Method to produce LNG

Abstract
A method to produce LNG at straddle plants. In contrast to known methods, there is provided a slipstream of a high pressure, pre-treated, pre-cooled natural gas stream to a straddle LNG plant section. The slipstream is further cooled, and processed in a high pressure column to a methane content of 85% or 85 plus by mole. The processed stream is further treated to remove carbon dioxide. The de-carbonated high pressure stream is further cooled in a heat exchanger by a counter-current vapor fraction of the expanded gas before entering an expander apparatus. The processed, treated and cooled gas is expanded into a separator. The produced LNG fraction is pumped to storage. A portion of the LNG fraction is used as a reflux stream to the high pressure column. The cold vapor fraction from the separator flows through counter-current heat exchangers, giving up its coolth energy before being re-compressed into the high pressure transmission gas pipeline.
Description
FIELD OF THE INVENTION

The present invention relates to a method to liquefy natural gas. The method was developed with straddle plants in mind, but has broader application.


BACKGROUND OF THE INVENTION

Canadian Patent Application 2,763,081 (Lourenco et al) entitled “Method to Product Liquefied Natural Gas (LNG) at Midstream Natural Gas Liquids (NGLs) Recover Plants” describes a process addition to straddle plants which are used to recover natural gas liquids (NGL's). The described process allows these plants, in addition to producing NGL's, to also efficiently produce liquid natural gas (LNG).


There will hereinafter be described an alternative to the method described in the 2,763,081 patent application. The method can be used wherever high pressure gas flows and supporting infrastructure exists to deal with the process streams, such as at straddle plants.


SUMMARY OF THE INVENTION

There is provided a method to produce Liquid Natural Gas (LNG). A first step involves passing a &watered natural gas stream at pressures of between 700 psig and 1200 psig through one or more heat exchangers to pre-cool the natural gas stream. A second step involves passing the pre-cooled natural gas stream through a gas column where natural gas liquid fractions and natural gas fractions are separated. A third step involves passing the natural gas fractions at pressures of between 700 psig and 1200 psig through a gas treatment unit to remove carbon dioxide gas. A fourth step involves passing the de-carbonized natural gas fractions at pressures of between 700 psig and 1200 psig through one or more heat exchangers to pre-cool the de-carbonized natural gas fractions. A fifth step involves passing the de-carbonized natural gas fractions at pressures of between 700 psig and 1200 psig through a gas expansion apparatus where pressure of the de-carbonized natural gas fractions is lowered to a pressure of less than 100 psig. A sixth step involves passing the de-carbonized natural gas fractions at a pressure of less than 100 psig through a separator where the de-carbonized natural gas fractions are separated into an LNG stream and a natural gas stream at a pressure of less than 100 psig.


Where there is a high pressure stream of natural gas (ie at pressures in a range of 700 psig to 1200 psig) that can be tapped, the above method can operate without external power inputs, resulting in substantial savings in both capital and operating costs.


The input temperature of a high pressure stream of natural gas is relatively constant. This means that once steady state is achieved, the ratio of cold gas vapour is constant relative to a flow rate of the natural gas. A high pressure LNG pump can be used to divert a reflux stream from the LNG stream to the gas column in order to maintain desired operating conditions.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features of the invention will become more apparent from the following description in which reference is made to the appended drawings, the drawings are for the purpose of illustration only and are not intended to in any way limit the scope of the invention to the particular embodiment or embodiments shown, wherein:



FIG. 1 labelled as PRIOR ART is a schematic diagram of a typical straddle plant equipped with a gas pre-treatment, heat exchangers (cold box), an expander-compressor and a main compressor for re-compression to transmission pipeline.



FIG. 2 is a schematic diagram of a typical straddle pant with the addition of a LNG production unit facility equipped with an alternate cooling, processing and treating medium and compression of the recycled vapour fraction.



FIG. 3 is a schematic diagram of a typical straddle pant with the addition of a LNG production unit facility equipped with A JT (Joules Thompson) valve in lieu of a gas expander.



FIG. 4 is a schematic diagram of a typical straddle pant with the addition of a LNG production unit facility equipped with an additional heat exchanger to extract more cooling from the straddle plant and improve LNG production.





DESCRIPTION OF A PRIOR ART STRADDLE PLANT

LNG is produced from a natural gas that has been cooled to a cryogenic condition to condense methane, the natural gas main component, A temperature of approximately −160 C is required to produce and keep natural gas in a liquid state at standard atmospheric pressure. Liquefaction reduces the volume of natural gas by approximately 600 times thus making it more economical to transport over great distances versus traditional pipelines. At present LNG is primarily transported across continents thus making it available throughout the world. LNG is also produced in small scale liquefaction plants to supply peak shaving demands, as well as to make available natural gas to regions that need it but where it is not economical or technically feasible to build pipelines.


The differences in liquefaction selection processes for large versus small LNG plants are; for large plants the main criteria is minimization of capital cost whereas the minimization of energy consumption is left as a second objective. These two objectives can also go together; thus an optimization of the efficiency of the plant may involve a reduction in the investment of the equipment. On the other hand, a higher efficiency can result in an increase in LNG production, so the efficiency factor has a significant impact on the plant economics. In small to medium LNG plants, it is not the efficiency, but other factors such as simplicity, modularization, ease of maintenance, operation and installation that have an higher criteria when selecting a liquefaction technology. The direct consequence of these different selection criteria is that liquefaction technologies for small to medium scale applications are not the same as the ones that are used in large LNG plants.


The two main groups of liquefaction technologies are the mixed refrigerant technologies and expansion based technologies. The mixed refrigerant technologies are “condensing type” processes, where the refrigerant used for the liquefaction makes use of its latent heat of vaporization to cool the natural gas. The expansion based technologies are processes where the refrigerant is always in gas phase and only makes use of its sensible heat to cool the natural gas.


The following mixed refrigerant technologies are the most representative processes in the industry: PRICO (Poly Refrigerated integrated Cycle Operation is licensed by Black and Veatch and it consists of one cycle of mixed refrigerant (a mixture of methane, ethane, propane, butane, nitrogen and sometimes isopentane), the advantages claimed by the licensor are operating flexibility, modular design and reduced refrigerant inventory. The AP-M (Air Products) is licensed by APCI, is a single mixed refrigerant that is vaporized at two different levels of pressure. The dual pressure cycle is more efficient than the single pressure cycle, resulting in smaller heat exchangers and compressor. The LiMuM (Linde Multistage Mixed Refrigerant) is licensed by Linde and consists of a spiral wound heat exchanger and one 3-stage single mixed refrigeration loop for the pre-cooling, liquefaction and sub-cooling of the natural gas. This process allows for high capacity throughput, PCMR (Pre-cooled Mixed Refrigerant) is licensed by Kryopak and consists of a pre-cooling stage (ammonia or propane cycle) followed by a single mixed refrigerant cycle, where the mixed refrigerant is a mixture of nitrogen, methane, ethane, propane and butanes, this process is used primarily in small plants, OSMR (Optimized Single Mixed Refrigerant) is licensed by LNG Limited, the process is a single mixed refrigerant process complemented with a standard package ammonia absorption process. The utilization of an ammonia process improves the efficiency of the process and an increase in LNG output compared to traditional single mixed refrigerant processes. In all of the above mixed refrigerant technologies, the main differences between them are the composition of the mixed refrigerant (although the refrigerants are the same ie; nitrogen, methane, ethane, etc . . . ), the metallurgy of the heat exchangers, the orientation of the equipment and the operations set points. In all the mixed refrigerants processes the objective of innovation is to increase efficiency, reducing capital and operating costs.


The expansion based technologies have various processes based on the use of nitrogen as a refrigerant to liquefy natural gas, the N2 expansion cycle. Some of these processes use a single cycle, others use a dual expansion cycle and in other cases a pre-cooling cycle is added to improve efficiency. Several licensors ie; APCI, Hamworthy, BHP Petroleum Pty, Mustang Engineering and Kanfa Oregon offer the N2 expansion cycles processes, they differ by proprietary process arrangement. In all these processes the cooling is provided by an external refrigeration plant using nitrogen expanders. The Niche LNG process is licensed by CB&I Lummus, consists of two cycles: one cycle uses methane as a refrigerant and the other uses nitrogen. The methane provides cooling at moderate and warm levels while the nitrogen cycle provides refrigeration at the lowest temperature level. The OCX process is licensed by Mustang Engineering and is based on the use of the inlet gas as a refrigerant in an open refrigerant cycle with turbo-expanders, there are variations such as OCX-R which adds a closed loop propane refrigerant to the OCX process and OCX-Angle which incorporates LPG recovery.


As demonstrated, presently there are many variations and processes to liquefy LNG. All of the processes operate based on the expansion of low boiling fluids be it through expanders or JT valves, be it closed or open cycle, the difference between them is in the process efficiencies which result in lower capital and operating costs per unit of LNG produced.


A straddle plant is a natural gas processing plant constructed near a transmission pipeline downstream from the fields where the natural gas in the pipeline has been produced. Also called an “on-line” plant. The straddle plant removes natural gas liquids, the C2+ gas fractions, from the transmission natural gas stream. This is done by first pre-treating the gas stream, pre-cooling it and then reducing the transmission gas high pressure stream in a range of 700 to 1200 psig, typically about 1000 psig, through a gas expander to pressures typically about 325 psig, to cool, condense and separate the C2+ gas fractions in a distillation column. The bottoms of the distillation column exit the plant as the recovered natural gas liquids (NGL's). The distillation column overhead stream, primarily C2 gas fractions, are pre-heated in a countercurrent heat exchange by the straddle plant pre-treated feed gas stream and re-compressed in two steps back to the same transmission pipeline gas pressure. The major operating cost of these straddle plants are the re-compression costs. The re-compression is typically done in two steps. The first step is done through a booster compressor, which typically is a direct drive compressor connected to the gas expander, the energy recovered by expanding the gas from the transmission gas pipeline high pressure is directly used to compress the distillation gas overhead stream from distillation column pressure to an intermediate gas pressure, typically from 450 to 550 psig. The main re-compressor then compresses this intermediate pressure to transmission pipeline pressure. The economics of a straddle plant are based on the quantities and revenues of natural gas liquids produced against the re-compression and maintenance costs.


Referring to FIG. 1, a pressurized pipeline natural gas stream 33 is routed to a straddle plant through valve 34. Valve 35, allows the transmission gas pipeline to bypass the straddle plant. High pressure gas stream 1 enters the straddle plant and is first pre-treated in unit 2 to remove the water content. The de-watered stream 3 is then routed to cold box 4 where it is pre-cooled in coil 5 by counter current gas streams in series, first by gas coil 21, then gas coil 26 and finally gas coil 18. The high pressure, pre-cooled gas stream 6 enters separator 7 where the liquids and gaseous fractions are separated. The liquid fraction is routed through stream 15 to expansion valve 16, where the pressure is reduced to column 23 pressure, this pressure expansion generates more coolth energy and the now expanded and cooler gas is routed through stream 17 to coil 18 in the cold box, pre-cooling the high pressure gas stream in coil 5. The now warmer stream 19 enters distillation column 23 for NGL recovery. The gaseous fraction exits separator 7, through stream 8 which divides into two streams, 9 and 12. Stream 9 enters expander compressor 10 where the high pressure gas is expanded to column 23 pressure, generating torque in shaft A, which drives booster compressor 28 and, the colder gas stream exits the expander-compressor 10 through stream 11 into column 23 for NGL's recovery. The gaseous stream 12 is routed through expansion valve 13, where the high pressure gas is expanded to column 23 pressure and the cooler expanded gas enters column 23 through stream 14 as a reflux stream to control column 23 overhead temperature and distillation. The recovered NGL's exit column 23 through line 24. The stripped gas exits column 23 through stream 25 and is pre-heated in the cold box through coil 26. The warmer gas stream 27 enters booster compressor 28 which is connected through shaft A to the expander 10, thus recovering the mechanical work produced by the expander and boosting stream 27 pressure to stream 29. The boosted pressure stream 29 enters main compressor 30, where the pressure is increased to transmission pipeline pressure and routed through stream 31, through straddle plant block valve 32 and into pipeline gas distribution stream 36.


The above described process in FIG. 1 is the operation of a traditional straddle plant, there are various straddle plant modes of operation to improve the recovery of the NGL's, in all cases the objective is to produce NGL's.


Referring to FIG. 2, the difference from FIG. 1, is the addition of a LNG production section to a conventional straddle plant which as described above its main objective is to produce NGL's. A pressurized pipeline natural gas stream 33 is routed to a straddle plant through valve 34. Valve 35, allows the transmission gas pipeline to bypass the straddle plant. High pressure gas stream 1 enters the straddle plant and is first pre-treated in unit 2 to remove the water content. The de-watered stream 3 is then routed to cold box 4 where it is pre-cooled in coil 5 by counter current gas streams in series, first by gas coil 21, then gas coil 59, gas coil 26 and finally gas coil 18. The high pressure, pre-cooled gas stream 6 enters separator 7 where the liquids and gaseous fractions are separated. The liquid fraction is routed through stream 15 to expansion valve 16, where the pressure is reduced to column 23 pressure, this pressure expansion generates more coolth and the now expanded and cooler gas is routed through stream 17 to coil 18 in the cold box, pre-cooling the high pressure gas stream in coil 5. The now warmer stream 19 enters distillation column 23 for NGL recovery. The gaseous fraction exits separator 7, through stream 8 which divides into two streams, 9 and 37. Stream 9 enters expander-compressor 10 where the high pressure gas is expanded to column 23 pressure, generating torque in shaft A, which drives booster compressor 28 and, the colder gas stream exits expander-compressor 10 through stream 11 into column 23 for NGL's recovery. The recovered NGL's exit column 23 through line 24. The stripped gas exits column 23 through stream 25 and is pre-heated in the cold box through coil 26. The warmer gas stream 27 mixes with LNG plant section gas stream 62 before entering booster compressor 28. The high pressure gaseous stream 37 is the LNG section feed stream, it is routed through heat exchanger 38 where it is further cooled, the colder stream 39 enters column 40 where the methane concentration of stream 43 is controlled. The high pressure liquid fraction 41 is expanded through valve 42 to distillation column 23 pressure as a reflux stream to control distillation column overhead temperature of stream 25. The methane content controlled stream 43 is routed to gas treatment unit 44 to remove the carbon dioxide content in this stream to less than 50 ppm. The de-carbonated stream 45 enters heat exchanger 46 where it is further cooled by gaseous cold stream 56. The high pressure, de-carbonated, and further cooled stream 47 enters expander-compressor 48, where it is expanded to pressures from 0-100 psig, with 10 psig being the preferred operating pressure, the expanded stream 49 enters separator 50, where the liquid fraction LNG is separated from the gaseous fraction. The torque enemy generated by expander 48 is recovered and transferred by shaft B to booster compressor 61 shaft B.


The LNG stream 51 enters LNG pump 52 and is split into streams 53 and 54. LNG stream 53 is routed to storage. LNG stream 54 is routed to high pressure pump 55 where the pressure is increased to column 40 pressure, the LNG flowrate is added to control column overhead temperature, stream 43 and hence the concentration of methane to 85% or greater than 85% by mole. The cold gaseous stream 56 exits separator 50 and is routed to heat exchanger 46, the warmer gaseous stream 57 is further heated in heat exchanger 38, exiting it through stream 58 into cold box coil 59 where it is further heated before entering booster compressor 61 through line 60. Compressor 61 is powered by torque energy recovered in expander 48 through shaft B. The boosted pressure gaseous stream 62 mixes with stream 27 and the mixed stream 63 enters booster compressor 28 where the pressure is further boosted to stream 29. Compressor 28 is powered by torque energy recovered in expander 10 through shaft A. Stream 29 gas enters main compressor 30 where the pressure is increased to transmission pipeline pressure 36, exiting the compressor through stream 31 and straddle plant block valve 32.


The proposed invention addresses both large and small plants in which process simplicity and ease of operation are the main components. The invention eliminates the need for refrigeration cycle plants and the use of proprietary mixed refrigerants. By simplifying the process it reduces capital, maintenance and operations costs. In the preferred method, a pre-treated, pre-cooled high pressure natural gas stream is further cooled in a counter-current second heat exchanger with produced cold LNG vapor, treated, to a methane content specification, then de-carbonated, further cooled in a primary heat exchanger and then expanded through a gas expander. The gas expander produces torque and therefore shaft power that can be converted into mechanical compression power or electricity. In the preferred application the shaft power is used for compression. The expanded gas produces a gaseous and a liquid stream. The gaseous stream is routed to the transmission pipeline first by pre-heating it with inlet feed gas stream and then recompressed to the transmission gas pipeline. The liquid stream, LNG is split into two streams, LNG to storage and LNG for a column reflux. The LNG reflux stream is pressurized to column pressure to control the methane content of the LNG production stream. The bottoms of the column are then sent to the distillation column for the recovery of NGL's. The objective of the invention is to provide the ability for a straddle plant to improve its economics by generating LNG in addition to NGL's. In addition, the ratio of NGL's produced in this mode of operation to gas from the straddle plant to gas transmission pipeline is increased.


A main feature of this invention is the simplicity of the process which eliminates the conventional use of external refrigeration systems for LNG production. Another feature of the invention is the flexibility of the process to meet various operating conditions since the ratio of LNG production is proportional to the cold gaseous stream generated and returned to the transmission gas pipeline. The invention also provides for a significant savings in energy when compared to other LNG processes since the process produces its own refrigeration needs. The proposed invention can be used in any straddle plant size.


Variations:


It should be noted that the motive force generated by the expanders can be connected to a power generator to produce electricity versus a connected gas compressor as proposed.


Referring to FIG. 3, the main difference from FIGS. 2 and 3, is the use of a JT expansion valve 65 in lieu of an expander-compressor. The use of a JT valve versus an expander is an alternative mode of LNG production at a lower capital cost but resulting in a lower production of LNG.


Referring to FIG. 4, the main difference from FIGS. 2, 3, and 4 is the addition of a heat exchanger 66, where stream 37 recovers more coolth energy from stream 25, before being further cooled by the in heat exchanger 38. This added feature allows for an increment in LNG production due to an higher recovery of cryogenic energy versus FIG. 2.


In this patent document, the word “comprising” is used in its non-limiting sense to mean that items following the word are included, but items not specifically mentioned are not excluded. A reference to an element by the indefinite article “a” does not exclude the possibility that more than one of the element is present, unless the context clearly requires that there be one and only one of the elements.


The scope of the claims should not be limited by the preferred embodiments set forth in the examples, but should be given a broad purposive interpretation consistent with the description as a whole.

Claims
  • 1. A method to produce liquid natural gas (LNG) using an LNG plant feed stream, the LNG plant feed stream comprising a high pressure, pre-treated, pre-cooled natural gas stream from a straddle plant, the method comprising: cooling the LNG plant feed stream in at least one heat exchanger;removing natural gas liquids (NGLs) from the cooled LNG plant feed stream using a gas column downstream of the at least one heat exchanger;removing carbon dioxide gas from a vapor stream of the gas column using a gas treatment unit downstream of the gas column;cooling the vapor stream using one or more heat exchangers downstream of the gas treatment unit to produce a cooled de-carbonated stream;expanding the cooled de-carbonated stream in a gas expansion apparatus;providing an LNG separator downstream of the gas expansion apparatus to separate the expanded cooled de-carbonated stream into an LNG stream and a natural gas stream; andproviding a high pressure LNG pump for pumping a portion of the LNG stream to the gas column of the straddle plant as a reflux stream.
  • 2. The method of claim 1, wherein the gas expansion apparatus is a JT valve or a gas expander turbine.
  • 3. The method of claim 1, wherein cooling in one or more heat exchangers is provided by the natural gas stream from the LNG separator.
  • 4. The method of claim 1, wherein the reflux stream to the gas column controls a methane concentration of an overhead stream of the gas column.
  • 5. The method of claim 1, wherein the gas column produces a bottoms stream that is routed to the gas column as a gas column reflux and for NGL recovery.
  • 6. The method of claim 1, wherein the gas treatment unit removes the carbon dioxide gas in an overhead stream of the gas column to a concentration of less than 50 ppm.
  • 7. The method of claim 1, wherein the vapor stream downstream of the gas treatment unit is cooled by the natural gas stream from the LNG separator before entering the gas expansion apparatus.
  • 8. The method of claim 2, wherein the gas column produces a bottoms stream that is a mixture of NGLs from the LNG plant feed stream, carbon dioxide and methane.
  • 9. The method of claim 1, further comprising a straddle plant feed gas stream that feeds a distillation column, and wherein the LNG plant feed stream is obtained by diverting a portion of the straddle plant feed gas stream upstream of the distillation column.
  • 10. The method of claim 9, wherein the NGLs from the gas column are expanded and injected into the distillation column as a distillation column reflux stream.
Priority Claims (1)
Number Date Country Kind
2813260 Apr 2013 CA national
PCT Information
Filing Document Filing Date Country Kind
PCT/CA2014/050347 4/14/2014 WO 00
Publishing Document Publishing Date Country Kind
WO2014/169384 10/23/2014 WO A
US Referenced Citations (109)
Number Name Date Kind
2168438 Carrier Aug 1939 A
3002362 Morrison Oct 1961 A
3152194 Pohl et al. Oct 1964 A
3184926 Blake May 1965 A
3241933 Ploum et al. Mar 1966 A
3280575 Drake Oct 1966 A
3315475 Harmens Apr 1967 A
3367122 Tutton Feb 1968 A
3653220 Foster et al. Apr 1972 A
3735600 Dowdell et al. May 1973 A
3747359 Streich Jul 1973 A
3754405 Rosen Aug 1973 A
3792590 Lofredo et al. Feb 1974 A
3846993 Bates Nov 1974 A
3859811 Duncan Jan 1975 A
3892103 Antonelli Jul 1975 A
3919853 Rojey Nov 1975 A
3962881 Muska Jun 1976 A
4033735 Swenson Jul 1977 A
4170115 Ooka et al. Oct 1979 A
4279130 Finch et al. Jul 1981 A
4418530 Bodrov et al. Dec 1983 A
4424680 Rothchild Jan 1984 A
4430103 Gray et al. Feb 1984 A
4444577 Perez Apr 1984 A
4617039 Buck Oct 1986 A
4681612 O'Brien et al. Jul 1987 A
4710214 Sharma et al. Dec 1987 A
4751151 Healy et al. Jun 1988 A
4869740 Campbell et al. Sep 1989 A
4907405 Polizzotto Mar 1990 A
4936888 DeLong Jun 1990 A
5026952 Bauer Jun 1991 A
5062270 Haut et al. Nov 1991 A
5137558 Agrawal Aug 1992 A
5295350 Child et al. Mar 1994 A
5329774 Tanguay et al. Jul 1994 A
5425230 Shpak Jun 1995 A
5440894 Schaeffer et al. Aug 1995 A
5560212 Hansen Oct 1996 A
5678411 Matsumura et al. Oct 1997 A
5685170 Sorensen Nov 1997 A
5782958 Rojey et al. Jul 1998 A
5799505 Bonaquist et al. Sep 1998 A
5953935 Sorensen Sep 1999 A
5983663 Sterner Nov 1999 A
6089022 Zednik et al. Jul 2000 A
6089028 Bowen et al. Jul 2000 A
6131407 Wissolik Oct 2000 A
6138473 Boyer-Vidal Oct 2000 A
6182469 Campbell et al. Feb 2001 B1
6266968 Redlich Jul 2001 B1
6286315 Staehle Sep 2001 B1
6378330 Minta et al. Apr 2002 B1
6432565 Haines Aug 2002 B1
6517286 Latchem Feb 2003 B1
6526777 Campbell et al. Mar 2003 B1
6581409 Wilding et al. Jun 2003 B2
6606860 McFarland Aug 2003 B2
6640555 Cashin Nov 2003 B2
6662589 Roberts et al. Dec 2003 B1
6694774 Rashad et al. Feb 2004 B1
6739140 Bishop et al. May 2004 B2
6751985 Kimble et al. Jun 2004 B2
6889523 Wilkenson et al. May 2005 B2
6932121 Shivers, III Aug 2005 B1
6945049 Madsen Sep 2005 B2
7051553 Mak et al. May 2006 B2
7107788 Patel et al. Sep 2006 B2
7155917 Baudat Jan 2007 B2
7219502 Nierenberg May 2007 B2
7257966 Lee et al. Aug 2007 B2
7377127 Mak May 2008 B2
8429932 Lourenco et al. May 2013 B2
8640494 Lourenco et al. Feb 2014 B2
8850849 Martinez et al. Oct 2014 B2
8887513 Kotzot et al. Nov 2014 B2
20020170297 Quine et al. Nov 2002 A1
20030008605 Hartford, Jr. et al. Jan 2003 A1
20030019219 Viegas et al. Jan 2003 A1
20030051875 Wilson Mar 2003 A1
20030182947 Kimble et al. Oct 2003 A1
20030196452 Wilding et al. Oct 2003 A1
20040065085 Madsen Apr 2004 A1
20050086974 Steinbach et al. Apr 2005 A1
20050244277 Hurst, Jr. et al. Nov 2005 A1
20060213222 Whitesell Sep 2006 A1
20060213223 Wilding et al. Sep 2006 A1
20060242970 Yang et al. Nov 2006 A1
20070062216 Mak et al. Mar 2007 A1
20070107465 Turner et al. May 2007 A1
20080016910 Brostow et al. Jan 2008 A1
20090113928 Vandor et al. May 2009 A1
20090194460 Klein Nagul Voort Aug 2009 A1
20090194461 Bras Aug 2009 A1
20090249829 Lourenco et al. Oct 2009 A1
20090282863 Lourenco Nov 2009 A1
20090282865 Martinez et al. Nov 2009 A1
20100242499 Lourenco et al. Sep 2010 A1
20100287985 Martinez et al. Nov 2010 A1
20110036122 Betting et al. Feb 2011 A1
20110067441 Martinez Mar 2011 A1
20110094263 Wilding et al. Apr 2011 A1
20110174017 Victory et al. Jul 2011 A1
20120060554 Schmidt Mar 2012 A1
20120169049 Oxner et al. Jul 2012 A1
20120255325 Prim Oct 2012 A1
20130333416 Lourenco et al. Dec 2013 A1
20150143842 Lourenco et al. May 2015 A1
Foreign Referenced Citations (48)
Number Date Country
1048876 Feb 1979 CA
2 422 893 Feb 2002 CA
2 467 338 Jul 2003 CA
2 516 785 Sep 2004 CA
2 552 366 Jul 2005 CA
2 299 695 Jul 2007 CA
2 536 075 Jul 2007 CA
2 318 802 Feb 2008 CA
2 728 716 Jan 2011 CA
2 777 760 May 2011 CA
2 763 081 Dec 2011 CA
2 515 999 Dec 2012 CA
1615415 May 2005 CN
101948706 Jan 2011 CN
44 16 359 Oct 1998 DE
0 482 222 Apr 1992 EP
0 566 285 Oct 1993 EP
0 635 673 Jan 1995 EP
0 780 649 Jun 1997 EP
2 420 081 Oct 1979 FR
1011453 Dec 1965 GB
2 103 354 Feb 1983 GB
3-236589 Oct 1991 JP
5-263998 Oct 1993 JP
2002-295799 Oct 2002 JP
2003-165707 Jun 2003 JP
2 180 420 Mar 2002 RU
2 232 342 Jul 2004 RU
9411626 May 1994 WO
9701069 Jan 1997 WO
9859205 Dec 1998 WO
9931447 Jun 1999 WO
0052403 Sep 2000 WO
03081038 Oct 2003 WO
03095913 Nov 2003 WO
03095914 Nov 2003 WO
2004010480 Jan 2004 WO
2004052511 Jun 2004 WO
2004109180 Dec 2004 WO
2004109206 Dec 2004 WO
2005045337 May 2005 WO
2006004723 Jan 2006 WO
2006019900 Feb 2006 WO
2006036441 Apr 2006 WO
2008006221 Jan 2008 WO
2009061777 May 2009 WO
2012015554 Feb 2012 WO
2014032179 Mar 2014 WO
Non-Patent Literature Citations (4)
Entry
Hudson, H.M., et al., “Reducing Treating Requirements for Cryogenic NGL Recovery Plants,” Proceedings of the 80th Annual Convention of the Gas Processors Association, Mar. 12, 2001, San Antonio, Texas, 15 pages.
Hidnay, A.J., and W.H. Parrish, “Fundamentals of Natural Gas Processing,” Taylor & Francis Group, Abingdon, U.K., © 2006, 440 pages.
International Search Report and Written Opinion dated Jul. 18, 2014, issued in corresponding International Application No. PCT/CA2014/050374, filed Apr. 14, 2014, 9 pages.
International Search Report and Written Opinion dated May 1, 2012, issued in corresponding International Application No. PCT/CA2012/050030, filed Jan. 18, 2012, 9 pages.
Related Publications (1)
Number Date Country
20160061519 A1 Mar 2016 US