The present invention relates to a method to grind meat in a grinder wherein the meat is provided to the grinder via a hopper and transported by a feeder worm to a rotating processing worm which conveys the meat towards a cutting set which grinds the meat and wherein the feeder worm initially rotates in a first direction.
Such grinders are known from the state of the art and are, for example, utilized to produce minced meat. Nowadays, in many cases, frozen food is ground, which in the past resulted in many shut downs, which reduces the profitability of a meat grinding plant.
It was therefore the objective of the present invention to provide a method which does not comprise the deficiencies of the state of the art.
This is attained by a method to grind meat in a grinder, wherein the meat is provided to the grinder via a hopper and transported by a feeder worm, to a rotating processing worm, which conveys the meat towards a cutting set which grinds the meat, wherein the feeder worm initially rotates in a first direction, characterized in that in case the feeder worm is overloaded, its direction of rotation is reversed to a second direction for a certain period of time and then reversed back to the first direction.
The present invention relates to a method to grind meat in a grinder. This grinder comprises a hopper which carries the meat to be grinded. At the base of the hopper a feeder worm is provided which rotates in a first direction around its middle axis. Additionally, a rotating processing worm is part of the grinder which conveys the meat towards a cutting sets, which cuts the meat in pieces so that the resulting product is minced meat. The cutting set comprises at least a perforated disk and a rotating knife which is in most cases driven by the processing worm. According to the present invention, in case an overload, the rotation of the feeder worm is reversed to a second opposite direction for a certain period of time and then reverse back to the first direction. Due to this change in direction of rotation, occurring blockages of the feeder worm can be loosened and no shut down of grinder is needed.
Preferably, during production under normal conditions, the feeder worm and the processing worm rotate in the same direction, each around their middle axis, respectively.
In case the direction of rotation of the feeder worm is reversed to a second direction of rotation, this rotation in the second direction only takes place preferably 0.5-3 revolutions and is then turned back to the initial first direction.
Preferably, the overload of the feeder worm is detected by the power-consumption of the motor that drives the feeder worm. In case this power-consumption exceeds a certain value, the direction of rotation is automatically reversed for a certain period of time and then reversed back to its initial direction of rotation.
According to another preferred embodiment of the present invention, the overload situation is detected by a sensor that detects the speed of rotation of the feeder worm. Typically, the grinder is set to maintain a certain speed of rotation of the feeder worm. In case, this speed of rotation cannot be maintained by the motor due to a blockage situation, the direction of rotation is automatically reversed for some revolutions and then turned back to its original direction of rotation. Alternatively or additionally, the torque needed to rotate the feeder worm is measured and in case this torque exceeds a certain value, the direction of rotation is automatically reversed for some revolutions and then turned back to its original direction of rotation.
According to another preferred embodiment of the present invention, the processing worm maintains its direction of rotation during the entire process, i.e. also during the rotation of the feeder worm in the second direction.
Preferably, before and after a change of direction of rotation of the feeder worm the speed of rotation of the feeder worm is at least essentially identical.
Preferably, the direction of rotation of the feeder worm is reversed manually or automatically.
Preferably, the grinder is automatically shut down, in case to overload situations a occurs twice in preferably 3 to 8 minutes.
The invention is now explained according to the only
In case of an overload situation, e.g. in case the power-consumption of the motor which drives the feeder worm in exceeds a certain level, the rotation of the feeder worm is stopped and reversed for a certain amount of revolutions, preferably 0.5-3 revolutions. Then the feeder worm is stopped again and reversed back to its initial direction of rotation. During this change of direction of rotation of the feeder worm the processing worm maintains its direction of rotation as well as its speed of rotation. After the reversed rotation of the feeder worm, the feeder worm rotates in the same direction and at the same speed as prior to the overload situation.
This reverse of direction of rotation can be initiated manually or automatically, by means of a sensor, which senses for example the power uptake and/or the speed of rotation of the feeders worm and/or torque needed to rotate the feeder worm. In case, an overload situations occurs twice in a certain period of time, which can be set by the operator, the grinder is automatically shut down in order to avoid damage of the grinder.
2 feeder worm
3 processing worm
4 cutting set
5 hopper
Number | Date | Country | Kind |
---|---|---|---|
15176995.7 | Jul 2015 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2016/066420 | 7/11/2016 | WO | 00 |