. For example, the barrier layer 309 may be an insulator and/or may selectively allow tunneling of charge carriers based upon the spin state of the charge carriers. In some embodiments, the barrier layer 309 includes MgO. For example, the barrier layer 309 may be MgO or MgOX, where X is a nonmagnetic material. However, in other embodiments, a small amount of the barrier layer 309 may be removed as shown in the APEX view of FIG. 3N. In the field region, the second RIE is stopped at the bias seed layer (not shown) adjacent to bias material 342 in FIG. 3N. In some embodiments, the second RIE defines the FL back edge 130 without FL residue remaining, while completely, or nearly completely, removing the bias material 342 in the back edge 130 behind the sensor stripe. In one embodiment, bias material 342 may be NiFe and HM 330 may be tantalum. A Ta hard mask has an etch selectivity to the barrier layer 309 that is at least 1:M, where M≧1.5, and an etch selectivity to the bias material 342 that is at least 1:N, where N≧10. In one embodiment, a Ta hard mask has an etch selectivity to the free layer of 1:10, while FL 311 has an etch selectivity to the barrier layer of at least K:1, where K≧5.


The process continues by providing an insulating layer 345 contiguous to SB material 342 as shown in the ABS view of FIG. 3P. The insulating layer may be selected from SiO2, Al2O3 or any other insulating material 345 known to have a high dielectric constant. A CMP stop layer (stop layer 375) is also provided over the sensor stack 300 to produce the structure of FIGS. 3O and 3P. In some embodiments, the stop layer 375 may have a thickness ranging from 10-70 angstroms. After removing the stop layer 375, residue may be observed on the back edge 130 of the XPL and sensor stripe. If residue is observed, then the manufacturing process can be modified to use a thicker stop layer 375, for example, by increasing the thickness by two-five angstroms until FL and SB residue is substantially eliminated.


The stop layer 375 may be selected from tantalum, ruthenium, or a combination of tantalum and ruthenium layers. A high angle milling process is performed to remove the stop layer 375 on the sidewall, thereby exposing insulating layer 345. In one embodiment, insulating layer 345 comprises Al2O3 or alumina. A relatively aggressive CMP is then performed portions of layers 345 and 375 above HM 330. CMP is terminated upon reaching HM 330. During the aggressive CMP, a polishing slurry penetrates into the top alumina 345 to facilitate lift off of stop layer 375 in the device region where sensor stack 300 resides. A portion of the alumina 375 is also removed from the device region. Stop layer 375 in field region remains over alumina 345 as shown in FIG. 3R. The aggressive CMP is conducted with a force of approximately 3-4 psi for 20-40 seconds at a speed of approximately 35-65 rpm.


Then the stop layer 375 can be subjected to a third RIE process to remove stop layer 375 from the sensor, resulting in the structure of FIGS. 3S and 3T. The third RIE may be performed with a fluorinated-based chemistry. A second photolithography process (MR2) is performed in FIGS. 3U and 3V to transfer the pattern from the photoresist mask 382 to the sensor stack 300.


Milling is then performed to remove a portion of the pinned layer and metal, to thereby reduce the possibility of electrical short circuits. The result of milling is the structure of FIGS. 3W and 3X. The PR mask 382 is typically removed by a rinsing process called “lift-off” that uses a chemical solution to dissolve the mask 382 and release it from the top surface 329 of sensor stack 330. Once the mask 382 has been removed, the TMR device is completed by covering the stop layer 375 with a seed layer (not shown), and then covering the seed layer with a top shield (shield 395) as shown in FIGS. 3Y and 3Z. Shield 395 is provided on stack 300 in a conventional manner to produce the structures of FIGS. 3Y and 3Z.


The advantages of performing one embodiment of the process of FIGS. 3A-3Z can be seen from FIG. 4. FIG. 4 illustrates the structure of FIG. 3P as an APEX view after the second RIE and Al2O3 refill. The sensor stack 300 is shown with bottom shield 305, layers 307-311 and SB material 342. Al2O3 (345) appears adjacent to SB material 342 and XPL 307. Above sensor stack 300 is a tri-layer structure that includes a HM, insulating material 345, and the stop layer 375. The read sensor of FIG. 4 includes XPL 307 which has an upper surface 120. As a result of performing the process of FIGS. 3A-3P, upper surface 120 is formed without any SB residue and FL residue in at least one embodiment.


The new processes disclosed for defining a sensor stripe is novel. In certain embodiments, the novel process can provide sensors with good BQST feedback. Moreover, in certain embodiments, the SB read heads contain an XPL 307 that is free, or substantially free, of both FL and SB residues. Yet in other embodiments, the new process may improve the SB read head performance and/or reliability.


The process of the present disclosure uses a hard mask and reactive ion etching (RIE) to pattern a sensor stripe. Reactive ion etching (RIE) also etches the pinned layer to form an extended pinned layer. Then a CMP is performed to remove residue from the sensor, thereby producing the structure shown in FIG. 4.


The above detailed description is provided to enable any person skilled in the art to practice the various embodiments described herein. While several embodiments have been particularly described with reference to the various figures, it should be understood that these are for illustration purposes only and should not be taken as limiting the scope of the claims.


Various modifications to these embodiments will be readily apparent to those skilled in the art, and generic principles defined herein may be applied to other embodiments. Thus, many changes and modifications may be made to the disclosure, by one having ordinary skill in the art, without departing from the spirit and scope of the claims.

Claims
  • 1. A method for fabricating a magnetic device comprising: forming a sensor stack that includes a pinned layer, wherein the sensor stack has a free layer;performing a first reactive ion etch to pattern a hard mask layer on the sensor stack with a photoresist image to thereby form a hard mask;performing a second reactive ion etch to form an extended pinned layer;depositing an insulating layer after the second reactive ion etch to protect exposed edges of the sensor stack;providing a stop layer on the insulating layer; andperforming a CMP of the sensor stack to remove a portion of the insulating layer.
  • 2. The method of claim 1, wherein a third reactive ion etch of the sensor stack is performed to remove the stop layer.
  • 3. The method of claim 1, wherein the hard mask is formed of a material selected from the group consisting of tantalum, titanium, titanium nitride, alumina, tantalum oxide, or silicon dioxide.
  • 4. The method of claim 1, wherein the CMP of the sensor stack is performed at a pressure of approximately 3-4 psi.
  • 5. The method of claim 1, further comprising depositing a barrier layer on the sensor stack prior to depositing an insulating layer.
  • 6. The method of claim 5, wherein a bias material is deposited on the sensor stack before the hard mask is formed.
  • 7. The method of claim 5, wherein the second reactive ion etching stops at the bias material and near an upper surface of the barrier layer.
  • 8. The method of claim 7, wherein an etch selectivity of the hard mask to the barrier layer is at least 1:M, where M≧1.5, and an etch selectivity of the hard mask to the bias material is at least 1:N, where N≧20.
  • 9. The method of claim 1, wherein the free layer has an etch selectivity to the barrier layer of at least K:1, where K≧5.
  • 10. The method of claim 9, wherein the bias material may be either a soft or hard bias material.
  • 11. The method of claim 1, wherein the hard mask has an etch selectivity to the free layer of 1:10.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application No. 61/842,318 entitled “METHOD TO FABRICATE TUNNELING MAGNETIC RECORDING HEADS WITH EXTENDED PINNED LAYER,” filed on Jul. 2, 2013 for Wei Gao, which is incorporated herein by reference.

US Referenced Citations (710)
Number Name Date Kind
5612098 Tan et al. Mar 1997 A
5717550 Nepela et al. Feb 1998 A
5828530 Gill et al. Oct 1998 A
5876848 Tan et al. Mar 1999 A
5898547 Fontana, Jr. et al. Apr 1999 A
6016290 Chen et al. Jan 2000 A
6018441 Wu et al. Jan 2000 A
6025978 Hoshi et al. Feb 2000 A
6025988 Yan Feb 2000 A
6032353 Hiner et al. Mar 2000 A
6033532 Minami Mar 2000 A
6034851 Zarouri et al. Mar 2000 A
6043959 Crue et al. Mar 2000 A
6046885 Aimonetti et al. Apr 2000 A
6049650 Jerman et al. Apr 2000 A
6055138 Shi Apr 2000 A
6058094 Davis et al. May 2000 A
6073338 Liu et al. Jun 2000 A
6078479 Nepela et al. Jun 2000 A
6081499 Berger et al. Jun 2000 A
6094803 Carlson et al. Aug 2000 A
6099362 Viches et al. Aug 2000 A
6103073 Thayamballi Aug 2000 A
6108166 Lederman Aug 2000 A
6118629 Huai et al. Sep 2000 A
6118638 Knapp et al. Sep 2000 A
6125018 Takagishi et al. Sep 2000 A
6130779 Carlson et al. Oct 2000 A
6134089 Barr et al. Oct 2000 A
6136166 Shen et al. Oct 2000 A
6137661 Shi et al. Oct 2000 A
6137662 Huai et al. Oct 2000 A
6160684 Heist et al. Dec 2000 A
6163426 Nepela et al. Dec 2000 A
6166891 Lederman et al. Dec 2000 A
6173486 Hsiao et al. Jan 2001 B1
6175476 Huai et al. Jan 2001 B1
6178066 Barr Jan 2001 B1
6178070 Hong et al. Jan 2001 B1
6178150 Davis Jan 2001 B1
6181485 He Jan 2001 B1
6181525 Carlson Jan 2001 B1
6185051 Chen et al. Feb 2001 B1
6185077 Tong et al. Feb 2001 B1
6185081 Simion et al. Feb 2001 B1
6188549 Wiitala Feb 2001 B1
6190764 Shi et al. Feb 2001 B1
6193584 Rudy et al. Feb 2001 B1
6195229 Shen et al. Feb 2001 B1
6198608 Hong et al. Mar 2001 B1
6198609 Barr et al. Mar 2001 B1
6201673 Rottmayer et al. Mar 2001 B1
6204998 Katz Mar 2001 B1
6204999 Crue et al. Mar 2001 B1
6212153 Chen et al. Apr 2001 B1
6215625 Carlson Apr 2001 B1
6219205 Yuan et al. Apr 2001 B1
6221218 Shi et al. Apr 2001 B1
6222707 Huai et al. Apr 2001 B1
6229782 Wang et al. May 2001 B1
6230959 Heist et al. May 2001 B1
6233116 Chen et al. May 2001 B1
6233125 Knapp et al. May 2001 B1
6237215 Hunsaker et al. May 2001 B1
6252743 Bozorgi Jun 2001 B1
6255721 Roberts Jul 2001 B1
6258468 Mahvan et al. Jul 2001 B1
6266216 Hikami et al. Jul 2001 B1
6271604 Frank, Jr. et al. Aug 2001 B1
6275354 Huai et al. Aug 2001 B1
6277505 Shi et al. Aug 2001 B1
6282056 Feng et al. Aug 2001 B1
6296955 Hossain et al. Oct 2001 B1
6297955 Frank, Jr. et al. Oct 2001 B1
6304414 Crue, Jr. et al. Oct 2001 B1
6307715 Berding et al. Oct 2001 B1
6310746 Hawwa et al. Oct 2001 B1
6310750 Hawwa et al. Oct 2001 B1
6317290 Wang et al. Nov 2001 B1
6317297 Tong et al. Nov 2001 B1
6322911 Fukagawa et al. Nov 2001 B1
6330136 Wang et al. Dec 2001 B1
6330137 Knapp et al. Dec 2001 B1
6333830 Rose et al. Dec 2001 B2
6340533 Ueno et al. Jan 2002 B1
6349014 Crue, Jr. et al. Feb 2002 B1
6351355 Min et al. Feb 2002 B1
6353318 Sin et al. Mar 2002 B1
6353511 Shi et al. Mar 2002 B1
6356412 Levi et al. Mar 2002 B1
6359779 Frank, Jr. et al. Mar 2002 B1
6369983 Hong Apr 2002 B1
6376964 Young et al. Apr 2002 B1
6377535 Chen et al. Apr 2002 B1
6381095 Sin et al. Apr 2002 B1
6381105 Huai et al. Apr 2002 B1
6389499 Frank, Jr. et al. May 2002 B1
6392850 Tong et al. May 2002 B1
6396660 Jensen et al. May 2002 B1
6399179 Hanrahan et al. Jun 2002 B1
6400526 Crue, Jr. et al. Jun 2002 B2
6404600 Hawwa et al. Jun 2002 B1
6404601 Rottmayer et al. Jun 2002 B1
6404706 Stovall et al. Jun 2002 B1
6410170 Chen et al. Jun 2002 B1
6411522 Frank, Jr. et al. Jun 2002 B1
6417998 Crue, Jr. et al. Jul 2002 B1
6417999 Knapp et al. Jul 2002 B1
6418000 Gibbons et al. Jul 2002 B1
6418048 Sin et al. Jul 2002 B1
6421211 Hawwa et al. Jul 2002 B1
6421212 Gibbons et al. Jul 2002 B1
6424505 Lam et al. Jul 2002 B1
6424507 Lederman et al. Jul 2002 B1
6430009 Komaki et al. Aug 2002 B1
6430806 Chen et al. Aug 2002 B1
6433965 Gopinathan et al. Aug 2002 B1
6433968 Shi et al. Aug 2002 B1
6433970 Knapp et al. Aug 2002 B1
6437945 Hawwa et al. Aug 2002 B1
6445536 Rudy et al. Sep 2002 B1
6445542 Levi et al. Sep 2002 B1
6445553 Barr et al. Sep 2002 B2
6445554 Dong et al. Sep 2002 B1
6447935 Zhang et al. Sep 2002 B1
6448765 Chen et al. Sep 2002 B1
6451514 Iitsuka Sep 2002 B1
6452742 Crue et al. Sep 2002 B1
6452765 Mahvan et al. Sep 2002 B1
6456465 Louis et al. Sep 2002 B1
6459552 Liu et al. Oct 2002 B1
6462920 Karimi Oct 2002 B1
6466401 Hong et al. Oct 2002 B1
6466402 Crue, Jr. et al. Oct 2002 B1
6466404 Crue, Jr. et al. Oct 2002 B1
6466419 Mao Oct 2002 B1
6468436 Shi et al. Oct 2002 B1
6469877 Knapp et al. Oct 2002 B1
6477019 Matono et al. Nov 2002 B2
6479096 Shi et al. Nov 2002 B1
6483662 Thomas et al. Nov 2002 B1
6487040 Hsiao et al. Nov 2002 B1
6487056 Gibbons et al. Nov 2002 B1
6490125 Barr Dec 2002 B1
6496330 Crue, Jr. et al. Dec 2002 B1
6496334 Pang et al. Dec 2002 B1
6504676 Hiner et al. Jan 2003 B1
6512657 Heist et al. Jan 2003 B2
6512659 Hawwa et al. Jan 2003 B1
6512661 Louis Jan 2003 B1
6512690 Qi et al. Jan 2003 B1
6515573 Dong et al. Feb 2003 B1
6515791 Hawwa et al. Feb 2003 B1
6532823 Knapp et al. Mar 2003 B1
6535363 Hosomi et al. Mar 2003 B1
6552874 Chen et al. Apr 2003 B1
6552928 Qi et al. Apr 2003 B1
6577470 Rumpler Jun 2003 B1
6583961 Levi et al. Jun 2003 B2
6583968 Scura et al. Jun 2003 B1
6597546 Gill Jul 2003 B2
6597548 Yamanaka et al. Jul 2003 B1
6611398 Rumpler et al. Aug 2003 B1
6618223 Chen et al. Sep 2003 B1
6629357 Akoh Oct 2003 B1
6631055 Childress et al. Oct 2003 B2
6633464 Lai et al. Oct 2003 B2
6636394 Fukagawa et al. Oct 2003 B1
6639291 Sin et al. Oct 2003 B1
6650503 Chen et al. Nov 2003 B1
6650506 Risse Nov 2003 B1
6654195 Frank, Jr. et al. Nov 2003 B1
6657816 Barr et al. Dec 2003 B1
6661621 Iitsuka Dec 2003 B1
6661625 Sin et al. Dec 2003 B1
6674610 Thomas et al. Jan 2004 B1
6680828 Gill Jan 2004 B2
6680830 Gill Jan 2004 B2
6680863 Shi et al. Jan 2004 B1
6683763 Hiner et al. Jan 2004 B1
6687098 Huai Feb 2004 B1
6687178 Qi et al. Feb 2004 B1
6687977 Knapp et al. Feb 2004 B2
6691226 Frank, Jr. et al. Feb 2004 B1
6697294 Qi et al. Feb 2004 B1
6700738 Sin et al. Mar 2004 B1
6700759 Knapp et al. Mar 2004 B1
6704158 Hawwa et al. Mar 2004 B2
6707083 Hiner et al. Mar 2004 B1
6713801 Sin et al. Mar 2004 B1
6721138 Chen et al. Apr 2004 B1
6721149 Shi et al. Apr 2004 B1
6721203 Qi et al. Apr 2004 B1
6724569 Chen et al. Apr 2004 B1
6724572 Stoev et al. Apr 2004 B1
6724584 Mack et al. Apr 2004 B2
6729015 Matono et al. May 2004 B2
6735850 Gibbons et al. May 2004 B1
6737281 Dang et al. May 2004 B1
6738236 Mao et al. May 2004 B1
6738237 Gill May 2004 B2
6741432 Pinarbasi May 2004 B2
6744607 Freitag et al. Jun 2004 B2
6744608 Sin et al. Jun 2004 B1
6747301 Hiner et al. Jun 2004 B1
6751055 Alfoqaha et al. Jun 2004 B1
6751845 Gill Jun 2004 B2
6754049 Seagle et al. Jun 2004 B1
6756071 Shi et al. Jun 2004 B1
6757140 Hawwa Jun 2004 B1
6760196 Niu et al. Jul 2004 B1
6762910 Knapp et al. Jul 2004 B1
6765756 Hong et al. Jul 2004 B1
6775902 Huai et al. Aug 2004 B1
6778358 Jiang et al. Aug 2004 B1
6781798 Gill Aug 2004 B2
6781927 Heanuc et al. Aug 2004 B1
6785102 Freitag et al. Aug 2004 B2
6785955 Chen et al. Sep 2004 B1
6791793 Chen et al. Sep 2004 B1
6791807 Hikami et al. Sep 2004 B1
6798616 Seagle et al. Sep 2004 B1
6798625 Ueno et al. Sep 2004 B1
6801408 Chen et al. Oct 2004 B1
6801411 Lederman et al. Oct 2004 B1
6801412 Gill Oct 2004 B2
6803615 Sin et al. Oct 2004 B1
6806035 Atireklapvarodom et al. Oct 2004 B1
6807030 Hawwa et al. Oct 2004 B1
6807332 Hawwa Oct 2004 B1
6809899 Chen et al. Oct 2004 B1
6816345 Knapp et al. Nov 2004 B1
6828897 Nepela Dec 2004 B1
6829160 Qi et al. Dec 2004 B1
6829819 Crue, Jr. et al. Dec 2004 B1
6833979 Knapp et al. Dec 2004 B1
6833982 Jayasekara Dec 2004 B2
6834010 Qi et al. Dec 2004 B1
6847510 Childress et al. Jan 2005 B2
6856493 Pinarbasi Feb 2005 B2
6859343 Alfoqaha et al. Feb 2005 B1
6859348 Pinarbasi Feb 2005 B2
6859997 Tong et al. Mar 2005 B1
6861937 Feng et al. Mar 2005 B1
6865062 Pinarbasi Mar 2005 B2
6867952 Hasegawa Mar 2005 B2
6867953 Gill Mar 2005 B2
6870712 Chen et al. Mar 2005 B2
6873494 Chen et al. Mar 2005 B2
6873547 Shi et al. Mar 2005 B1
6879464 Sun et al. Apr 2005 B2
6888184 Shi et al. May 2005 B1
6888704 Diao et al. May 2005 B1
6891702 Tang May 2005 B1
6894871 Alfoqaha et al. May 2005 B2
6894877 Crue, Jr. et al. May 2005 B1
6901652 Hasegawa et al. Jun 2005 B2
6906894 Chen et al. Jun 2005 B2
6909578 Missell et al. Jun 2005 B1
6912106 Chen et al. Jun 2005 B1
6933042 Gill Aug 2005 B2
6934113 Chen Aug 2005 B1
6934129 Zhang et al. Aug 2005 B1
6940688 Jiang et al. Sep 2005 B2
6942824 Li Sep 2005 B1
6943993 Chang et al. Sep 2005 B2
6943997 Gill Sep 2005 B2
6944938 Crue, Jr. et al. Sep 2005 B1
6947258 Li Sep 2005 B1
6947264 Gill Sep 2005 B2
6950266 McCaslin et al. Sep 2005 B1
6954332 Hong et al. Oct 2005 B1
6958885 Chen et al. Oct 2005 B1
6961221 Niu et al. Nov 2005 B1
6969989 Mei Nov 2005 B1
6975486 Chen et al. Dec 2005 B2
6983530 Gill Jan 2006 B2
6987643 Seagle Jan 2006 B1
6989962 Dong et al. Jan 2006 B1
6989972 Stoev et al. Jan 2006 B1
7006327 Krounbi et al. Feb 2006 B2
7007372 Chen et al. Mar 2006 B1
7012832 Sin et al. Mar 2006 B1
7016168 Li et al. Mar 2006 B2
7023658 Knapp et al. Apr 2006 B1
7026063 Ueno et al. Apr 2006 B2
7027268 Zhu et al. Apr 2006 B1
7027274 Sin et al. Apr 2006 B1
7035046 Young et al. Apr 2006 B1
7035059 Gill Apr 2006 B2
7035062 Mao et al. Apr 2006 B1
7037847 Le et al. May 2006 B2
7038889 Freitag et al. May 2006 B2
7041985 Wang et al. May 2006 B1
7046490 Ueno et al. May 2006 B1
7050277 Gill et al. May 2006 B2
7054113 Seagle et al. May 2006 B1
7057857 Niu et al. Jun 2006 B1
7059868 Yan Jun 2006 B1
7072154 Gill et al. Jul 2006 B2
7082017 Freitag et al. Jul 2006 B2
7092195 Liu et al. Aug 2006 B1
7092220 Gill et al. Aug 2006 B2
7092221 Gill Aug 2006 B2
7094130 Cyrille et al. Aug 2006 B2
7110289 Sin et al. Sep 2006 B1
7111382 Knapp et al. Sep 2006 B1
7113366 Wang et al. Sep 2006 B1
7114241 Kubota et al. Oct 2006 B2
7116517 He et al. Oct 2006 B1
7124654 Davies et al. Oct 2006 B1
7126788 Liu et al. Oct 2006 B1
7126790 Liu et al. Oct 2006 B1
7131346 Buttar et al. Nov 2006 B1
7133253 Seagle et al. Nov 2006 B1
7134185 Knapp et al. Nov 2006 B1
7154715 Yamanaka et al. Dec 2006 B2
7161773 Fontana, Jr. et al. Jan 2007 B2
7170725 Zhou et al. Jan 2007 B1
7171741 Gill Feb 2007 B2
7177117 Jiang et al. Feb 2007 B1
7177120 Freitag et al. Feb 2007 B2
7193815 Stoev et al. Mar 2007 B1
7196878 Fox et al. Mar 2007 B2
7196880 Anderson et al. Mar 2007 B1
7199974 Alfoqaha Apr 2007 B1
7199975 Pan Apr 2007 B1
7211339 Seagle et al. May 2007 B1
7212384 Stoev et al. May 2007 B1
7220499 Saito et al. May 2007 B2
7238292 He et al. Jul 2007 B1
7239478 Sin et al. Jul 2007 B1
7245463 Gill Jul 2007 B2
7248431 Liu et al. Jul 2007 B1
7248433 Stoev et al. Jul 2007 B1
7248447 Gill Jul 2007 B2
7248449 Seagle Jul 2007 B1
7265946 Gill Sep 2007 B2
7268980 Gill Sep 2007 B2
7280325 Pan Oct 2007 B1
7283327 Liu et al. Oct 2007 B1
7284316 Huai et al. Oct 2007 B1
7286329 Chen et al. Oct 2007 B1
7289303 Sin et al. Oct 2007 B1
7292409 Stoev et al. Nov 2007 B1
7296339 Yang et al. Nov 2007 B1
7307814 Seagle et al. Dec 2007 B1
7307818 Park et al. Dec 2007 B1
7310204 Stoev et al. Dec 2007 B1
7313856 Gill Jan 2008 B2
7318947 Park et al. Jan 2008 B1
7324310 Gill Jan 2008 B2
7330339 Gill Feb 2008 B2
7333295 Medina et al. Feb 2008 B1
7337530 Stoev et al. Mar 2008 B1
7342752 Zhang et al. Mar 2008 B1
7345854 Takano Mar 2008 B2
7349170 Rudman et al. Mar 2008 B1
7349179 He et al. Mar 2008 B1
7354664 Jiang et al. Apr 2008 B1
7363697 Dunn et al. Apr 2008 B1
7365949 Hayakawa et al. Apr 2008 B2
7369371 Freitag et al. May 2008 B2
7370404 Gill et al. May 2008 B2
7371152 Newman May 2008 B1
7372665 Stoev et al. May 2008 B1
7372674 Gill May 2008 B2
7375926 Stoev et al. May 2008 B1
7379269 Krounbi et al. May 2008 B1
7382589 Lin et al. Jun 2008 B2
7386933 Krounbi et al. Jun 2008 B1
7389577 Shang et al. Jun 2008 B1
7405908 Gill Jul 2008 B2
7405909 Gill Jul 2008 B2
7417832 Erickson et al. Aug 2008 B1
7419610 Cyrille et al. Sep 2008 B2
7419891 Chen et al. Sep 2008 B1
7420787 Freitag et al. Sep 2008 B2
7420788 Pinarbasi Sep 2008 B2
7428124 Song et al. Sep 2008 B1
7430098 Song et al. Sep 2008 B1
7436620 Kang et al. Oct 2008 B1
7436637 Pinarbasi Oct 2008 B2
7436638 Pan Oct 2008 B1
7440220 Kang et al. Oct 2008 B1
7443632 Stoev et al. Oct 2008 B1
7444740 Chung et al. Nov 2008 B1
7463459 Ding et al. Dec 2008 B2
7466524 Freitag et al. Dec 2008 B2
7469465 Ding et al. Dec 2008 B2
7493688 Wang et al. Feb 2009 B1
7508627 Zhang et al. Mar 2009 B1
7522377 Jiang et al. Apr 2009 B1
7522379 Krounbi et al. Apr 2009 B1
7522382 Pan Apr 2009 B1
7522391 Freitag et al. Apr 2009 B2
7522392 Carey et al. Apr 2009 B2
7542246 Song et al. Jun 2009 B1
7551406 Thomas et al. Jun 2009 B1
7552523 He et al. Jun 2009 B1
7554767 Hu et al. Jun 2009 B1
7580230 Freitag et al. Aug 2009 B2
7583466 Kermiche et al. Sep 2009 B2
7595967 Moon et al. Sep 2009 B1
7599155 Saito et al. Oct 2009 B2
7602589 Freitag et al. Oct 2009 B2
7616411 Gill Nov 2009 B2
7639457 Chen et al. Dec 2009 B1
7652856 Pinarbasi Jan 2010 B2
7660080 Liu et al. Feb 2010 B1
7663846 Freitag et al. Feb 2010 B2
7672080 Tang et al. Mar 2010 B1
7672086 Jiang Mar 2010 B1
7676905 Pinarbasi Mar 2010 B2
7684160 Erickson et al. Mar 2010 B1
7688546 Bai et al. Mar 2010 B1
7691434 Zhang et al. Apr 2010 B1
7695761 Shen et al. Apr 2010 B1
7697242 Gill Apr 2010 B2
7719795 Hu et al. May 2010 B2
7726009 Liu et al. Jun 2010 B1
7729086 Song et al. Jun 2010 B1
7729087 Stoev et al. Jun 2010 B1
7736823 Wang et al. Jun 2010 B1
7785666 Sun et al. Aug 2010 B1
7796356 Fowler et al. Sep 2010 B1
7800858 Bajikar et al. Sep 2010 B1
7800867 Saito et al. Sep 2010 B2
7819979 Chen et al. Oct 2010 B1
7829264 Wang et al. Nov 2010 B1
7846643 Sun et al. Dec 2010 B1
7855854 Hu et al. Dec 2010 B2
7869160 Pan et al. Jan 2011 B1
7872824 Macchioni et al. Jan 2011 B1
7872833 Hu et al. Jan 2011 B2
7910267 Zeng et al. Mar 2011 B1
7911735 Sin et al. Mar 2011 B1
7911737 Jiang et al. Mar 2011 B1
7916426 Hu et al. Mar 2011 B2
7916435 Gill Mar 2011 B1
7918013 Dunn et al. Apr 2011 B1
7961440 Gill et al. Jun 2011 B2
7968219 Jiang et al. Jun 2011 B1
7982989 Shi et al. Jul 2011 B1
8008912 Shang Aug 2011 B1
8012804 Wang et al. Sep 2011 B1
8015692 Zhang et al. Sep 2011 B1
8018677 Chung et al. Sep 2011 B1
8018678 Zhang et al. Sep 2011 B1
8024748 Moravec et al. Sep 2011 B1
8068317 Gill Nov 2011 B2
8072705 Wang et al. Dec 2011 B1
8074345 Anguelouch et al. Dec 2011 B1
8077418 Hu et al. Dec 2011 B1
8077434 Shen et al. Dec 2011 B1
8077435 Liu et al. Dec 2011 B1
8077557 Hu et al. Dec 2011 B1
8079135 Shen et al. Dec 2011 B1
8081403 Chen et al. Dec 2011 B1
8091210 Sasaki et al. Jan 2012 B1
8097846 Anguelouch et al. Jan 2012 B1
8104166 Zhang et al. Jan 2012 B1
8116043 Leng et al. Feb 2012 B2
8116171 Lee Feb 2012 B1
8125856 Li et al. Feb 2012 B1
8134794 Wang Mar 2012 B1
8136224 Sun et al. Mar 2012 B1
8136225 Zhang et al. Mar 2012 B1
8136805 Lee Mar 2012 B1
8141235 Zhang Mar 2012 B1
8146236 Luo et al. Apr 2012 B1
8149536 Yang et al. Apr 2012 B1
8149548 Hatatani et al. Apr 2012 B2
8151441 Rudy et al. Apr 2012 B1
8163185 Sun et al. Apr 2012 B1
8164760 Willis Apr 2012 B2
8164855 Gibbons et al. Apr 2012 B1
8164864 Kaiser et al. Apr 2012 B2
8165709 Rudy Apr 2012 B1
8166631 Tran et al. May 2012 B1
8166632 Zhang et al. May 2012 B1
8169473 Yu et al. May 2012 B1
8171618 Wang et al. May 2012 B1
8179636 Bai et al. May 2012 B1
8191237 Luo et al. Jun 2012 B1
8194365 Leng et al. Jun 2012 B1
8194366 Li et al. Jun 2012 B1
8196285 Zhang et al. Jun 2012 B1
8200054 Li et al. Jun 2012 B1
8203800 Li et al. Jun 2012 B2
8208350 Hu et al. Jun 2012 B1
8220140 Wang et al. Jul 2012 B1
8222599 Chien Jul 2012 B1
8225488 Zhang et al. Jul 2012 B1
8227023 Liu et al. Jul 2012 B1
8228633 Tran et al. Jul 2012 B1
8231796 Li et al. Jul 2012 B1
8233248 Li et al. Jul 2012 B1
8248896 Yuan et al. Aug 2012 B1
8254060 Shi et al. Aug 2012 B1
8257597 Guan et al. Sep 2012 B1
8259410 Bai et al. Sep 2012 B1
8259539 Hu et al. Sep 2012 B1
8262918 Li et al. Sep 2012 B1
8262919 Luo et al. Sep 2012 B1
8264797 Emley Sep 2012 B2
8264798 Guan et al. Sep 2012 B1
8266785 Freitag et al. Sep 2012 B2
8270126 Roy et al. Sep 2012 B1
8276258 Tran et al. Oct 2012 B1
8277669 Chen et al. Oct 2012 B1
8279719 Hu et al. Oct 2012 B1
8284517 Sun et al. Oct 2012 B1
8288204 Wang et al. Oct 2012 B1
8289821 Huber Oct 2012 B1
8291743 Shi et al. Oct 2012 B1
8307539 Rudy et al. Nov 2012 B1
8307540 Tran et al. Nov 2012 B1
8308921 Hiner et al. Nov 2012 B1
8310785 Zhang et al. Nov 2012 B1
8310901 Batra et al. Nov 2012 B1
8315019 Mao et al. Nov 2012 B1
8316527 Hong et al. Nov 2012 B2
8318030 Peng et al. Nov 2012 B2
8320076 Shen et al. Nov 2012 B1
8320077 Tang et al. Nov 2012 B1
8320219 Wolf et al. Nov 2012 B1
8320220 Yuan et al. Nov 2012 B1
8320722 Yuan et al. Nov 2012 B1
8322022 Yi et al. Dec 2012 B1
8322023 Zeng et al. Dec 2012 B1
8325569 Shi et al. Dec 2012 B1
8333008 Sin et al. Dec 2012 B1
8333898 Brown et al. Dec 2012 B2
8334093 Zhang et al. Dec 2012 B2
8336194 Yuan et al. Dec 2012 B2
8339738 Tran et al. Dec 2012 B1
8341826 Jiang et al. Jan 2013 B1
8343319 Li et al. Jan 2013 B1
8343364 Gao et al. Jan 2013 B1
8349195 Si et al. Jan 2013 B1
8351307 Wolf et al. Jan 2013 B1
8357244 Zhao et al. Jan 2013 B1
8373945 Luo et al. Feb 2013 B1
8375564 Luo et al. Feb 2013 B1
8375565 Hu et al. Feb 2013 B2
8381391 Park et al. Feb 2013 B2
8385157 Champion et al. Feb 2013 B1
8385158 Hu et al. Feb 2013 B1
8394280 Wan et al. Mar 2013 B1
8400731 Li et al. Mar 2013 B1
8400738 Covington et al. Mar 2013 B2
8404128 Zhang et al. Mar 2013 B1
8404129 Luo et al. Mar 2013 B1
8405930 Li et al. Mar 2013 B1
8409453 Jiang et al. Apr 2013 B1
8413317 Wan et al. Apr 2013 B1
8416540 Li et al. Apr 2013 B1
8419953 Su et al. Apr 2013 B1
8419954 Chen et al. Apr 2013 B1
8422176 Leng et al. Apr 2013 B1
8422342 Lee Apr 2013 B1
8422841 Shi et al. Apr 2013 B1
8424192 Yang et al. Apr 2013 B1
8441756 Sun et al. May 2013 B1
8443510 Shi et al. May 2013 B1
8444866 Guan et al. May 2013 B1
8449948 Medina et al. May 2013 B2
8451556 Wang et al. May 2013 B1
8451563 Zhang et al. May 2013 B1
8454846 Zhou et al. Jun 2013 B1
8455119 Jiang et al. Jun 2013 B1
8456961 Wang et al. Jun 2013 B1
8456963 Hu et al. Jun 2013 B1
8456964 Yuan et al. Jun 2013 B1
8456966 Shi et al. Jun 2013 B1
8456967 Mallary Jun 2013 B1
8458892 Si et al. Jun 2013 B2
8462592 Wolf et al. Jun 2013 B1
8468682 Zhang Jun 2013 B1
8472288 Wolf et al. Jun 2013 B1
8480911 Osugi et al. Jul 2013 B1
8486285 Zhou et al. Jul 2013 B2
8486286 Gao et al. Jul 2013 B1
8488272 Tran et al. Jul 2013 B1
8491801 Tanner et al. Jul 2013 B1
8491802 Gao et al. Jul 2013 B1
8493693 Zheng et al. Jul 2013 B1
8493695 Kaiser et al. Jul 2013 B1
8495813 Hu et al. Jul 2013 B1
8498084 Leng et al. Jul 2013 B1
8506828 Osugi et al. Aug 2013 B1
8514517 Batra et al. Aug 2013 B1
8518279 Wang et al. Aug 2013 B1
8518832 Yang et al. Aug 2013 B1
8520336 Liu et al. Aug 2013 B1
8520337 Liu et al. Aug 2013 B1
8524068 Medina et al. Sep 2013 B2
8526275 Yuan et al. Sep 2013 B1
8531801 Xiao et al. Sep 2013 B1
8532450 Wang et al. Sep 2013 B1
8533937 Wang et al. Sep 2013 B1
8537494 Pan et al. Sep 2013 B1
8537495 Luo et al. Sep 2013 B1
8537502 Park et al. Sep 2013 B1
8545999 Leng et al. Oct 2013 B1
8547659 Bai et al. Oct 2013 B1
8547667 Roy et al. Oct 2013 B1
8547730 Shen et al. Oct 2013 B1
8555486 Medina et al. Oct 2013 B1
8559141 Pakala et al. Oct 2013 B1
8563146 Zhang et al. Oct 2013 B1
8565049 Tanner et al. Oct 2013 B1
8576517 Tran et al. Nov 2013 B1
8578594 Jiang et al. Nov 2013 B2
8582238 Liu et al. Nov 2013 B1
8582241 Yu et al. Nov 2013 B1
8582253 Zheng et al. Nov 2013 B1
8588039 Shi et al. Nov 2013 B1
8593914 Wang et al. Nov 2013 B2
8597528 Roy et al. Dec 2013 B1
8599520 Liu et al. Dec 2013 B1
8599657 Lee Dec 2013 B1
8603593 Roy et al. Dec 2013 B1
8607438 Gao et al. Dec 2013 B1
8607439 Wang et al. Dec 2013 B1
8611035 Bajikar et al. Dec 2013 B1
8611054 Shang et al. Dec 2013 B1
8611055 Pakala et al. Dec 2013 B1
8614864 Hong et al. Dec 2013 B1
8619512 Yuan et al. Dec 2013 B1
8625233 Ji et al. Jan 2014 B1
8625941 Shi et al. Jan 2014 B1
8628672 Si et al. Jan 2014 B1
8630068 Mauri et al. Jan 2014 B1
8634280 Wang et al. Jan 2014 B1
8638529 Leng et al. Jan 2014 B1
8643980 Fowler et al. Feb 2014 B1
8649123 Zhang et al. Feb 2014 B1
8665561 Knutson et al. Mar 2014 B1
8670211 Sun et al. Mar 2014 B1
8670213 Zeng et al. Mar 2014 B1
8670214 Knutson et al. Mar 2014 B1
8670294 Shi et al. Mar 2014 B1
8670295 Hu et al. Mar 2014 B1
8675318 Ho et al. Mar 2014 B1
8675455 Krichevsky et al. Mar 2014 B1
8681594 Shi et al. Mar 2014 B1
8689430 Chen et al. Apr 2014 B1
8693141 Elliott et al. Apr 2014 B1
8703397 Zeng et al. Apr 2014 B1
8705205 Li et al. Apr 2014 B1
8711518 Zeng et al. Apr 2014 B1
8711528 Xiao et al. Apr 2014 B1
8717709 Shi et al. May 2014 B1
8720044 Tran et al. May 2014 B1
8721902 Wang et al. May 2014 B1
8724259 Liu et al. May 2014 B1
8749790 Tanner et al. Jun 2014 B1
8749920 Knutson et al. Jun 2014 B1
8753903 Tanner et al. Jun 2014 B1
8760807 Zhang et al. Jun 2014 B1
8760818 Diao et al. Jun 2014 B1
8760819 Liu et al. Jun 2014 B1
8760822 Li et al. Jun 2014 B1
8760823 Chen et al. Jun 2014 B1
8763235 Wang et al. Jul 2014 B1
8780498 Jiang et al. Jul 2014 B1
8780505 Xiao Jul 2014 B1
8786983 Liu et al. Jul 2014 B1
8790524 Luo et al. Jul 2014 B1
8790527 Luo et al. Jul 2014 B1
8792208 Liu et al. Jul 2014 B1
8792312 Wang et al. Jul 2014 B1
8793866 Zhang et al. Aug 2014 B1
8797680 Luo et al. Aug 2014 B1
8797684 Tran et al. Aug 2014 B1
8797686 Bai et al. Aug 2014 B1
8797692 Guo et al. Aug 2014 B1
8813324 Emley et al. Aug 2014 B2
20020131219 Mack et al. Sep 2002 A1
20030123198 Sugawara et al. Jul 2003 A1
20030179520 Hasegawa Sep 2003 A1
20040061983 Childress et al. Apr 2004 A1
20040166368 Gill et al. Aug 2004 A1
20060023375 Gill Feb 2006 A1
20060092582 Gill et al. May 2006 A1
20060230601 Gill et al. Oct 2006 A1
20060232893 Gill et al. Oct 2006 A1
20060285259 Gill et al. Dec 2006 A1
20080180863 Gill Jul 2008 A1
20090086385 Gill et al. Apr 2009 A1
20090316308 Saito et al. Dec 2009 A1
20100232072 Dimitrov et al. Sep 2010 A1
20100290157 Zhang et al. Nov 2010 A1
20110086240 Xiang et al. Apr 2011 A1
20110228428 Dimitrov et al. Sep 2011 A1
20120111826 Chen et al. May 2012 A1
20120134057 Song et al. May 2012 A1
20120216378 Emley et al. Aug 2012 A1
20120237878 Zeng et al. Sep 2012 A1
20120276415 Sapozhnikov et al. Nov 2012 A1
20120298621 Gao Nov 2012 A1
20130082696 Le et al. Apr 2013 A1
20130092654 Balamane et al. Apr 2013 A1
20130216702 Kaiser et al. Aug 2013 A1
20130216863 Li et al. Aug 2013 A1
20130257421 Shang et al. Oct 2013 A1
20140154529 Yang et al. Jun 2014 A1
20140175050 Zhang et al. Jun 2014 A1
Provisional Applications (1)
Number Date Country
61842318 Jul 2013 US