The invention concerns a method to impregnate a porous bone replacement material, as well as a chamber to impregnate a porous bone replacement material.
From WO 02/068010 Muschler a device is known, in which a bone marrow extract is mechanically mixed with a porous bone replacement material. In this conjunction the bone marrow extract can be squeezed into or aspirated through the bone replacement material by means of two syringes, so that it will be flushed by the bone marrow extract. Consequently, in the case of this known method the air situated in the bone replacement material will not be removed.
A further device to impregnate a porous, biocompatible bone replacement substance is known from U.S. Pat. No. 6,049,026 Muschler. This known device comprises a chamber to accommodate the bone replacement body as well as a first container above the chamber to store an impregnating agent and below the chamber a second container to accommodate the impregnating agent flowing through the chamber with the bone replacement substance in it. By opening the first valve, arranged between the first container and the chamber, the impregnating agent flows into the chamber with the bone replacement substance. As soon as the chamber is filled, a second valve, arranged between the chamber and the second container, is opened, so that the impregnating agent can flow to the second chamber through a diaphragm provided below the bone replacement substance. A disadvantage of this known device is that the capacity of the chamber cannot be modified, so that for bone replacement bodies of various sizes chambers of varying sizes are required.
In the case of the usually applied method, whereby such formed bodies from porous bone replacement materials are placed into a shell with the patient's own blood, these known devices also have the disadvantages that during the impregnation it is not assured that
This is where the invention wants to provide remedy. The object of the invention is to produce a method to impregnate a porous bone replacement material that removes the air situated in the pores of the bone replacement material and replaces it with the desired impregnating agent.
This invention achieves this objective by a method to impregnate a porous bone replacement material, as well as by a chamber for the impregnation of a porous bone replacement material.
In certain embodiments of the invention, the method comprises impregnating a porous bone replacement material with a liquid impregnating agent, characterised in that
In certain embodiments of the invention, the chamber comprises a cylindrical container with a hollow space, an internal thread provided in the hollow space and a matching lid with external thread and that the internal capacity V of the chamber is variable by screwing the lid into the cylindrical container to a greater or lesser depth.
Further advantageous configurations of the invention are characterised in the dependent claims.
The advantages achieved by the invention are essentially that as a result of the method according to the invention the air, situated in the pores of the bone replacement material, can be removed and the desired impregnating agent can penetrate into the pores.
In a preferred embodiment the air or gas is evacuated upwards through the opening provided in the chamber against the gravity vector, so that the impregnating agent will be retained in the chamber by the gravity.
The bone replacement material can be present in the form of a block, preferably in the form of a dice, cylinder, hollow cylinder, disc, wedge, cone, truncated cone or a sphere or in another execution of the method in the form of granules.
In yet another execution the impregnating agent comprises osteoinductive and/or osteogenic substances, in particular body cells, bone marrow or bone marrow components, blood or blood constituents or a combination thereof.
In a further execution, by means of the vacuum, produced in step d) of the method, the ambient pressure initially prevailing in the chamber is reduced from 1 bar to below 0.9 bar, preferably below 0.6 bar.
In yet another further execution of the method by means of the vacuum, produced in step d) of the method, the ambient pressure initially prevailing in the chamber is reduced from 1 bar to below 0.2 bar, preferably below 0.1 bar.
The introduction of the impregnating agent can be carried out
In a preferred embodiment the internal capacity V of the chamber is variable, whereby the chamber preferably comprises a cylindrical container with an internal thread and a matching lid with external thread, so that the internal capacity V of the chamber is variable by screwing the lid into the cylindrical container to a greater or lesser depth. This will result in the advantage, that a single size chamber will be adequate to accommodate implants of various sizes.
Because the chamber will be filled in this manner with a porous bone replacement material, the total capacity v of which is smaller than the internal volume V of the chamber, the bone replacement material can be partly or fully immersed in the impregnating agent.
In another execution of the chamber the bone replacement material is accommodated in an implant made from metal and/or plastic material in such a manner, that it communicates, at least partly, with the surface of the implant.
The invention and developments of the invention are explained in detail below, based on partly schematic illustrations of a plurality of embodiments.
FIG. 1—a perspective view of a chamber to carry out the method according to the invention, together with a syringe,
FIG. 2—an exploded view of a chamber to carry out the method according to the invention,
FIG. 3—a longitudinal section through a chamber to carry out the method according to the invention,
FIG. 4—a top view on the chamber illustrated in
The present invention relates a method to impregnate a porous bone replacement material with a liquid impregnating agent, characterised in that
In certain embodiments, the method is characterised in that in the step d) the air or the gas is evacuated through the opening provided on the top of the chamber against the gravity vector.
In certain embodiments, the method is characterised in that the bone replacement material is present in the form of a block, preferably in the form of a dice, cylinder, hollow cylinder, disc, wedge, cone, truncated cone or a sphere.
In certain embodiments, the method is characterised in that the bone replacement material is present in the form of granules.
In certain embodiments, the method is characterised in that the impregnating agent comprises osteoinductive and/or osteogenic substances, in particular body cells, bone marrow or bone marrow components, blood or blood constituents or a combination thereof.
In certain embodiments, the method is characterised in that the vacuum, produced in step d), reduces the pressure initially prevailing in the chamber from 1 bar to below 0.9 bar, preferably below 0.6 bar.
In certain embodiments, the method is characterised in that the vacuum, produced in step d), reduces the pressure initially prevailing in the chamber from 1 bar to below 0.2 bar, preferably below 0.1 bar.
In certain embodiments, the method is characterised in that the impregnating agent is introduced into the chamber by aspiration through one of the two openings by the flow-through of the negative pressure.
In certain embodiments, the method is characterised in that the impregnating agent is introduced into the chamber by pressing it through one of the two openings by the flow-through of the excess pressure.
In certain embodiments, the method is characterised in that steps d) and e) of the method are repeated several times.
The present invention also relates to a chamber to impregnate a porous bone replacement material with an impregnating agent, wherein the chamber has two openings that can be closed and an internal capacity V, characterised in that the internal volume V of the chamber can be varied.
In certain embodiments, the chamber is characterised in that it comprises a cylindrical container with a hollow space, an internal thread provided in the hollow space and a matching lid with external thread and that the internal capacity V of the chamber is variable by screwing the lid into the cylindrical container to a greater or lesser depth.
In certain embodiments, the chamber is characterised in that the chamber contains a porous bone replacement material, the total capacity v of which is smaller than the internal volume of the chamber.
In certain embodiments, the chamber is characterised in that the bone replacement material is present in the form of a block, preferably in the form of a dice, cylinder, hollow cylinder, disc, wedge, cone, truncated cone or a sphere.
In certain embodiments, the chamber is characterised in that the bone replacement material is accommodated in an implant made from metal and/or plastic material in such a manner, that it communicates, at least partly, with the surface of the implant.
Another execution of the method is such, that after the first syringe 15, filled with the impregnating agent 5, is connected to one of the two openings 3, 4, a second, unfilled syringe 15 (not illustrated) is connected to the other opening 3, 4, and the hollow space of the chamber 2 is evacuated by withdrawing the piston and simultaneously, due to the negative pressure produced, the impregnating means 5 is aspirated from the hollow space of the syringe 15 into the hollow space of the chamber 2. The air in the pores of the bone replacement material 1 exits from the pores. Following this, by pushing in the piston of the second syringe, air is moved again into the chamber 2, so that the vacuum is terminated again in the chamber 2 and the impregnating agent 5 can penetrate into the pores of the bone replacement material. If necessary, the piston of one of the syringes can be withdrawn and the chamber 2 can be evacuated again. The steps of evacuation and cancellation of the vacuum can be simply repeated in this manner until the pores in the bone replacement material 1 are adequately ventilated and filled with the impregnating material 5.
According to yet another execution of the method the second syringe (not illustrated) is used to increase the vacuum. Because this second syringe is not filled with impregnating agent 5, it can have a considerably greater capacity than the first syringe 15, filled with impregnating agent 5.
While the foregoing description and drawings are merely illustrative of the principles of the invention, it will be understood that various additions, modifications and substitutions may be made therein. In particular, it will be clear to those skilled in the art that the present invention may be embodied in other specific forms, structures, arrangements, proportions, and with other elements, materials, and components, without departing from the spirit or essential characteristics thereof. In addition, features described herein may be used singularly or in combination with other features. The presently disclosed embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims, and not limited to the foregoing description.
This application is a continuation of U.S. patent application Ser. No. 11/349,693, filed on Feb. 7, 2006, now U.S. Pat. No. 7,445,633, which is a continuation application of International Patent Application Serial No. PCT/CH2003/000537, filed Aug. 8, 2003, the contents of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4314380 | Miyata et al. | Feb 1982 | A |
4529511 | Breeden et al. | Jul 1985 | A |
4758096 | Gunnarsson | Jul 1988 | A |
4808184 | Tepic | Feb 1989 | A |
5051482 | Tepic | Sep 1991 | A |
5139031 | Guirguis | Aug 1992 | A |
5164186 | Tsuru et al. | Nov 1992 | A |
5181918 | Brandhorst et al. | Jan 1993 | A |
5425770 | Piez et al. | Jun 1995 | A |
5549380 | Lidgren et al. | Aug 1996 | A |
5755787 | Camprasse et al. | May 1998 | A |
5772665 | Glad et al. | Jun 1998 | A |
5842786 | Solomon | Dec 1998 | A |
5876452 | Athanasiou et al. | Mar 1999 | A |
6027742 | Lee et al. | Feb 2000 | A |
6049026 | Muschler | Apr 2000 | A |
6143293 | Weiss et al. | Nov 2000 | A |
6383190 | Preissman | May 2002 | B1 |
6409708 | Wessman | Jun 2002 | B1 |
6709149 | Tepic | Mar 2004 | B1 |
6723131 | Muschler | Apr 2004 | B2 |
6736799 | Erbe et al. | May 2004 | B1 |
6887272 | Shinomiya et al. | May 2005 | B2 |
7445633 | Hoerger et al. | Nov 2008 | B2 |
20020161449 | Muschler | Oct 2002 | A1 |
20050074433 | Stoll | Apr 2005 | A1 |
20060153001 | Hoerger et al. | Jul 2006 | A1 |
Number | Date | Country |
---|---|---|
2419850AA | Feb 2002 | CA |
3834944 | Apr 1990 | DE |
0361896 | Apr 1990 | EP |
0470393 | Feb 1992 | EP |
0739631 | Oct 1996 | EP |
0761896 | Mar 1997 | EP |
1230942 | Aug 2002 | EP |
2815021 | Apr 2002 | FR |
60-142857 | Jul 1985 | JP |
3-85179 | Apr 1991 | JP |
4-221538 | Aug 1992 | JP |
7-313586 | Dec 1995 | JP |
8-24347 | Jan 1996 | JP |
9-201330 | Aug 1997 | JP |
WO-9746202 | Dec 1997 | WO |
WO-0045867 | Aug 2000 | WO |
WO-0132100 | May 2001 | WO |
WO 0215950 | Feb 2002 | WO |
WO-0215950 | Feb 2002 | WO |
WO-02068010 | Sep 2002 | WO |
WO 2005014068 | Feb 2005 | WO |
WO-2005014068 | Feb 2005 | WO |
Entry |
---|
“International Application Serial No. PCT/CH03/00537, International Search Report mailed Apr. 16, 2004”, 3 pgs. |
“Definition of Osteogenic”, [online]. © 2005 Merriam-Webster, Inc. [retrieved May 16, 2005]. Retrieved from the Internet: <URL: www.nlm.nih.gov/medlineplus/mplusdictionary.html>, 1 pg. |
“Definition of Body”, Random House Webster's College Dictionary, (1991), p. 152. |
Linkhart, T. A ., et al., “Growth factors for bone growth and repair: IGF, TGFβ and BMP”, Bone, 19(1 Suppl), (Jul. 1996), 1S-12S. |
“U.S. Appl. No. 10/370,606 Advisory Action mailed Aug. 11, 2008”, 4 pgs. |
“U.S. Appl. No. 10/370,606, Non-Final Office Action mailed Oct. 31, 2008”, 17 pgs. |
“U.S. Appl. No. 10/370,606, filed Mar. 16, 2007 to Non-Final Office Action mailed Dec. 18, 2006”, 6 pgs. |
“U.S. Appl. No. 10/370,606, filed Mar. 20, 2006 to Non-Final Office Action mailed Dec. 19, 2005”, 23 pgs. |
“U.S. Appl. No. 10/370,606, filed Jul. 31, 2006 to Final Office Action mailed May 31, 2006”, 10 pgs. |
“U.S. Appl. No. 10/370,606, filed Jun. 26, 2008 to Final Office Action mailed May 1, 2008”, 11 pgs. |
“U.S. Appl. No. 10/370,606, filed Aug. 22, 2008 to Advisory Action mailed Aug. 11, 2008”, 11 pgs. |
“U.S. Appl. No. 10/370,606, filed Sep. 17, 2007 to Final Office Action mailed Jun. 15, 2007”, 10 pgs. |
“U.S. Appl. No. 10/370,606, Non-Final Office Action mailed Dec. 11, 2007”, 14 pgs. |
“U.S. Appl. No. 10/370,606, Final Office Action mailed May 1, 2008”, 14 pgs. |
“U.S. Appl. No. 10/370,606, Response to Non-Final Office Action received Dec. 11, 2007”, 10 pgs. |
“U.S. Appl. No. 10/370,606, Final Office Action mailed May 31, 2006”, 15 pgs. |
“U.S. Appl. No. 10/370,606, Final Office Action mailed Jun. 15, 2007”, 10 pgs. |
“U.S. Appl. No. 10/370,606, Non Final Office Action mailed Dec. 18, 2006”, 6 pgs. |
“U.S. Appl. No. 10/370,606, Non Final Office Action mailed Dec. 19, 2005”, 14 pgs. |
“U.S. Appl. No. 11/349,693, Non-Final Office Action mailed Sep. 7, 2007”, 9 pgs. |
“U.S. Appl. No. 11/349,693, filed Jun. 16, 2008 to Final Office Action mailed Mar. 17, 2008”, 8 pgs. |
“U.S. Appl. No. 11/349,693, filed Dec. 7, 2007 to Office Action mailed Sep. 7, 2007”, 10 pgs. |
“U.S. Appl. No. 11/349,693, Notice of Allowance mailed Jun. 30, 2008”, 7 pgs. |
“U.S. Appl. No. 11/349,693, Final Office Action mailed Mar. 17, 2008”, 10 pgs. |
“Definition of “Membrane””, The American Heritage Dictionary of the English Language, [online]. Answers.com™. [retrieved Jul. 31, 2008]. Retrieved from the Internet: <URL: http://www.answers.com/membrane%26r=67?print=true>, (2007), 2 pgs. |
Definition of “mesenchymal”, Dictionary.com, [online]. Merriam-Webster's Medical Dictionary, © 2002 Merriam-Webster. [retrieved on Dec. 13, 2005]. Retrieved from the Internet:: <URL: http://dictionary.reference.com/search?q=mesenchymal>, 1 pg. |
“Definition of “Osteogenic””, Medline Plus®, [online]. © 2005 Merriam-Webster, Incorporated. [retrieved Dec. 12, 2005]. Retrieved from the Internet: <URL: http://ww2.merriam-webster.com/cgi-bin/mwmednlm?book=Medical&va?osteogenic>, 1 pg. |
Definitions of “vaccum”, “membrane”, and “septum”, MedLine Plus®, [online].[retrieved Oct. 16, 2008]. Retrieved from the Internet: <URL: http://www.nim.nih.gov/medlineplus/mplusdictionary.html>, 3 pgs. |
“EPOline Online Public File Inspection entry for International Application No. WO2000CH00443”, [online]. [retrieved Dec. 13, 2005]. Retrieved from the Internet: <URL: http://ofi.epoline.org/view/GetDossier>, 1 pg. |
“European Patent Application No. 04750971.6, Communication mailed Jun. 12, 2008”, 5 pgs. |
“International Application Serial No. PCT/CH01/00494, International Preliminary Examination Report dated Aug. 26, 2002”, (w/ English Translation),15 pgs. |
“International Application Serial No. PCT/CH01/00494, International Search Report mailed Dec. 5, 2001”, (w/ English Translation), 8 pgs. |
“Japanese Application No. 2002-506661, Notice of the Reason for the Rejection mailed Feb. 27, 2008”, (w/ English Translation), 7 pgs. |
“Japanese Application No. 2002-506661, Official Notice of Reason for the Final Rejection mailed Jul. 11, 2008”, (w/ English Translation), 4 pgs. |
Kaneko, Y., et al., “Synthesis and Swelling—deswelling of poly(N-isopropylacrylamide) hydrogels grafted with LCST modulated polymers”, Journal Biomaterials Science, Polymer Edition, 10(11), (1999), 1079-1091. |
Stile, R. A., et al., “Synthesis and Characterization of Injectable Poly(N-isopropylacrylamide)-Based Hydrogels That Support Tissue Formation in Vitro”, Macromolecules, 32, (1999), 7370-7379. |
“U.S. Appl. No. 10/370,606, Final Office Action mailed May 21, 2009”, 16 pgs. |
“U.S. Appl. No. 10/370,606, filed Sep. 21, 2009 to Final Office Action mailed May 21, 2009”, 9 pgs. |
“U.S. Appl. No. 10/370,606, filed Feb. 26, 2009 to Non Final Office Action mailed Oct. 31, 2008”, 9 pgs. |
“Canada Application Serial No. 2,419,850, Office Action mailed Jul. 7, 2009”, 3 pgs. |
Number | Date | Country | |
---|---|---|---|
20090022878 A1 | Jan 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11349693 | Feb 2006 | US |
Child | 12242207 | US | |
Parent | PCT/CH03/00537 | Aug 2003 | US |
Child | 11349693 | US |