METHOD TO SECURE AN ELASTIC COMPONENT IN A VALVE

Abstract
An apparatus for controlling fluid flow to provide long-term access to the vascular system, and methods of making the same, are disclosed. Exemplary embodiments of the present invention describe a wedge or other similarly shaped geometric features for fixing an elastic component and controlling an internal stress of the elastic component.
Description
BACKGROUND

Pressure activated safety valves have been incorporated into medical devices such as peripherally inserted central catheters (PICCs), ports, dialysis catheters and tunneled central catheters which provide long term access to the vascular system, etc. These valves generally include an elastic component that controls flow and/or pressure through the device to prevent flow therethrough when the device is not in use. The elastic component may be a slitted, flexible membrane extending across a lumen generally constructed so that, when subjected to a fluid pressure of at least a threshold magnitude, edges of the slit separate from one another to permit flow through the lumen. When the pressure applied to the membrane drops below the threshold level, the slit reseals to prevent leakage from or into the device. It is desirable to keep the flexible disk in place during high pressure and/or flow while maintaining the desired flow control characteristics of the membrane.


SUMMARY OF THE INVENTION

The present invention is directed to a valve comprising a flexible member including a slit formed on a central portion thereof and a first housing defining a first lumen extending therethrough, the first housing including a first contacting surface adapted, when the slit of the flexible member is aligned with the first lumen, to contact a first side of the flexible member the first housing defining a relief area extending about a perimeter of the first contacting surface radially outside the central portion relative to a longitudinal axis of the first lumen in combination with a second housing adapted to mate with the first housing with a second lumen defined by the second housing aligned with the first lumen and separated therefrom by the flexible member, the second housing including a second contacting surface which, when the first and second housings are mated to one another in an operative configuration with the flexible member pinched therebetween, contacts a second side of the flexible member opposite the first side thereof along the longitudinal axis, a radially outer portion of the second contacting surface including a protrusion aligning with and extending into the relief area when the first and second housings are mated in the operative configuration, the protrusion bending a peripheral portion of the flexible member about a radially outer edge of the first contacting surface into the relief area to maintain the flexible member at a desired position separating the first and second lumens so that, when subject to a fluid pressure of at least a predetermined magnitude, the slit of the flexible member opens to permit fluid transfer between the first and second lumens and, when subject to a fluid pressure less than the predetermined magnitude, the slit of the flexible member remains closed preventing fluid transfer between the first and second lumens.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a longitudinal cross-sectional view of a device according to an exemplary embodiment of the present invention;



FIG. 2 shows a longitudinal cross-sectional view of a disk portion of the device of FIG. 1; and



FIG. 3 shows an enlarged view of portion of an edge of the disk portion of the device shown in FIG. 2.





DETAILED DESCRIPTION

The present invention may be further understood with reference to the following description and the appended drawings, wherein like elements are referred to with the same reference numerals. The present invention relates to an apparatus for controlling fluid flow through medical devices specifically for sealing devices which remain in place in the body to provide long term access to the vascular system. To improve the performance of pressure activated safety valves, exemplary embodiments of the present invention describe a wedge or other similarly shaped geometrical feature for fixing an elastic component and controlling an internal stress of the elastic component.


As shown in FIGS. 1-3, a device 100 according to an exemplary embodiment of the present invention comprises a first housing 102, a second housing 104 and an elastic component 106. As shown in FIG. 1, the first housing 102 and the second housing 104 maybe coupled to one another to fix the elastic component 106 therebetween. For clarity, the elastic component 106 is shown between the first and the second housings 102, 104 before being pinched into the final position. The first housing 102 may form a distal end 108 of the device 100 and includes a first connection 134 for connecting to a first conduit which extends, for example, to a target body structure to and/or from which it is desired to transfer fluids. The second housing 104, at a proximal end 110 of the device 100, includes a second connection 136 for connecting to a second conduit which remains external to the body. The elastic component 106 is fixed between the first and the second housings 102, 104 to control a fluid flow therethrough.


The elastic component 106 may be any flexible membrane (e.g., in the form of a disk) including a slit (not shown) for controlling fluid flow therethrough such as, for example, a silicone disk. The elastic component 106 may operate as a bi-directional valve allowing fluid to flow through the device 100 in either direction whenever the valve is subjected to a fluid pressure of at least a threshold value. Alternatively, the elastic component 106 may operate as a uni-directional valve allowing fluid to flow in only one direction or having different threshold values for each of the two directions of flow therethrough. The elastic component 106 is configured to open only when fluid pressure exerted thereagainst reaches a predetermined threshold magnitude. The slit opens via a deformation of the elastic component 106 with edges of the slit moving away from one another to allow fluid to flow therethrough. Once fluid pressure falls below the threshold magnitude, the slit reseals preventing fluid from flowing therethrough. It will be understood by those of skill in the art that the elastic component 106 may include more than one slit extending therethrough.


As shown in FIGS. 2-3, the first housing 102 includes a lumen 112 extending therethrough and a disk-facing surface 114, which contacts the elastic component 106. The disk-facing surface 114 includes a substantially planar central portion 128 surrounding the lumen 112 and a relief area 120 radially outside the planar central portion 128 (relative to a longitudinal axis of the first and second housings 102, 104). The relief area 120 may be formed as a recess extending around a radially outer edge of the disk-facing surface 114 for accommodating an outer perimeter 132 of the elastic component 106. The relief area 120 further includes an edge 122 over which the outer perimeter 132 of the elastic component 106 may be bent. It will be understood by those of skill in the art that the relief area 120 may be formed as either a continuous recess about the perimeter of the disk-facing surface 114 or as a series of recesses spaced from one another around the circumference of the disk-facing surface 114. In a preferred embodiment, the relief area 120 forms a ring-shaped recess about a circumference of the disk-facing surface 114.


The second housing 104 includes a lumen 116 extending therethrough and a disk-facing surface 118, which contacts the elastic component 106. The disk-facing surface 118 includes a substantially planar central portion 130 surrounding the lumen 116 and a protrusion 124 surrounding the planar central portion 130. The protrusion 124 extends distally away from the planar central portion 130 around a radially outer edge of the disk-facing surface 118. The protrusion 124 may be, for example, wedge-shaped including an angled surface 126 which contacts a radially outer portion of the elastic component 106 bending it over the edge 122 distally into the relief area 120. It will be understood by those of skill in the art that the protrusion 124 may extend continuously about the outer perimeter of the disk-facing surface 118 or may be formed as a series of protrusions separated from one another circumferentially about the outer perimeter of the disk-facing surface 118 by a series of recesses or gaps. In a preferred embodiment, the protrusion 124 is substantially ring-shaped and extends continuously around a circumference of the disk-facing surface 118.


The relief area 120 and the protrusion 124 of the first and the second housings 102, 104, respectively, enhance retention of the elastic component 106 applying compression to the elastic component 106 radially inward toward the longitudinal axis of the first and second housings 102, 104, respectively, to counteract tension to which the elastic component 106 is subjected as it is pinched between the first and second housings 102, 104 and stretched into the relief area 120. Initially, as the elastic component 106 is being pinched between the first and second housings 102, 104, as the outer edge of the elastic component 106 is bent around the edge 122 into the relief area 120, the central portion of the elastic component 106 is stretched radially outward drawing edges of the slit away from one another and puckering the central portion of the elastic component. Then, as the first and second housings 102, 104 are moved further toward one another, the elastic component 106 is pinched between the protrusion 124 and the edge 122 reducing a thickness of this portion of the elastic component 106 and urging the material pinched away from this area toward the slit—i.e., compressing the elastic component 106 radially to bring the edges of the slit back together sealing the valve. The planar portion 130 of the disk-facing surface 118 keeps the central portion of the elastic component 106 substantially flat so that the elastic component 106 does not pucker, aligning edges of the slit while under compression. In addition, the bending of the peripherally outer portion of the elastic component 106 over the edge 122 into the relief area 120 reduces the likelihood that the elastic component 106 will be pulled out of position between the first and second housings 102, 104 when subjected to excess pressure. That is, the outer perimeter 132 of the elastic component 106 extends radially outward of the edge 122 in the relief area 120 with the outer perimeter 132 acting as an anchor holding the elastic component 106 in place.


It will be understood by those of skill in the art that the compression force for closing the slit may be controlled by altering the angle of the angled surface 126 and a position of the protrusion 124 in relation to the edge 122. In a preferred embodiment, the angled surface 126 may be angled from between approximately 40E to 50E and more preferably, at an angle of approximately 45E. The location of the edge 122 may be determined by the angled surface 126, which is positioned to the periphery of the flexible member 106. Thus, the compression force may be controlled as desired. It will also be understood by those of skill in the art that the amount of compression on the slit and/or the elastic component 106 is one of the factors determining the pressure gradients needed to open and close the slit. Other factors may include, for example, a flexibility, a thickness, and a material of the elastic component 106.


It will be apparent to those skilled in the art that various modifications and variations may be made in the structure and the methodology of the present invention, without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided that they come within the scope of the appended claims and their equivalents.

Claims
  • 1-20. (canceled)
  • 21. A device to provide access to a vascular system of a patient, comprising: a valve component comprising a flexible membrane having a radially outer portion situated between a first housing portion and a second housing portion, wherein the flexible membrane comprises a slit configured to open under a threshold fluid pressure and an outer edge configured to be displaced into a recess by at least one of the first and second housing portions, the recess defined by at least one of the first and second housing portions.
  • 22. The device of claim 21, further comprising: a catheter in fluid communication with the first and second housing portions.
  • 23. The device of claim 21, wherein the first housing portion is configured to mate with the second housing portion.
  • 24. The device of claim 21, wherein the first housing portion includes a first channel extending therethrough and the second housing portion includes a second channel extending therethrough, wherein the first channel and the second channel are in fluid communication with each other.
  • 25. The device of claim 21, wherein one of the first and second housing portions includes a first surface angled relative to a plane defined by the flexible membrane, the first surface being configured to apply radially compressive pressure to the flexible membrane when the flexible membrane is compressed between the first and second housing portions.
  • 26. The device of claim 25, wherein the recess is disposed opposite the first surface.
  • 27. The device of claim 21, wherein the recess is defined by the first housing portion and the second housing portion defines a protrusion.
  • 28. The device of claim 27, wherein the protrusion is configured to cause the flexible membrane to bend at the protrusion in response to the threshold fluid pressure being applied.
  • 29. The device of claim 21, wherein the recess is defined by the first housing portion and the second housing portion defines a compression surface configured to displace the flexible membrane into the recess.
  • 30. The device of claim 29, wherein the recess is positioned radially outward of the compression surface.
  • 31. A device to provide access to a vascular system of a patient, comprising: a first housing portion;a second housing portion configured to mate with the first housing portion; anda flexible membrane configured to be positioned between the first and second housing portions, wherein the flexible membrane comprises a slit configured to open under a threshold fluid pressure and an outer edge configured to be displaced into a recess by the first housing portion, wherein the recess is defined by the second housing portion.
  • 32. The device of claim 31, further comprising: a catheter in fluid communication with the first and second housing portions.
  • 33. The device of claim 31, wherein the first housing portion includes a first channel extending therethrough and the second housing portion includes a second channel extending therethrough, wherein the first channel and the second channel are in fluid communication with each other.
  • 34. A pressure activated valve for a device to provide access to a vascular system of a patient, the pressure activated valve comprising: a flexible membrane configured to be positioned between a first mateable housing portion and a second mateable housing portion, wherein the flexible membrane comprises: a slit configured to open under a threshold fluid pressure; anda radially outer portion configured to be displaced into a recess by the first mateable housing portion, wherein the recess is defined by the second mateable housing portion.
  • 35. The pressure activated valve of claim 34, further comprising: the first mateable housing portion; andthe second mateable housing portion.
  • 36. The pressure activated valve of claim 35, wherein the first mateable housing portion includes a first channel extending therethrough and the second mateable housing portion includes a second channel extending therethrough, wherein the first channel and the second channel are in fluid communication with each other.
  • 37. The pressure activated valve of claim 35, wherein the first and second mateable housing portions are configured to be fluidically coupled with a catheter.
  • 38. The pressure activated valve of claim 35, wherein the first mateable housing portion defines a compression surface configured to displace the radially outer portion of the flexible membrane into the recess.
  • 39. The pressure activated valve of claim 35, wherein the first mateable housing portion defines a protrusion configured to displace the radially outer portion of the flexible membrane into the recess.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 17/115,347, filed Dec. 8, 2020, which is a continuation of U.S. patent application Ser. No. 16/229,469, filed Dec. 21, 2018 (now U.S. Pat. No. 10,874,845), which is a continuation of U.S. patent application Ser. No. 14/272,918, filed May 8, 2014 (now U.S. Pat. No. 10,159,830), which is a continuation of U.S. patent application Ser. No. 13/176,054, filed Jul. 5, 2011 (now U.S. Pat. No. 8,753,320), which is a continuation of U.S. patent application Ser. No. 12/501,809, filed Jul. 13, 2009 (now U.S. Pat. No. 8,007,468), the disclosures of each of which are incorporated herein by reference in their entireties.

Continuations (5)
Number Date Country
Parent 17115347 Dec 2020 US
Child 18190450 US
Parent 16229469 Dec 2018 US
Child 17115347 US
Parent 14272918 May 2014 US
Child 16229469 US
Parent 13176054 Jul 2011 US
Child 14272918 US
Parent 12501809 Jul 2009 US
Child 13176054 US