The present invention is directed generally to leached components having a polycrystalline structure; and more particularly, to a leached component having at least a portion of a leaching by-product material removed from a leached layer within the polycrystalline structure, a method for removing at least a portion of the by-product material from these leached components, and a method for testing the effectiveness of the method for removing.
Polycrystalline diamond compacts (“PDC”) have been used in industrial applications, including rock drilling applications and metal machining applications. Such compacts have demonstrated advantages over some other types of cutting elements, such as better wear resistance and impact resistance. The PDC can be formed by sintering individual diamond particles together under the high pressure and high temperature (“HPHT”) conditions referred to as the “diamond stable region,” which is typically above forty kilobars and between 1,200 degrees Celsius and 2,000 degrees Celsius, in the presence of a catalyst/solvent which promotes diamond-diamond bonding. Some examples of catalyst/solvents for sintered diamond compacts are cobalt, nickel, iron, and other Group VIII metals. PDCs usually have a diamond content greater than seventy percent by volume, with about eighty percent to about ninety-eight percent being typical. An unbacked PDC can be mechanically bonded to a tool (not shown), according to one example. Alternatively, the PDC is bonded to a substrate, thereby forming a PDC cutter, which is typically insertable within, or mounted to, a downhole tool (not shown), such as a drill bit or a reamer.
The substrate 150 includes a top surface 152, a bottom surface 154, and a substrate outer wall 156 that extends from the circumference of the top surface 152 to the circumference of the bottom surface 154. The PCD cutting table 110 includes a cutting surface 112, an opposing surface 114, and a PCD cutting table outer wall 116 that extends from the circumference of the cutting surface 112 to the circumference of the opposing surface 114. The opposing surface 114 of the PCD cutting table 110 is coupled to the top surface 152 of the substrate 150. Typically, the PCD cutting table 110 is coupled to the substrate 150 using a high pressure and high temperature (“HPHT”) press. However, other methods known to people having ordinary skill in the art can be used to couple the PCD cutting table 110 to the substrate 150. In one embodiment, upon coupling the PCD cutting table 110 to the substrate 150, the cutting surface 112 of the PCD cutting table 110 is substantially parallel to the substrate's bottom surface 154. Additionally, the PDC cutter 100 has been illustrated as having a right circular cylindrical shape; however, the PDC cutter 100 is shaped into other geometric or non-geometric shapes in other exemplary embodiments. In certain exemplary embodiments, the opposing surface 114 and the top surface 152 are substantially planar; however, the opposing surface 114 and the top surface 152 is non-planar in other exemplary embodiments. Additionally, according to some exemplary embodiments, a bevel (not shown) is formed around at least a portion of the circumference of the cutting surface 112.
According to one example, the PDC cutter 100 is formed by independently forming the PCD cutting table 110 and the substrate 150, and thereafter bonding the PCD cutting table 110 to the substrate 150. Alternatively, the substrate 150 is initially formed and the PCD cutting table 110 is subsequently formed on the top surface 152 of the substrate 150 by placing polycrystalline diamond powder onto the top surface 152 and subjecting the polycrystalline diamond powder and the substrate 150 to a high temperature and high pressure process. Alternatively, the substrate 150 and the PCD cutting table 110 are formed and bonded together at about the same time. Although a few methods of forming the PDC cutter 100 have been briefly mentioned, other methods known to people having ordinary skill in the art can be used.
According to one example for forming the PDC cutter 100, the PCD cutting table 110 is formed and bonded to the substrate 150 by subjecting a layer of diamond powder and a mixture of tungsten carbide and cobalt powders to HPHT conditions. The cobalt is typically mixed with tungsten carbide and positioned where the substrate 150 is to be formed. The diamond powder is placed on top of the cobalt and tungsten carbide mixture and positioned where the PCD cutting table 110 is to be formed. The entire powder mixture is then subjected to HPHT conditions so that the cobalt melts and facilitates the cementing, or binding, of the tungsten carbide to form the substrate 150. The melted cobalt also diffuses, or infiltrates, into the diamond powder and acts as a catalyst for synthesizing diamond bonds and forming the PCD cutting table 110. Thus, the cobalt acts as both a binder for cementing the tungsten carbide and as a catalyst/solvent for sintering the diamond powder to form diamond-diamond bonds. The cobalt also facilitates in forming strong bonds between the PCD cutting table 110 and the cemented tungsten carbide substrate 150.
Cobalt has been a preferred constituent of the PDC manufacturing process. Traditional PDC manufacturing processes use cobalt as the binder material for forming the substrate 150 and also as the catalyst material for diamond synthesis because of the large body of knowledge related to using cobalt in these processes. The synergy between the large bodies of knowledge and the needs of the process have led to using cobalt as both the binder material and the catalyst material. However, as is known in the art, alternative metals, such as iron, nickel, chromium, manganese, and tantalum, and other suitable materials, can be used as a catalyst for diamond synthesis. When using these alternative materials as a catalyst for diamond synthesis to form the PCD cutting table 110, cobalt, or some other material such as nickel chrome or iron, is typically used as the binder material for cementing the tungsten carbide to form the substrate 150. Although some materials, such as tungsten carbide and cobalt, have been provided as examples, other materials known to people having ordinary skill in the art can be used to form the substrate 150, the PCD cutting table 110, and form bonds between the substrate 150 and the PCD cutting table 110.
Once the PCD cutting table 110 is formed and placed into operation, the PCD cutting table 110 is known to wear quickly when the temperature reaches a critical temperature. This critical temperature is about 750 degrees Celsius and is reached when the PCD cutting table 110 is cutting rock formations or other known materials. The high rate of wear is believed to be caused by the differences in the thermal expansion rate between the diamond particles 210 and the cobalt 214 and also by the chemical reaction, or graphitization, that occurs between cobalt 214 and the diamond particles 210. The coefficient of thermal expansion for the diamond particles 210 is about 1.0×10−6 millimeters−1×Kelvin−1 (“mm−1K−1”), while the coefficient of thermal expansion for the cobalt 214 is about 13.0×10−6 mm−1K−1. Thus, the cobalt 214 expands much faster than the diamond particles 210 at temperatures above this critical temperature, thereby making the bonds between the diamond particles 210 unstable. The PCD cutting table 110 becomes thermally degraded at temperatures above about 750 degrees Celsius and its cutting efficiency deteriorates significantly.
Efforts have been made to slow the wear of the PCD cutting table 110 at these high temperatures. These efforts include performing conventional acid leaching processes of the PCD cutting table 110 which removes some of the cobalt 214 from the interstitial spaces 212. Conventional leaching processes involve the presence of an acid solution (not shown) which reacts with the cobalt 214, or other binder/catalyst material, that is deposited within the interstitial spaces 212 of the PCD cutting table 110. These acid solutions typically consist of highly concentrated solutions of hydrofluoric acid (HF), nitric acid (HNO3), and/or sulfuric acid (H2SO4) and are subjected to different temperature and pressure conditions. These highly concentrated acid solutions are hazardous to individuals handling these solutions. According to one example of a conventional leaching process, the PDC cutter 100 is placed within an acid solution such that at least a portion of the PCD cutting table 110 is submerged within the acid solution. The acid solution reacts with the cobalt 214, or other binder/catalyst material, along the outer surfaces of the PCD cutting table 110. The acid solution slowly moves inwardly within the interior of the PCD cutting table 110 and continues to react with the cobalt 214. However, as the acid solution moves further inwards, the reaction byproducts become increasingly more difficult to remove; and hence, the rate of leaching slows down considerably within these conventional leaching processes. For this reason, a tradeoff occurs between conventional leaching process duration and the desired leaching depth, wherein costs increase as the conventional leaching process duration increases. Thus, the leaching depth is typically about 0.2 millimeters, which takes about days to achieve this depth. However, the leached depth can be more or less depending upon the PCD cutting table 110 requirements and/or the cost constraints. The removal of cobalt 214 alleviates the issues created due to the differences in the thermal expansion rate between the diamond particles 210 and the cobalt 214 and due to graphitization. Although it has been described that conventional leaching processes are used to remove at least some of the catalyst 214, other leaching processes or catalyst removal processes can be used to remove at least some of the catalyst 214 from the interstitial spaces 212.
The leached PDC cutters 300 are leached to different desired depths 353 and how deep the cutter 300 has been leached has an effect on the performance of the cutter 300. Further, the presence of by-product materials 398 within the leached layer 354 negatively impacts the performance of the leached PDC cutter 300.
The foregoing and other features and aspects of the invention are best understood with reference to the following description of certain exemplary embodiments, when read in conjunction with the accompanying drawings, wherein:
The drawings illustrate only exemplary embodiments of the invention and are therefore not to be considered limiting of its scope, as the invention may admit to other equally effective embodiments.
The present invention is directed generally to leached components having a polycrystalline structure; and more particularly, to a leached component having at least a portion of a leaching by-product material removed from a leached layer within the polycrystalline structure, a method for removing at least a portion of the by-product material from these leached components, and a method for testing the effectiveness of the method for removing. Although the description of exemplary embodiments is provided below in conjunction with a polycrystalline diamond compact (“PDC”) cutter, alternate embodiments of the invention may be applicable to other types of cutters or components including, but not limited to, polycrystalline boron nitride (“PCBN”) cutters or PCBN compacts. As previously mentioned, the compact is mountable to a substrate to form a cutter or is mountable directly to a tool for performing cutting processes. The invention is better understood by reading the following description of non-limiting, exemplary embodiments with reference to the attached drawings, wherein like parts of each of the figures are identified by like reference characters, and which are briefly described as follows.
The leached PDC cutter 300 has been previously described with respect to
Referring to
The immersion tank 520 includes a base 522 and a surrounding wall 524 extending substantially perpendicular around the perimeter of the base 522, thereby forming a cavity 526 therein. According to certain exemplary embodiments, the base 522 is substantially planar; however, the base 522 is non-planar in other exemplary embodiments. Also in alternative exemplary embodiments, the surrounding wall 524 is non-perpendicular to the base 522. Also, the immersion tank 520 is formed having a rectangular shape. Alternatively, the immersion tank 520 is formed having any other geometric shape or non-geometric shape. In some exemplary embodiments, the immersion tank 520 is fabricated using a plastic material; however, other suitable materials, such as metal, metal alloys, or glass, are used in other exemplary embodiments. The material used to fabricate the immersion tank 520 typically does not react with the cleaning fluid 530. According to some exemplary embodiments, a removable lid (not shown) is used to enclose at least the leached PDC cutter 300 and the transducer 550, thereby providing a seal to the cavity 530. Hence, the removable lid and the immersion tank 520 together form a pressurized vessel (not shown). In these exemplary embodiments, the power source 560 can be coupled to the lid, can be positioned outside the pressurized vessel as long as the pressurized vessel provides a port (not shown) to electrically couple the power source 560 to the transducer 550, or can be integrated with the transducer 550.
The cleaning fluid 530 is placed within the cavity 526 of the immersion tank 520 and filled to a depth of at least the thickness of the PCD cutting table 310. The cleaning fluid 530 is de-ionized water in the exemplary embodiment. The by-product materials 398 that clog the PCD open porosity is dissolvable in the cleaning fluid 530. According to some exemplary embodiments, one or more additional chemicals are added to the de-ionized water to form the cleaning fluid 530 and increase the rate at which the by-product materials 398 are dissolved into the cleaning fluid 530. These additional chemicals are based upon the composition of the by-product materials 398. Some examples of these additional chemicals are acetic acid and/or formic acid to make the solution slightly acidic or ammonia to make the solution slightly basic. However, in other exemplary embodiments, any fluid or solution that is able to dissolve and/or react with the by-product materials 398 can be used for the cleaning fluid 530 in lieu of, or in addition to, the de-ionized water. According to some exemplary embodiments, the cleaning fluid 530 is heated to increase the rate at which the by-product materials 398 are dissolved into the cleaning fluid 530 and hence accelerate the cleaning process. The temperature of the cleaning fluid 530 can be heated up to 100° C. in the immersion tank 520 or some similar type tank. However, the temperature of the cleaning fluid 530 can be heated higher than 100° C. in the pressurized vessel mentioned above, thereby avoiding or reducing boiling of the cleaning fluid 530.
The transducer 550 is coupled to the leached PDC cutter 300 according to some exemplary embodiments. According to some exemplary embodiments, a portion of the transducer 550 is coupled to the bottom surface 364 of the leached PDC cutter 300; however the transducer 550 can be coupled to a portion of the substrate outer wall 366 in other exemplary embodiments. Alternatively, the transducer 550 is coupled to a portion of the immersion tank 520 or positioned within the cleaning fluid 530, thereby producing vibrations which propagate through the cleaning fluid 530 and into the leached PDC cutter 300. The transducer 550 also is coupled to a power source 560 using an electrical wire 561. The transducer 550 converts electric current supplied from the power source 560 into vibrations that are propagated through the leached PDC cutter 300. The transducer 550 is shaped into a cylindrical shape and has a circumference sized approximately similarly to the circumference of the bottom surface 364. However, the shape and size of the transducer 550 varies in other exemplary embodiments. The transducer 550 is a piezoelectric transducer; however, the transducer 550 is a magnetostrictive transducer in other exemplary embodiments. The transducer 550 operates at a frequency of about 40 kilohertz (kHz) in some exemplary embodiments. In other exemplary embodiments, the transducer 550 operates at a frequency ranging from about 20 kHz to about 50 kHz; yet, in still other exemplary embodiments, the operating frequency is higher or lower than the provided range. The transducer 550 supplies ultrasonic vibrations 555 which propagate through the leached PDC cutter 300 and facilitate the by-product materials 398 removal from the interstitial spaces 212 (
Once the by-products removal apparatus 500 has been set up and at least a portion of the PCD cutting table 310 is immersed into the cleaning fluid 530, the cleaning fluid 530 penetrates into the leached layer 354 and dissolves the by-product materials 398 that are clogging the PCD open porosity. The by-product materials 398 are highly soluble in the cleaning fluid 530. In certain exemplary embodiments, the transducer 550 and the power source 560 are included in the by-product removal apparatus 500. The power source 560 is turned “on” to facilitate removal of the by-product materials 398 from the PCD cutting table 310 back into the cleaning fluid 530. The transducer 550 produces ultrasonic vibrations 555 into the leached PDC cutter 300 which promotes the removal of the by-product materials 398 from the PCD cutting table 310 back into the cleaning fluid 530. The operating frequency of the transducer 550 and the intensity of the elastic waves emitted from the transducer can be adjusted to maximize the amount of vibrations 555 delivered to the PCD cutting table 310. Furthermore, the ultrasonic vibrations 555 mechanically improve the cleaning fluid 530 circulation rate into and out of the interstitial spaces 212 (
The by-product materials removal verification method 700 proceeds to step 730. At step 730, at least a portion of the by-product materials from the leached PDC cutter is removed thereby forming a cleaned leached PDC cutter. The by-product materials are removed from the leached PDC cutter using the by-products removal apparatus 500 (
The by-product materials removal verification method 700 proceeds to step 740. At step 740, at least one capacitance value for each of the cleaned leached PDC cutter is measured. The cleaned leached PDC cutter has been described above in detail with respect to
The capacitance measuring device 810 is a device that measures the capacitance of an energy storage device, which is the cleaned leached PDC cutter 400, or the leached PDC cutter 300 (
One example of the capacitance measuring device 810 is a multi-meter; however, other capacitance measuring devices known to people having ordinary skill in the art are used in one or more alternative exemplary embodiments. The multi-meter 810 includes a positionable dial 812, a plurality of measurement settings 814, a display 816, a positive terminal 818, and a negative terminal 819. According to some exemplary embodiments, the positionable dial 812 is rotatable in a clockwise and/or counter-clockwise manner and is set to one of several available measurement settings 814. In the instant exemplary embodiment, the positionable dial 812 is set to a nanofaraday setting 815 so that the multi-meter 810 measures capacitance values. The display 816 is fabricated using polycarbonate, glass, plastic, or other known suitable material and communicates a measurement value, such as a capacitance value, to a user (not shown) of the multi-meter 810. The positive terminal 818 is electrically coupled to one end of the first wire 830, while the negative terminal 819 is electrically coupled to one end of the second wire 840.
The first wire 830 is fabricated using a copper wire or some other suitable conducting material or alloy known to people having ordinary skill in the art. According to some exemplary embodiments, the first wire 830 also includes a non-conducting sheath (not shown) that surrounds the copper wire and extends from about one end of the copper wire to an opposing end of the cooper wire. The two ends of the copper wire are exposed and are not surrounded by the non-conducting sheath. In some exemplary embodiments, an insulating material (not shown) also surrounds the copper wire and is disposed between the copper wire and the non-conducting sheath. The insulating material extends from about one end of the non-conducting sheath to about an opposing end of the non-conducting sheath. As previously mentioned, one end of the first wire 830 is electrically coupled to the positive terminal 818, while the opposing end of the first wire 830 is electrically coupled to the cutting surface 812 of the cleaned leached PDC cutter 400. The opposing end of the first wire 830 is electrically coupled to the cutting surface 412 in one of several methods. In one example, the first wire 830 is electrically coupled to the cutting surface 412 using one or more fastening devices (not shown), such as a clamp, or using an equipment (not shown) that supplies a force to retain the first wire 830 in electrical contact with the cutting surface 412. In another example, a clamp (not shown) is coupled to the opposing end of the first wire 830 and a conducting component (not shown), such as aluminum foil, is coupled to, or placed in contact with, the cutting surface 412. The clamp is electrically coupled to the conducting component, thereby electrically coupling the first wire 830 to the cutting surface 412. Additional methods for coupling the first wire 830 to the cutting surface 412 can be used in other exemplary embodiments.
The second wire 840 is fabricated using a copper wire or some other suitable conducting material or alloy known to people having ordinary skill in the art. According to some exemplary embodiments, the second wire 840 also includes a non-conducting sheath (not shown) that surrounds the copper wire and extends from about one end of the copper wire to an opposing end of the cooper wire. The two ends of the copper wire are exposed and are not surrounded by the non-conducting sheath. In some exemplary embodiments, an insulating material (not shown) also surrounds the copper wire and is disposed between the copper wire and the non-conducting sheath. The insulating material extends from about one end of the non-conducting sheath to an opposing end of the non-conducting sheath. As previously mentioned, one end of the second wire 840 is electrically coupled to the negative terminal 819, while the opposing end of the second wire 8440 is electrically coupled to a bottom surface 364, which is similar to the bottom surface 154 (
Hence, a circuit 805 is completed using the multi-meter 810, the first wire 830, the cleaned leached PDC cutter 400, and the second wire 840. The current is able to flow from the positive terminal 818 of the multi-meter 810 to the cutting surface 412 of the cleaned leached PDC cutter 400 through the first wire 830. The current then flows through the cleaned leached PDC cutter 400 to the bottom surface 364 of the cleaned leached PDC cutter 400. When the multi-meter 810 is turned on, a voltage differential exists between the cutting surface 412 and the bottom surface 364. The current then flows from the bottom surface 3644 to the negative terminal 819 of the multi-meter 810 through the second wire 840. The capacitance measurement of the cleaned leached PDC cutter 400 is determined when the value displayed on the display 816 reaches a peak value or remains constant for a period of time. The use, analyzing of the results, and other information regarding the capacitance measuring system 800 is described in U.S. patent application Ser. No. 13/401,188, entitled “Use of Capacitance to Analyze Polycrystalline Diamond” and filed on Feb. 21, 2012, which has been incorporated by reference herein.
The first conducting material 910 and the second conducting material 920 are similar to one another in certain exemplary embodiments, but are different in other exemplary embodiments. According to one exemplary embodiment, the conducting materials 910, 920 are fabricated using aluminum foil; however, other suitable conducting materials can be used. The first conducting material 910 is positioned adjacently above and in contact with the cutting surface 412. The second conducting material 920 is positioned adjacently below and in contact with the bottom surface 364. The first conducting material 910 and the second conducting material 920 provide an area to which the first wire 830 and the second wire 840, respectively, make electrical contact. Additionally, the first conducting material 910 and the second conducting material 920 assist in minimizing contact resistance with the cutting surface 412 and the bottom surface 364, respectively, which is discussed in further detail below. In certain exemplary embodiments, the first conducting material 910 and the second conducting material 920 are the same shape and size; while in other exemplary embodiments, one of the conducting materials 910, 920 is a different shape and/or size than the other conducting material 910, 920.
The first insulating material 930 and the second insulating material 940 are similar to one another in certain exemplary embodiments, but are different in other exemplary embodiments. According to one exemplary embodiment, the insulating materials 930, 940 are fabricated using paper; however, other suitable insulating materials, such as rubber, can be used. The first insulating material 930 is positioned adjacently above and in contact with the first conducting material 910. The second insulating material 940 is positioned adjacently below and in contact with the second conducting material 920. The first insulating material 930 and the second insulating material 940 provide a barrier to direct current flow only through a circuit 905, which is discussed in further detail below. In certain exemplary embodiments, the first insulating material 930 and the second insulating material 940 are the same shape and size; while in other exemplary embodiments, one of the insulating materials 930, 940 is a different shape and/or size than the other insulating material 930, 940. Additionally, in certain exemplary embodiments, the insulating materials 930, 940 is larger in size than its corresponding conducting material 910, 920. However, one or more of the insulating materials 930, 940 is either larger or smaller than its corresponding conducting material 910, 920 in alternative exemplary embodiments.
The Arbor Press 950 includes an upper plate 952 and abase plate 954. The upper plate 952 is positioned above the base plate 954 and is movable towards the base plate 954. In other exemplary embodiments, the base plate 954 is movable towards the upper plate 952. The first insulating material 930, the first conducting material 910, the cleaned leached PDC cutter 400, the second conducting material 920, and the second insulating material 940 are positioned between the upper plate 952 and the base plate 954 such that the second insulating material 940 is positioned adjacently above and in contact with the base plate 954. The upper plate 952 is moved towards the base plate 954 until the upper plate 952 applies a downward load 953 onto the cutting surface 412 of the cleaned leached PDC cutter 400. When the downward load 953 is applied, the first conducting material 910 is deformed and adapted to the rough and very stiff cutting surface 412, thereby minimizing contact resistance between the first conducting material 910 and the cutting surface 412 and greatly improving the capacitance measurement consistency. At this time, the base plate 954 also applies an upward load 955 onto the bottom surface 364 of the cleaned leached PDC cutter 400. When the upward load 955 is applied, the second conducting material 920 is deformed and adapted to the rough and very stiff bottom surface 364, thereby minimizing contact resistance between the second conducting material 920 and the bottom surface 364 and greatly improving the capacitance measurement consistency. In certain exemplary embodiments, the downward load 953 is equal to the upward load 955. The downward load 953 and the upward load 955 is about one hundred pounds; however, these loads 953, 955 range from about two pounds to about a critical load. The critical load is a load at which the cleaned leached PDC cutter 400 is damaged when applied thereto.
In one exemplary embodiment, the second insulating material 940 is positioned on the base plate 954, the second conducting material 920 is positioned on the second insulating material 940, the cleaned leached PDC cutter 400 is positioned on the second conducting material 920, the first conducting material 910 is positioned on the cleaned leached PDC cutter 400, and the first insulating material 930 is positioned on the first conducting material 910. The upper plate 952 is moved towards the first insulating material 930 until the downward load 953 is applied onto the cleaned leached PDC cutter 400. In an alternative exemplary embodiment, one or more components, such as the first insulating material 930 and the first conducting material 910, are coupled to the upper plate 952 prior to the upper plate 952 being moved towards the base plate 954. Although an Arbor Press 950 is used in the capacitance measuring system 900, other equipment capable of delivering equal and opposite loads to each of the cutting surface 412 and the bottom surface 364 of the cleaned leached PDC cutter 400 can be used in other exemplary embodiments.
One end of the first wire 830 is electrically coupled to the positive terminal 818 of the multi-meter 810, while the opposing end of the first wire 830 is electrically coupled to the first conducting material 910, which thereby becomes electrically coupled to the cutting surface 412 of the cleaned leached PDC cutter 400. In one exemplary embodiment, a clamp 990 is coupled to the opposing end of the first wire 830 which couples the first wire 830 to the first conducting material 910. One end of the second wire 840 is electrically coupled to the negative terminal 819 of the multi-meter 810, while the opposing end of the second wire 840 is electrically coupled to the second conducting material 920, which thereby becomes electrically coupled to the bottom surface 364 of the cleaned leached PDC cutter 400. In one exemplary embodiment, a clamp (not shown), similar to clamp 990, is coupled to the opposing end of the second wire 840, which couples the second wire 840 to the second conducting material 920. Hence, the circuit 905 is completed using the multi-meter 810, the first wire 830, the first conducting material 910, the cleaned leached PDC cutter 400, the second conducting material 920, and the second wire 840. The current is able to flow from the positive terminal 818 of the multi-meter 810 to the cutting surface 412 of the cleaned leached PDC cutter 400 through the first wire 830 and the first conducting material 910. The current then flows through the cleaned leached PDC cutter 400 to the bottom surface 364 of the cleaned leached PDC cutter 400. When the multi-meter 810 is turned on, a voltage differential exists between the cutting surface 412 and the bottom surface 364. The current then flows from the bottom surface 364 to the negative terminal 819 of the multi-meter 810 through the second conducting material 920 and the second wire 840. The first insulating material 930 and the second insulating material 940 prevent the current from flowing into the Arbor Press 950. The capacitance measurement of the cleaned leached PDC cutter 400 is determined when the value displayed on the display 816 reaches a peak value or remains constant for a period of time. The use, analyzing of the results, and other information regarding the capacitance measuring system 900 is described in U.S. patent application Ser. No. 13/401,188, entitled “Use of Capacitance to Analyze Polycrystalline Diamond” and filed on Feb. 21, 2012, which has been incorporated by reference herein.
Referring back to
According to
Referring back to
A cleaned leached PDC cutter, which is substantially free of by-product materials, or catalyst metal salts, has a superior wear abrasion resistance with an increased thermal stability. Thus, the apparatus and methods disclosed herein minimizes the detrimental effects of the leaching reaction by-product materials.
Although each exemplary embodiment has been described in detail, it is to be construed that any features and modifications that are applicable to one embodiment are also applicable to the other embodiments. Furthermore, although the invention has been described with reference to specific embodiments, these descriptions are not meant to be construed in a limiting sense. Various modifications of the disclosed embodiments, as well as alternative embodiments of the invention will become apparent to persons of ordinary skill in the art upon reference to the description of the exemplary embodiments. It should be appreciated by those of ordinary skill in the art that the conception and the specific embodiments disclosed may be readily utilized as a basis for modifying or designing other structures or methods for carrying out the same purposes of the invention. It should also be realized by those of ordinary skill in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims. It is therefore, contemplated that the claims will cover any such modifications or embodiments that fall within the scope of the invention.
The present application is related to U.S. patent application Ser. No. 13/401,188, entitled “Use of Capacitance to Analyze Polycrystalline Diamond” and filed on Feb. 21, 2012, U.S. patent application Ser. No. 13/401,231, entitled “Use of Eddy Currents to Analyze Polycrystalline Diamond” and filed on Feb. 21, 2012, and U.S. patent application Ser. No. 13/401,335, entitled “Use of Capacitance and Eddy Currents to Analyze Polycrystalline Diamond” and filed on Feb. 21, 2012, which are all incorporated by reference herein.