The present application relates to audio processing, for example to noise reduction algorithms. The disclosure relates specifically to a method of reducing artifacts in an audio processing algorithm for applying a time and frequency dependent gain to an input audio signal. The application furthermore relates to an audio processing device for applying a time dependent gain to an input audio signal and to the use of an audio processing device.
The application further relates to a data processing system comprising a processor and program code means for causing the processor to perform at least some of the steps of the method and to a computer readable medium storing the program code means.
The disclosure may e.g. be useful in applications such as audio processing systems, e.g. public address systems, listening devices, e.g. hearing instruments, etc.
Gains that fluctuate rapidly across time and frequency result in audible artifacts in digital audio processing systems.
U.S. Pat. No. 6,351,731 describes an adaptive filter featuring a speech spectrum estimator receiving as input an estimated spectral magnitude signal for a time frame of the input signal and generating an estimated speech spectral magnitude signal representing estimated spectral magnitude values for speech in a time frame. A spectral gain modifier receives as input an initial spectral gain signal and generates a modified gain signal by limiting a rate of change of the initial spectral gain signal with respect to the spectral gain over a number of previous time frames. The modified gain signal is then applied to the spectral signal, which is then converted to its time domain equivalent.
U.S. Pat. No. 6,088,668 describes a noise suppressor, which includes a signal to noise ratio (SNR) determiner, a channel gain determiner, a gain smoother and a multiplier. The SNR determiner determines the SNR per channel of the input signal. The channel gain determiner determines a channel gain per the ith channel. The gain smoother produces a smoothed gain per the ith channel and the multiplier multiplies each channel of the input signal by its associated smoothed gain.
U.S. Pat. No. 7,016,507 describes a noise reduction algorithm with the dual purpose of enhancing speech relative to noise and also providing a relatively clean signal for the compression circuitry. In an embodiment, a forgetting factor is introduced to slow abrupt gain changes in the attenuation function.
The amount of artifacts generated by an audio processing algorithm, e.g. a noise reduction algorithm, can be significantly decreased by detecting gains that fluctuate and selectively decrease the gain in these cases.
The term gain is in the present context broadly understood to include attenuation, i.e. gain factors on a non-logarithmic scale being larger than or equal to zero 0, and above as well as below 1 (attenuation), or gain factors in dB, including positive, zero, as well as negative values (attenuation).
An object of the present application is to improve a user's perception of a sound signal, which has been subject to one or more audio processing algorithms.
Objects of the application are achieved by the invention described in the accompanying claims and as described in the following.
A Method of Identifying and Possibly Reducing Artifacts in an Audio Processing Algorithm:
An object of the application is achieved by a method of reducing artifacts in an audio processing algorithm for applying a time and frequency dependent gain to an input signal. The method comprises,
An advantage of the present invention is that provides a tool to identify and possibly reduce artifacts in algorithms for processing an audio signal in a time-frequency representation.
The term ‘artifact’ is in the present context of audio processing taken to mean elements of an audio signal that are introduced by signal processing (digitalization, noise reduction, compression, etc.) that are in general not perceived as natural sound elements, when presented to a listener. The artifacts are often referred to as musical noise, which are due to random spectral peaks in the resulting signal. Such artifacts sound like short pure tones. Musical noise is e.g. described in [Berouti et al.; 1979], [Cappe; 1994] and [Linhard et al.; 1997].
The term ‘the estimated algorithm output signal’ is in the present context taken to mean the output of the audio processing algorithm without the artifact reduction measures proposed in the present disclosure. The term ‘an improved algorithm output signal’ is intended to mean the output of the audio processing algorithm having been subject to the artifact reduction measures proposed in the present disclosure. The ‘improved algorithm output signal’ contains fewer artifacts than the ‘estimated algorithm output signal’.
Preferably, the estimated algorithm output signal is estimated in the same frequency units as the input signal (i.e. values of the estimated algorithm output signal are provided in the same frequency units Δf1, Δf2, ΔfK as the input signal (or at least in some of them), cf. e.g.
In general, the audio processing algorithm can be of any kind resulting in a relatively fast changing gain or attenuation, for example a noise reduction algorithm, a speech enhancement algorithm (cf. e.g. [Ephraim et al; 1984]), etc. The audio processing algorithm may be adapted to operate on an input signal originating from a single or from a multitude of input transducers.
In an embodiment, the method comprises the step of applying the confidence estimate to the estimated algorithm output signal thereby providing an improved algorithm output signal o(k,m). Alternatively or additionally the confidence estimate is used as an input to another algorithm or detector, e.g. to an algorithm for estimating reverberation.
The input signal can e.g. be an analogue or digital, time varying signal. The input signal can e.g. be represented by (time varying) signal values measured in absolute (e.g. Volt or Ampere) or relative terms (e.g. dB). The input signal can e.g. be a relative gain (e.g. measured in dB) or a normalized gain (or attenuation) attaining values between 0 and 1 (which may at a later stage be converted to a relative gain (or attenuation), e.g. measured in dB), e.g. a squared normalized gain (or a normalized gain raised to any other power than two).
In an embodiment, a difference between a value of the estimated algorithm output signal in a time-frequency unit of a given time frame and that of a preceding time frame is determined for at least 2 frequencies or frequency bands, such as for a majority of frequencies or frequency bands, such as for all frequencies or frequency bands of the input signal (and thus of the estimated algorithm output signal).
In an embodiment, the values of each frequency band of the estimated algorithm output signal that are compared (e.g. signal values or gain or attenuation values) are provided as actual values (e.g. sound pressure or voltage or current), or as normalized values (e.g. between 0 and 1), or as relative values (e.g. in dB). In an embodiment, the values of each frequency or frequency band of the estimated algorithm output signal that are compared are provided as normalized values, e.g. located between 0 and 1. In an embodiment, a normalized gain or attenuation is converted to a gain or attenuation measured in dB. In an embodiment, the difference or the averaged difference between a value of the estimated algorithm output signal in a time-frequency unit of a given time frame and that of a preceding time frame is provided as, such as is converted into, a number between 0 and 1.
In general, the effect of the audio processing algorithm is left unaltered, if the confidence estimate is high. Preferably, the effect of the audio processing algorithm is reduced (e.g. eliminated), if the confidence estimate is low.
In an embodiment, the improved algorithm output signal o(k,m) is expressed as the confidence estimate ce(k,m) times the estimated algorithm output signal eao(k,m), i.e. o(k,m)=ce(k,m)*eao(k,m). In an embodiment, the confidence estimate ce(k,m) is larger than or equal to 0, such as in the range from 0 to 1.
In an embodiment, the estimated algorithm output signal eao(k,m) is left unaltered, if the confidence estimate ce(k,m) attains its maximum value. In other words, the improved algorithm output signal o(k,m)=eao(k,m) (ce(k,m)=1). In an embodiment, the estimated algorithm output signal eao(k,m) is reduced (be it a gain or an attenuation, from its original value towards 0 dB), if the confidence estimate attains its minimum value. In other words, the improved algorithm output signal o(k,m)=ce(k,m)*eao(k,m), where ce(k,m)<1, e.g.=0.
In an embodiment, only magnitude values of the estimated algorithm output signal are considered.
In an embodiment, the measure of the magnitude difference of the estimated algorithm output signal is found as the absolute value of the difference.
In an embodiment, the measure of the magnitude difference of the estimated algorithm output signal is found as the squared absolute value of the difference. In this case, the confidence estimate corresponds to the variance of the estimated algorithm output signal.
In an embodiment, the measure of the magnitude difference (between a value of the estimated algorithm output signal in a time-frequency unit of a given time frame and that of a preceding time frame) is averaged over a predefined time. In an embodiment, the predefined time is related to a sampling frequency of an analogue to digital converter used to digitize the input signal. In an embodiment, the predefined averaging time corresponds to a predefined number of time frames, e.g. more than 5 time frames, e.g. more than 10 time frames, e.g. to a number of time frames from 5 to 15.
In an embodiment, the measure of the magnitude difference (between a value of the estimated algorithm output signal in a time-frequency unit of a given time frame and that of a preceding time frame) is averaged using an IIR low pass filter possibly with different attack and release times.
In an embodiment, the confidence estimate decreases monotonically with increasing time averaged magnitude difference.
In an embodiment, the confidence estimate has a first, high value PH (e.g. 1) when the time averaged measure of the magnitude difference is below a predetermined first threshold level Δ1. In an embodiment, the confidence estimate has a second, low value PL (e.g. 0) when the time averaged measure of the magnitude difference is above a predetermined second threshold level Δ2. In an embodiment, the confidence estimate is a confidence probability having values between 0 and 1.
In an embodiment, the confidence estimate decreases monotonically, e.g. linearly, from the first high value PH to the second low value PL, when the time averaged measure of the magnitude difference increases from the predetermined first threshold level Δ1 to the predetermined second threshold level Δ2. In an embodiment, the first and second threshold levels coincide (Δ1=Δ2).
In an embodiment, the preceding time frame is the immediately previous time frame. In an embodiment, the measure of the magnitude difference Δeao(k,m) between a value of the estimated algorithm output signal eao(k,m) in a time-frequency unit (k,m) of a given time frame (m) and that of a preceding time frame (m−1) is Δeao(k,m)=|eao(k,m)−eao(k,m−1)|. Alternatively, Δeao(k,m)=|eao(k,m)−eao(k,m−1)|2 or some other measure representing the difference between to (possibly complex) values.
In an embodiment, a noise reduction algorithm based on a spatial separation of acoustic sources is used. In an embodiment, the noise reduction algorithm is based on time-frequency masking (based on a binary or non-binary time-frequency representation). In an embodiment, the method is used to detect reverberance in a given acoustical environment (e.g. in a room). Many spatial decisions assume point sources. In reverberant environments sound sources become diffuse, and diffuse sounds may for some algorithms that assume point sources result in input gain estimates that fluctuate rapidly across time. Detection of fluctuating gains will thus indicate that the listener is in a reverberant room. This can e.g. be achieved by analysing an average sum of the measure of the magnitude differences across time and frequency from an output of an audio processing algorithm. In case the average sum of the measure of the magnitude differences is above a predefined amount, a rapidly varying gain is identified and reverberance may be an option. This information may preferably be combined with other indicators of the current acoustic environment, e.g. one or more sensors. In an embodiment, the magnitude difference measure is combined with a level detection measure (both measures being above predefined levels being indicative of reverberation). In an embodiment, corresponding data from both hearing instruments of a binaural fitting are compared to identify reverberance. If the magnitude difference measures from the two hearing instruments are equal (or within a predefined difference of each other), reverberance may be an option.
An Audio Processing Device:
An audio processing device for applying a time and frequency dependent gain to an input signal is furthermore provided by the present application. The audio processing device comprises
It is intended that the process features of the method described above, in the detailed description of ‘mode(s) for carrying out the invention’ and in the claims can be combined with the device, when appropriately substituted by a corresponding structural feature and vice versa. Embodiments of the device have the same advantages as the corresponding method.
In an embodiment, the audio processing device comprises a combination unit for applying said confidence estimate to said estimated algorithm output signal thereby providing an improved estimated algorithm signal. Alternatively or additionally, the listening device may comprise a further processing unit adapted for using the confidence estimate in a further processing or evaluation of a signal of the device or of the acoustic environment of the device (e.g. reverberation).
Typically an audio processing device according to the present invention comprises a signal or forward path (for applying a frequency dependent gain to the input signal) and an analysis path (for analyzing the input signal and possibly determining or contributing to the determination of the gains to be applied in the signal path). The concepts and methods of the present invention may in general be used in a system, where the input signal is processed in the time domain in the signal path and analyzed in the frequency domain in the analysis path (cf. e.g.
In an embodiment, the audio processing device comprises a signal processing unit for enhancing the input signal and providing a processed output signal. In an embodiment, the signal processing unit is adapted to provide a frequency dependent gain to compensate for a hearing loss of a user. In an embodiment, the audio processing algorithm (e.g. a noise reduction algorithm) and the artifact reduction algorithm are executed by the signal processing unit.
In an embodiment, the audio processing device comprises a signal or forward path between an input transducer (microphone system and/or direct electric input (e.g. a wireless receiver)) and an output transducer. In an embodiment, the signal processing unit is adapted to provide a frequency dependent gain according to a user's particular needs to the signal of the forward path.
In an embodiment, the audio processing device comprises a receiver unit for receiving a direct electric input. The receiver unit may be a wireless receiver unit comprising antenna, receiver and demodulation circuitry. Alternatively, the receiver unit may be adapted to receive a wired direct electric input. The direct electric input may comprise the input audio signal (in full or in part).
In an embodiment, the audio processing device comprises an output transducer for converting an electric signal to a stimulus perceived by the user as an acoustic signal. In an embodiment, the output transducer comprises a number of electrodes of a cochlear implant or a vibrator of a bone conducting hearing device. In an embodiment, the output transducer comprises a receiver (speaker) for providing the stimulus as an acoustic signal to the user.
In an embodiment, the audio processing device, e.g. a listening device or a communication device, comprises an AD-conversion unit for sampling an analogue electric input signal with a sampling frequency fs and providing as an output a digitized electric input signal (e.g. the input audio signal) comprising digital time samples sn of the input signal (amplitude) at consecutive points in time tn=n*(1/fs), n is a sample index, e.g. an integer n=1, 2, . . . indicating a sample number. The duration in time of X samples is thus given by X/fs.
In an embodiment, the consecutive samples sn are arranged in time frames Fm, each time frame comprising a predefined number Q of digital time samples sq (q=1, 2, . . . , Q), corresponding to a frame length in time of L=Q/fs, where fs is a sampling frequency of an analog to digital conversion unit (each time sample comprising a digitized value sn (or s(n)) of the amplitude of the signal at a given sampling time tn (or n)). A frame can in principle be of any length in time. Typically consecutive frames are of equal length in time. In the present context, a time frame is typically of the order of ms, e.g. more than 3 ms (corresponding to 64 samples at fs=20 kHz). In an embodiment, a time frame has a length in time of at least 8 ms, such as at least 24 ms, such as at least 50 ms, such as at least 80 ms. The sampling frequency can in general be any frequency appropriate for the application (considering e.g. power consumption and bandwidth). In an embodiment, the sampling frequency fs of an analog to digital conversion unit is larger than 1 kHz, such as larger than 4 kHz, such as larger than 8 kHz, such as larger than 16 kHz, e.g. 20 kHz, such as larger than 24 kHz, such as larger than 32 kHz. In an embodiment, the sampling frequency is in the range between 1 kHz and 64 kHz. In an embodiment, time frames of the input signal are processed to a time-frequency representation by transforming the time frames on a frame by frame basis to provide corresponding spectra of frequency samples (k=1, 2, . . . , K, e.g. by a Fourier transform algorithm), the time-frequency representation being constituted by TF-units (k,m) each comprising a complex value (magnitude and phase) of the input signal at a particular unit in time (m) and frequency (k), cf. e.g.
In an embodiment, the audio processing device comprises a directional microphone system adapted to separate two or more acoustic sources in the local environment of the user wearing the audio processing device. In an embodiment, the directional system is adapted to detect (such as adaptively detect) from which direction a particular part of the microphone signal originates. This can be achieved in various different ways as e.g. described in U.S. Pat. No. 5,473,701 or in WO 99/09786 A1 or in EP 2 088 802 A1.
In an embodiment, the audio processing device comprises a feedback path estimation unit. In an embodiment, the feedback path estimation unit comprises an adaptive filter. In a particular embodiment, the adaptive filter comprises a variable filter part and an adaptive algorithm part, the algorithm part e.g. comprising an LMS or an RLS algorithm, for updating filter coefficients of the variable filter part. Various aspects of adaptive filters are e.g. described in [Haykin].
In a particular embodiment, the audio processing device comprises a voice detector (VD) for determining whether or not the input audio signal comprises a voice signal (at a given point in time). A voice signal is in the present context taken to include a speech signal from a human being. It may also include other forms of utterances generated by the human speech system (e.g. singing). In an embodiment, the voice detector is adapted to classify a current acoustic environment of the user as a VOICE or NO-VOICE environment. This has the advantage that time segments of the input audio signal comprising human utterances (e.g. speech) in the user's environment can be identified, and thus separated from time segments only comprising other sound sources (e.g. artificially generated noise). In an embodiment, the voice detector is adapted to apply the artifact reduction algorithm when a VOICE is detected (and to disable the artifact reduction algorithm, when NO-VOICE is detected, e.g. to save power). Such voice and/or own voice detectors can e.g. further be used as sensors to complement an identification of room reverberance as described above.
The audio processing device comprise(s) a TF-conversion unit (cf. e.g. T→TF-unit in
In an embodiment, the audio processing device comprises a level detector for determining or estimating a magnitude level of an input signal. In an embodiment, the audio processing device comprises a level decision unit. The level decision unit comprises e.g. a level detector for estimating the level of the input signal and a decision unit for translating the input level estimate to an input level weighting factor. In an embodiment, the output of the level decision unit is fed to the artifact reduction unit. The purpose of the level decision unit is to reduce the weight in the artifact reduction unit of time-frequency units in the input signal having a relatively low level (where possible fluctuations might be due to noise).
In an embodiment, the audio processing device further comprises other relevant functionality for the application in question, e.g. audio compression, etc.
In an embodiment, the audio processing device is adapted to provide that the artifact reduction scheme is applied to more than one audio processing algorithm at a given time, so that e.g. outputs of a noise reduction algorithm and another algorithm are simultaneously (or sequentially) subject to the scheme to reduce the total number of artifacts introduced by said more than one audio processing algorithm.
In an embodiment, the audio processing device comprises a public address system, a teleconference system, an entertainment system, a communication device, or a listening device, e.g. a hearing aid, e.g. a hearing instrument or a headset. In an embodiment, the audio processing device comprises a portable device.
Use of an Audio Processing Device:
Use of an audio processing device or an audio processing system as described above, in the detailed description of ‘mode(s) for carrying out the invention’, or in the claims, is moreover provided by the present application. In an embodiment, use in a public address system, a teleconference system, an entertainment system, a communication device, or a listening device, e.g. a hearing aid, e.g. a hearing instrument or a headset is provided. In an embodiment, use in a binaural hearing aid system is provided. This has the advantage that gain fluctuation data from independent audio processing algorithms can be compared and e.g. used to indicate properties of the acoustic environment and/or the received audio signal (e.g. properties related to reverberation). In an embodiment, use for estimating reverberation, e.g. in a reverberation detector is provided.
An Audio Processing System:
In an aspect, an audio processing system comprising first and second audio processing devices as described above, in the detailed description of ‘mode(s) for carrying out the invention’ and in the claims is provided. The first and second audio processing devices generate first and second confidence estimates (e.g. probabilities), respectively. In an embodiment, each audio processing device comprises a (e.g. wireless) transceiver for establishing a bidirectional link to the other device and is adapted to transmit a confidence estimate (or a measure originating there from) to the other audio processing device. In an embodiment, each audio processing device is adapted to compare the first and second confidence estimates (or measures originating there from) and to generate a resulting confidence estimate (or a measure originating there from, e.g. a reverberation estimate, e.g. a probability) that is applied to the respective estimated algorithm output signals (e.g. to noise reduced output signals). In an embodiment, an average (e.g. a weighted average) of the first and second confidence probabilities (or measures originating there from) is generated and used to apply to the respective estimated algorithm output signals (e.g. to noise reduced output signals). In an embodiment, each audio processing device comprises a wireless transceiver for establishing a bidirectional link to the other device and is adapted to transmit a partial or a full audio signal (e.g. in addition to control signals, including a confidence estimate of an audio processing algorithm) to the other audio processing device. In an embodiment, first and second audio processing devices each comprise a hearing instrument, the audio processing system thereby comprising a binaural hearing aid system comprising first and second hearing instruments adapted for being worn by a user at or in the respective ears of the user.
A Computer Readable Medium:
A tangible computer-readable medium storing a computer program comprising program code means for causing a data processing system to perform at least some (such as a majority or all) of the steps of the method described above, in the detailed description of ‘mode(s) for carrying out the invention’ and in the claims, when said computer program is executed on the data processing system is furthermore provided by the present application. In addition to being stored on a tangible medium such as diskettes, CD-ROM-, DVD-, or hard disk media, or any other machine readable medium, the computer program can also be transmitted via a transmission medium such as a wired or wireless link or a network, e.g. the Internet, and loaded into a data processing system for being executed at a location different from that of the tangible medium.
A Data Processing System:
A data processing system comprising a processor and program code means for causing the processor to perform at least some (such as a majority or all) of the steps of the method described above, in the detailed description of ‘mode(s) for carrying out the invention’ and in the claims is furthermore provided by the present application.
Further objects of the application are achieved by the embodiments defined in the dependent claims and in the detailed description of the invention.
As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well (i.e. to have the meaning “at least one”), unless expressly stated otherwise. It will be further understood that the terms “includes,” “comprises,” “including,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present, unless expressly stated otherwise. Furthermore, “connected” or “coupled” as used herein may include wirelessly connected or coupled. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. The steps of any method disclosed herein do not have to be performed in the exact order disclosed, unless expressly stated otherwise.
The disclosure will be explained more fully below in connection with a preferred embodiment and with reference to the drawings in which:
The figures are schematic and simplified for clarity, and they just show details which are essential to the understanding of the disclosure, while other details are left out.
Further scope of applicability of the present disclosure will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the disclosure, are given by way of illustration only. Other embodiments may become apparent to those skilled in the art from the following detailed description.
The method and system are illustrated by
The INPUT signal is e.g. represented by a number greater than or equal to 0 representing a signal magnitude for a given time and frequency (e.g. by a number between 0 and 1 or equal to 0 or 1). In order to detect rapid gain changes, the change in gain from one time frame to the next time frame is found (cf. delay unit ‘z−1’ and subtraction unit ‘+−’, providing the Gain difference in
A possible scheme for mapping the number of shifts (e.g. represented by a magnitude difference of the signal between two time instances, averaged over a predefined time) to a confidence level (i.e. performed by the IOM unit in
The input to the IOM unit is the smoothed estimate of the number of gain shifts per frame (time averaged magnitude difference) and the output is the value we multiply onto the (otherwise) intended gain (or attenuation). When the average number of shifts or the average magnitude difference is low, the gain (or attenuation) is not reduced, but when the gain (or attenuation) fluctuates considerably, the gain (or attenuation) is reduced in order to reduce the number of artifacts. In an embodiment, the gain (or attenuation) is reduced (towards 0 dB) by a predefined amount when the number of shifts or the average magnitude difference is larger than a predefined number (e.g. Δ2 in
A time-frequency mapping of an input audio signal is schematically illustrated in
An advantage of the concept is that it is a powerful tool to reduce artifacts in audio processing algorithms, in particular in TF-masking algorithms.
Embodiments of an audio processing device, e.g. a listening device, e.g. a hearing instrument, comprising an artifact reduction (AR) unit, a signal processing algorithm SP (e.g. a noise reduction algorithm (NR)) and a unit for further enhancing the signal RG, e.g. by applying a frequency dependent gain (HA-G), is shown in
a shows an audio processing device according to an embodiment of the present invention. The audio processing device comprises an input transducer unit IT (e.g. comprising a microphone or a microphone system and/or a wireless receiver, cf.
In the embodiment of
In general, the embodiments of an audio processing system shown in
The embodiment of an audio processing system shown in
The embodiment of an audio processing system shown in
The embodiment of an audio processing device (e.g. a hearing aid) shown in
The embodiment of an audio processing device in
The first and second audio processing devices thus generate, respectively, first and second confidence estimates (e.g. probabilities), and/or derives first and second estimates of the (probability of) reverberation present in the input signal received by the device in question. Each audio processing device of the system of
The invention is defined by the features of the independent claim(s). Preferred embodiments are defined in the dependent claims. Any reference numerals in the claims are intended to be non-limiting for their scope.
Some preferred embodiments have been shown in the foregoing, but it should be stressed that the invention is not limited to these, but may be embodied in other ways within the subject-matter defined in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10194322 | Dec 2010 | EP | regional |
This nonprovisional application claims the benefit of U.S. Provisional Application No. 61/421,228 filed on Dec. 9, 2010 and to Patent Application No. 10194322.3 filed in Europe, on Dec. 9, 2010. The entire contents of all of the above applications is hereby incorporated by reference into the present application.
Number | Name | Date | Kind |
---|---|---|---|
5473701 | Cezanne et al. | Dec 1995 | A |
6088668 | Zack | Jul 2000 | A |
6351731 | Anderson et al. | Feb 2002 | B1 |
7016507 | Brennan | Mar 2006 | B1 |
8185389 | Yu et al. | May 2012 | B2 |
20050278172 | Koishida et al. | Dec 2005 | A1 |
20080147387 | Matsubara et al. | Jun 2008 | A1 |
20090017784 | Dickson et al. | Jan 2009 | A1 |
20100014695 | Breithaupt et al. | Jan 2010 | A1 |
20100023327 | Jung et al. | Jan 2010 | A1 |
Number | Date | Country |
---|---|---|
2 088 802 | Aug 2009 | EP |
WO 9909786 | Feb 1999 | WO |
WO 2006114101 | Nov 2006 | WO |
Entry |
---|
Berouti et al., “Enhancement of speech corrupted by acoustic noise”, Proc IEEE ICASSP, 4, 1979, pp. 208-211. |
Ephraim et al., “Speech enhancement using a minimum-mean square error short-time spectral amplitude estimator”, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-32, No. 6, Dec. 1984, pp. 1109-1121. |
Esch at al., “Efficient musical noise suppression for speech enhancement system”, Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference, Apr. 19, 2009, pp. 4409-4412. |
Jan et al., “A multistage approach for blind separation of convolutive speech mixtures”, Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference, Apr. 19, 2009, pp. 1713-1716. |
Linhard at al., “Noise reduction with spectral subtraction and median filtering for suppression of musical tones”, Proc. of ESCA-NATO Workshop on Robust Speech Recognition for Unknown Communication Channels, 1997, pp. 159-162. |
Olivier Cappé, “Elimination of the Musical Noise Phenomenon with the Ephraim and Malah Noise Suppressor”, IEEE Trans. on Speech and Audio Proc., vol. 2, No. 2, Apr. 1994, pp. 345-349. |
Uemura et al., “Musical Noise Generation Analysis for Noise Reduction Methods Based on Spectral Subtraction and MMSE STSA Estimation”, Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference, Apr. 19, 2009, pp. 4433-4436. |
Number | Date | Country | |
---|---|---|---|
20120148056 A1 | Jun 2012 | US |
Number | Date | Country | |
---|---|---|---|
61421228 | Dec 2010 | US |