The present disclosure is directed to systems and methods for the production of seams to seal lids onto cans, particularly seaming metal lids and cans in the food and beverage industries.
A variety of can seaming apparatus are presently available for seaming lids onto metal cans in the food and beverage industries. Particularly for smaller cans with smaller lids, pneumatic sealing devices are preferable in terms of cost reduction and setup time. However, one existing difficulty in devices using air pressure to drive pivoting arms equipped with seam rollers into a can seaming area is in maintaining the high accuracy necessary to drive the roller into the correct position at the seaming area to produce a sufficient seam.
Typically, an air cylinder drives the seam roller into the seaming area. However, maintaining a consistent dimensional deformation throughout the seaming area is difficult to achieve with air cylinders in conventional designs. Existing methods use a sequence of two seam rollers to form the lips of the lid and the can into the required seal. Low pressure in the air system driving the seam rollers or an inadequate dwell time in the seaming process lead to discontinuity in the seam area. This causes dimensional variations in the seam area. Additionally, if the seam producing rollers travel too far into the seam forming area or not far enough, an inadequate seam is formed. These inaccuracies frequently lead to leakage and contamination of contents within the can. Such cans are not acceptable for further processing or sale, which leads to inefficiencies in the canning process and production of canned foods and beverages.
The repeatable seam apparatus disclosed herein is intended to overcome one or more of the problems discussed above.
One embodiment disclosed herein is a can seaming apparatus that includes a seaming arm pivotably attached to a shaft of the can seaming device. A seam roller is attached to one end of the seaming arm, and a cam system is attached to the other end of the seaming arm distal to the seam roller.
The cam system of the can seaming apparatus may include a rotating cam, a cam follower and an actuator. The actuator may rotate the cam about an axis, with the rotating cam providing a force on the cam follower that is in mechanical contact with the perimeter of the rotating cam. The cam follower may be operatively attached to an end of the seaming arm distal the seam roller. The force provided to the cam follower may be transferred to the seaming arm through direct contact, and therefore pivoting the seaming arm about the shaft of the can seaming device. The pivot force provided at one end of the seaming arm may swing the other end of the seaming arm, containing the seam roller, into a seaming area of a can and lid assembly.
In an embodiment which features an actuator in the cam system, the actuator may be a pneumatic actuation device. In other embodiments, the actuator may be an electric motor or a programmable controller.
Similarly, the cam follower may be an eccentric cam follower, thus allowing for fine tune adjustments to the cam system driving the seaming arms and seam rollers of the can producing apparatus. This may allow for smooth and repeatable can seaming operation.
Furthermore, the cam system may include a separate single-lobed rotating cam for each actuation device. In some embodiments, the can seaming apparatus may include a plurality of seam rollers. In this representative embodiment, the can seaming apparatus may further include multiple seaming arms. As such, the cam system of the can seaming apparatus might include a rotating cam with two or more lobes. The number of lobes may correspond to the number of seam rollers in operation of the can seaming apparatus.
The can seaming apparatus may include a height adjustment device attached to the seaming arm. This may provide for adjustment of the vertical positioning of the seam roller. In some cases, this height adjustment device may be a manually turnable knob, where turning the knob in either direction may cause the seam roller to be positioned higher or lower on its vertical axis. The height of the seam roller may be specified according to industry standards for producing acceptable can seams. The height adjustment device may allow for easy adjusting, and therefore repeatable fine tune adjustments of the positioning of the seam roller into a proper seam area of the can and lid assembly. This particular embodiment may contribute to producing repeatable and highly accurate can seams with the can seaming apparatus. The cam seaming device may further include a can lifting device to lift a can and lid assembly into contact with the seaming chuck.
It may be desirable for specific embodiments that the bearing of the rotating cam is aligned with the rotational axis of the can and lid assembly. In other embodiments, the bearing of the cam may rotate at an axis that is offset from the rotational axis of the can and lid assembly.
Another embodiment disclosed herein is a method of producing a seam on a can and lid assembly. The method includes providing a seam roller that is attached to one end of a seaming arm. The seaming arm may be pivotably secured to a shaft. A cam system may be provided, and may include a rotating cam that is mechanically associated with a cam follower and an actuator. The cam system may be operatively associated with a second end of the seaming arm that is distal to the first end containing the seam roller. The actuator may actuate the cam system to drive the rotating cam, which may provide a sliding force on the cam follower that is in contact with the perimeter of the rotating cam. This contact may transfer a force from the rotating cam to the second end of the seaming arm, which may cause a repeatable swinging motion of the seaming arm about the shaft, and therefore engage the seam roller into contact with the can and lid assembly.
As used herein, a means for actuating the cam system may include pneumatic actuation means. Alternatively, the actuating means include means for an electric motor or means for programmable controls.
The method may further include adjusting the cam system by selecting a specific eccentric cam and cam follower. This may allow for producing a highly accurate and repeatable can seam.
In other embodiments, the method may include driving a single lobe rotating cam of the cam system with an actuator. Alternatively, the method may include driving a multiple lobe rotating cam with an actuator.
A height adjustment device may allow for fine tuning of the vertical height of the seam roller with respect to the can and lid assembly. Such positioning of the seam roller may be specified by industry standards, and furthermore may be easily adjusted with the height adjustment device, therefore allowing the user to produce accurate and repeatable can seams.
The method may further include rotating the cam around the rotational axis of the can and lid assembly. In another embodiment, the method may include rotating the cam at an axis that is offset from the rotational axis of the can and lid assembly.
Unless otherwise indicated, all numbers expressing quantities of ingredients, dimensions, reaction conditions and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about”.
In this application and the claims, the use of the singular includes the plural unless specifically stated otherwise. In addition, use of “or” means “and/or” unless stated otherwise. Moreover, the use of the term “including”, as well as other forms, such as “includes” and “included”, is not limiting. Also, terms such as “element” or “component” encompass both elements and components comprising one unit and elements and components that comprise more than one unit unless specifically stated otherwise.
Height adjustment devices 107, 108 are threaded and fit into a likewise threaded portion of the seaming arms 105, 106. The height adjustment devices 107, 108 provide for the height of the seam rollers 101, 102 to be very accurately oriented vertically with respect to the chuck 103 and can/lid assembly 104. The seaming arms 105,106 can be rotated about pivots 114, 115 (hidden). Rotary actuators 109, 110 are located at the far end of the seaming arms 105, 106 from the seam rollers 101, 102. The rotary actuators 109, 110, in conjunction with certain cam embodiments described in detail below, drive the seaming arms 105, 106 into and out of an operative position.
In one embodiment, a single cam rotating on its own bearing and having a cam axis coincident with the axis of the can/lid assembly 104 and the seaming chuck 103, or offset a given distance from this axis, can actuate the seam rollers 101, 102 to provide an accurate seam. In a single cam embodiment the cam will have two or more lobes corresponding to the number of seam rollers 101, 102. For example,
In other embodiments, a separate cam with a single lobe may be provided for each separate rotary actuator 109, 110. In this alternative embodiment, each separate cam can be mounted on its own separate bearing. In either embodiment, the rotating cam or cam system is driven separately from the can rotating system and can be sequenced on command. The cam or cam system can be driven by a pneumatic device, by an electric motor device, or another commonly used actuation method. The cam or cam system may be controlled, for example, with commands from a programmable controller. As described in detail below, adjustable cam followers 117, 118 for each of the arms carrying seaming rollers 101, 102 allow an operator to precisely adjust the resulting seam to a given specification.
In the case of a pneumatically actuated cam, the cam can be deployed against a pivoting arm equipped with a specialized roller to repeatedly produce a pressure tight seal in a can. An air pressure driven slide can be actuated to bring a shaped cam into contact with a rolling element mounted on a swiveling arm. On the opposite end of the arm, a specially constructed seam roller 101,102 is brought into a fixed distance from the edge of the can/lid interface.
The adjustability of the driving cams 116, 119 attached to the rotary actuators 109, 110 in combination with the eccentric based cam followers 118, 117 make the final specifications of the produced seam controllable within the range of 0.001 inch, according to some embodiments. In other embodiments, the can seam is repeatable to within 0.003 inch.
As shown in
Number | Name | Date | Kind |
---|---|---|---|
4004529 | Grotnes | Jan 1977 | A |
4218983 | Rhinefrank et al. | Aug 1980 | A |
4513487 | Binnie | Apr 1985 | A |
5074034 | Lebbon | Dec 1991 | A |
6623230 | Bagheri et al. | Sep 2003 | B1 |
6890140 | Egerton et al. | May 2005 | B2 |
20040197164 | Carrein et al. | Oct 2004 | A1 |
20070248437 | Rudd et al. | Oct 2007 | A1 |
20090200321 | Oohori et al. | Aug 2009 | A1 |
Number | Date | Country |
---|---|---|
1055469 | Nov 2000 | EP |
1230999 | Aug 2002 | EP |
07-039972 | Feb 1995 | JP |
08-168837 | Jul 1996 | JP |
Entry |
---|
Extended European Search Report mailed Apr. 17, 2015 for corresponding EP Application No. 12846243.9. |
International Search Report and Written Opinion for PCT/US2012/062946, Mailed Mar. 21, 2013. |
Number | Date | Country | |
---|---|---|---|
20130108399 A1 | May 2013 | US |
Number | Date | Country | |
---|---|---|---|
61554025 | Nov 2011 | US |