The present technology is generally related to a device and system, and a related method thereof, of predicting an adverse event during a treatment procedure.
Existing catheter devices used in cryoablation procedures have a double balloon construction with an outer balloon acting as a safety feature to contain the coolant in the event of an inner balloon breach. The space between the inner balloon an outer balloon is under vacuum during cryotherapy, and a console continuously monitors the pressure between the two balloons to detect the case of a balloon breach and to stop the injection or delivery of coolant. However, although a double balloon breach is extremely rare, it is still possible. When a double balloon breach occurs, there is a sudden release of pressurized gas which may be dangerous or harmful to the patient.
The techniques of this disclosure generally relate to devices, systems, and methods of use thereof, for predicting an adverse event during a medical procedure.
One aspect provides a method of predicting an adverse event during an ablation procedure includes providing a medical device having an expandable element and positioning the medical device proximate to an area of target tissue. The medical device includes a fluid exhaust lumen and a fluid supply lumen each being in fluid communication with the expandable element. The method further includes delivering fluid to expandable element and exhausting fluid from the expandable element; measuring a pressure within a vacuum return path; and measuring a period of time it takes for the pressure within the vacuum return path to reach a target pressure.
In some aspects, the medical device is in communication with a console. The console includes processing circuitry, a fluid supply reservoir in fluid communication with the fluid supply lumen, and a fluid exhaust chamber in fluid communication with the fluid exhaust lumen.
In some aspects, the method further includes triggering a fault to stop the delivery of fluid if the pressure within the vacuum return path does not reach the target pressure within a predetermined time period.
In some aspects, the vacuum return path is disposed within the console. The pressure of the vacuum return path is measured by a pressure sensor disposed within the console along the vacuum return path.
In some aspects, the method further includes generating an alert when the fault to stop the delivery of fluid is triggered. The alert is at least one of an audible alert, a visual alert, and a tactile alert indicative of a presence of an adverse event.
In some aspects, the adverse event is a condition causing the restriction of fluid through the vacuum return path.
In some aspects, the method further includes measuring, with a flow sensor, a mass flow rate of fluid traveling from the expandable element to the console via the fluid exhaust lumen.
In some aspects, the method further includes comparing the measured mass flow rate of fluid to a mass flow rate threshold, triggering the fault if it is determined that the adverse event is detected based on the comparison of the measured mass flow rate of fluid to the mass flow rate threshold, and generating the alert when the fault to stop the delivery of fluid is triggered.
In some aspects, the medical device further includes a pressure monitoring tube at least partially disposed within the expandable element.
Another aspect provides a medical system includes a console having processing circuitry and a medical device in communication with the console. The medical device includes an expandable element, a fluid supply lumen and a fluid exhaust lumen in fluid communication with the expandable element and the console, and a pressure sensor. The fluid exhaust lumen being in communication with a vacuum return path disposed within the console. The pressure sensor is disposed within the console along the vacuum return path and is configured to measure a pressure within the vacuum return path.
In some aspects, the system further includes a fluid supply reservoir and a fluid exhaust chamber each disposed within the console and in fluid communication with the medical device.
In some aspects, the processing circuitry is configured to measure a period of time it takes for the pressure within the vacuum return path to reach a target pressure.
In some aspects, the processing circuitry is further configured to: initiate a delivery of fluid from the fluid supply reservoir to the expandable element, and trigger a fault to stop the delivery of fluid to the expandable element if the measured pressure within the vacuum return path does not reach the target pressure within a predetermined time period.
In some aspects, the console is configured to generate and transmit an alert when the fault is triggered. The alert is at least one of an audible alert, a visual alert, and a tactile alert indicative of a presence of an adverse event.
In some aspects, a flow sensor is disposed within the console along the vacuum return path. The flow sensor is configured to measure a mass flow rate of fluid traveling from the expandable element to the fluid exhaust chamber via the vacuum return path.
In some aspects, the processing circuitry is configured to compare the measured mass flow rate of fluid to a mass flow rate threshold and trigger a fault to stop the delivery of fluid to the expandable element if the measured mass flow rate of fluid deviates from the mass flow rate threshold by more than a predetermined range.
In some aspects, the medical device further includes a pressure monitoring tube at least partially disposed within the expandable element.
Yet another aspect provides a method of predicting an adverse event during an ablation procedure includes providing a medical device having an expandable element. The medical device is in communication with a console having processing circuitry, a fluid supply reservoir, a fluid exhaust chamber, and a vacuum return path. The method further includes positioning the medical device proximate to an area of target tissue, the medical device includes a fluid exhaust lumen and a fluid supply lumen each being in fluid communication with the expandable element and the console, and delivering fluid from the fluid supply reservoir to expandable element and exhausting fluid from the expandable element to the fluid exhaust chamber. The method further includes at least one selected from the group consisting of: (a) measuring a pressure of the vacuum return path, the pressure being measured by a pressure sensor disposed within the console along the vacuum return path; (b) measuring a period of time it takes for the pressure within the vacuum return path to reach a target pressure; (c) measuring, with a flow sensor, a mass flow rate of fluid traveling from the expandable element to the fluid exhaust chamber via the vacuum return path; and (d) comparing the measured mass flow rate of fluid to a mass flow rate threshold. The method further includes triggering a fault to stop the delivery of fluid to the expandable element if the pressure of the vacuum return path does not reach the target pressure within a predetermined time period or if the measured mass flow rate of fluid deviates from the mass flow rate threshold by more than a predetermined range.
In some aspects, the method further includes generating an alert when the fault is triggered. The alert is at least one of an audible alert, a visual alert, and a tactile alert indicative of a presence of an adverse event.
The details of one or more aspects of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the techniques described in this disclosure will be apparent from the description and drawings, and from the claims.
The accompanying figures, where like reference numerals refer to identical or functionally similar elements throughout the separate views, together with the detailed description below, are incorporated in and form part of the specification, and serve to further illustrate aspects, features, examples, and embodiments of concepts that include the claimed subject matter, and explain various principles and advantages of those aspects, features, examples, and embodiments.
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of aspects, features, examples, and embodiments.
The apparatus and method components have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the aspects, features, examples, and embodiments presented so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.
The devices, systems, and methods disclosed herein are for treating an area of tissue, such as performing pulmonary vein isolation, spot ablation, and/or linear ablation with a single medical device. For example, a system is provided that includes a medical device in communication with a console having a pressure sensor disposed therein.
Referring now to the drawings in which like reference designators refer to like elements, there is shown in
The system 10 may further include a medical or treatment device 24 configured to fluidly and electrically couple to the console 12 through one or more umbilicals (not shown). The medical device 24 may be a cryogenic catheter configured to extract heat from a target tissue region by delivering cryogenic fluid to a treatment element (for example, a cryoballoon or other similar expandable element) that comes into physical contact with target tissue during an ablation procedure. The medical device 24 may include an elongate body 26 coupled to a handle 28 of the medical device 24. The elongate body 26 has a proximal portion 30 and a distal portion 32 opposite the proximal end, one or more lumens therein configured transport fluid from the fluid supply reservoir 14 through the medical device 24 and back out through the medical device 24. For example, the medical device 24 may include a supply lumen 36 configured to transport fluid into the medical device 24 and an exhaust lumen (not shown) configured to transport fluid away from the medical device 24. Also, the medical device 24 may include an inner shaft 34 coupled to the handle 28 and extending through the elongate body 26 such that a proximal portion (not shown) of the inner shaft 34 is proximate to the proximal portion 30 and a distal portion of the inner shaft 34 is proximate to or extends out of an opening defined by the distal portion 32. Although not shown in detail herein, it is to be understood that in some configurations, the exhaust lumen is defined between the inner surface of the elongate body 26 and the outer surface of the inner shaft 34.
As shown in
Continuing to refer to
Further, although not shown, the expandable element 40 may include a plurality of electrodes coupled to the inner surface and/or the outer surface of either the inner or outer balloons 42, 44. For example, in some configurations the plurality of electrodes are uniformly distributed on the outer surface of the outer balloon 44. In other configurations, the plurality of electrodes are unevenly distributed, for example, on a particular portion of the outer balloon 44. The plurality of electrodes may be configured to measure an inner surface temperature or outer surface temperature of the outer balloon 44, which may be indicative of the inner surface temperature or outer surface temperature of the expandable element 40 as a whole. For example, at least one of the plurality of electrodes may be a thermocouple configured to measure the temperature of the inner balloon 42 and/or outer balloon 44 before, during, and/or after the delivery of refrigerant to the expandable element 40. The measurement of the temperature of the expandable element 40 may be used, in part, to determine the amount or degree of ice formation at the ablation site.
Further, as shown in
Continuing to refer to
Once the processing circuitry 16 has closed PV160 and/or the safety solenoid valve 62 to stop the delivery of fluid to the expandable element 40, the processing circuitry 16 may then generate at least one of an audible, visual, and/or tactile alert that is indicative of the presence of an adverse event and transmit the alert to an external control unit, the display 22, and/or a smart device (e.g., tablet device) of the clinician. In some embodiments, the adverse event may be a mechanical condition that restricts or lessens the flow of fluid through elongate body 26 to the vacuum return path 61. For example, the adverse event may be the presence of a kink/bend in the elongate body 26 (for example, including the fluid exhaust lumen) while fluid is being delivered to the expandable element 40. Additionally, in other embodiments, the adverse event may be the detection of blockages in the supply lumen 36 or fluid delivery conduit 46 during the delivery of fluid to the expandable element 40. The blockages may be the result of debris or ice formation that partially or fully blocks or clogs the supply lumen 36 and/or fluid delivery conduit 46 and restricts the passage of fluid to the interior of the expandable element 40. In some embodiments, the adverse event may also include the detection of blockages in a fluid injection path 63 within the console 12. Although blockages in the fluid injection path 63 within the console 12 may not lead to a single balloon or double-balloon breach, it may be useful to alert clinicians to other adverse conditions prevalent in the system 10 during a medical procedure.
Now referring to
For example, as shown in
Because the dip 400 in measured flow can be detected sooner than a sudden or rapid increase in balloon pressure, the console 12 is configured to detect the presence of the adverse event at an earlier point in time during the treatment procedure. The console 12 includes software and/or hardware to trigger a fault or other type of executable command to stop the injection or delivery of fluid to the expandable element 40 prior to the expandable element 40 experiencing a breach. Because manual stoppage of fluid delivery by clinicians may not be fast enough, the console 12 is configured to automatically stop the injection of fluid to the expandable element 40 once it has detected the adverse event.
As shown in
It should be understood that various aspects disclosed herein may be combined in different combinations than the combinations specifically presented in the description and accompanying drawings. It should also be understood that, depending on the example, certain acts or events of any of the processes or methods described herein may be performed in a different sequence, may be added, merged, or left out altogether (e.g., all described acts or events may not be necessary to carry out the techniques). In addition, while certain aspects of this disclosure are described as being performed by a single module or unit for purposes of clarity, it should be understood that the techniques of this disclosure may be performed by a combination of units or modules associated with, for example, a medical device.
In one or more examples, the described techniques may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored as one or more instructions or code on a computer-readable medium and executed by a hardware-based processing unit. Computer-readable media may include non-transitory computer-readable media, which corresponds to a tangible medium such as data storage media (e.g., RAM, ROM, EEPROM, flash memory, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer).
Instructions may be executed by one or more processors, such as one or more digital signal processors (DSPs), general purpose microprocessors, application specific integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other equivalent integrated or discrete logic circuitry. Accordingly, the term “processor” as used herein may refer to any of the foregoing structure or any other physical structure suitable for implementation of the described techniques. Also, the techniques could be fully implemented in one or more circuits or logic elements.
It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described herein above. In addition, unless mention was made above to the contrary, it should be noted that all of the accompanying drawings are not to scale. A variety of modifications and variations are possible in light of the above teachings without departing from the scope and spirit of the invention, which is limited only by the following claims.
The present application is related to and claims benefit under 35 U.S.C. § 119(c) to U.S. Provisional Patent Application Ser. No. 63/284,688, filed Dec. 1, 2021, entitled “Method to Mitigate Double Balloon Breach During Cryoballoon Therapy,” the entire contents of which being incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
63284688 | Dec 2021 | US |