The invention relates generally to transradial catheterization methods and devices used in said methods. In particular the invention concerns a method of obtaining patent hemostasis of the radial artery by compressing the un-instrumented ulnar artery to increase radial artery flow while applying pressure to the radial artery access site. The invention further concerns a device for applying blunt pressure to the ulnar artery, and a method of use.
Radial artery instrumentation is becoming increasingly prevalent with cardiovascular procedures performed via transradial access, providing improvement in outcomes, cost, as well as comfort. Radial artery occlusion refers to the blockage of the radial artery. Radial artery occlusion is a consequence of radial artery cannulation, which obliterates the radial artery lumen, making it not available for access in the future.
After instrumentation, it is necessary to compress the radial artery at the access site to obtain hemostasis of the cannulation wound. The cannulation wound is an opening of the wall of the radial artery. Hemostasis of the cannulation (or sheath) wound is accomplished by applying blunt pressure to the radial artery at the cannulation wound site, or access site. The application of this blunt pressure on the radial artery often causes the artery to occlude or close, thereby denying bloodflow further downstream within the radial artery. Maintaining blood flow in the radial artery while compressing the access site, after instrumentation, reduces the risk of post-instrumentation radial artery occlusion. Patent hemostasis is therefore understood to mean achieving the cessation of bleeding at the cannulation wound (access site) of the radial artery, while blood is allowed to flow through the artery.
The following references are representative of the field pertaining to the present invention:
For example, U.S. Pat. No. 6,355,026 to Mick describes right and left coronary catheters that are designed to be used in a transradial coronary catheterization. Also discussed are methods of inserting the catheters into a right or left coronary artery by a transradial approach.
In an article entitled Efficacy and Safety of Transient Ulnar Artery Compression to Recanalize Acute Radial Artery Occlusion After Transradial Catheterization (Am J Cardiol 2011; 107:1698-1701) Ivo Bernat, MD, and others, discuss a method directed to open an occluded radial artery after the radial artery becomes occluded. In the case of radial artery occlusion, 3-4 hours after hemostasis of the radial artery, ulnar artery compression was applied to attempt recanalization of radial artery. Bernat et. al. verified reopening of the radial artery by administration of heparin and compression of the ulnar artery.
Transradial access is being increasingly used because of its ability to reduce access-site complications and increase patient comfort. While performing transradial catheterization, upon introduction of the introducer sheath or catheter into the radial artery, it is best practice to administer anticoagulant, e.g., unfractionated heparin, bivalirudin or Enoxaparin, to assist in the prevention of radial artery occlusion, even when the catheterization procedure itself would otherwise not require it. Anticoagulants may also be referred to as blood thinners. The prophylactic effect of an anticoagulant such as unfractionated heparin to reduce the occurrence of radial artery occlusion is dose-dependent with significantly better efficacy with higher doses. With the administration of 5000 units of unfractionated heparin or alternatively 50 units per kilogram (kg) of body weight, radial artery occlusion rates have been reported in the range of 4-5%. Doses of heparin to be administered are generally expressed in units of heparin per kg of body weight. A conventional dose of unfractionated heparin during a transradial catheterization procedure is about 50 units per kg of body weight. A conventional dose of other anticoagulants, such as Bivalirudin or Enoxaparin is the equivalent of 50 units of unfractionated heparin per kg of body weight.
In view of the anticoagulant effect of unfractionated heparin, which effect typically exceeds the duration of the cardiovascular procedure, the patient is systemically anticoagulated with observed activated clotting times of approximately 200-225 seconds, while undergoing hemostasis. Optimally, a minimum duration of about 120 minutes of compression at the radial artery access site is required to achieve hemostasis.
A present invention method of catheterization of the radial artery directed at minimizing occurrences of radial artery occlusion is disclosed. The method comprises inserting a sheath into the radial artery of a patient at an access site. The desired catheterization procedure is then performed using the sheath to access the radial artery. Once the catheterization procedure is complete, an ulnar pressure is applied to the homolateral ulnar artery at an ulnar pressure site while the sheath remains inserted in the radial artery. The sheath is then removed from the radial artery while maintaining the ulnar pressure to the ulnar artery. Once the sheath is removed, and while continuing to apply the ulnar pressure, pressure is applied to the radial artery at the access site to obtain hemostasis at the access site.
In a preferred embodiment, the step of “applying a pressure to the radial artery at the access site to obtain hemostasis at the access site” is accomplished while maintaining the ulnar pressure to the ulnar artery.
In an embodiment of the present invention, a further step includes confirming that the step of applying ulnar pressure has reduced blood flow through the ulnar artery by monitoring flow of the ulnar artery prior to and after applying the ulnar pressure. In a further embodiment, monitoring flow of the ulnar artery includes sensing skin blood flow and/or pulsation at a fingertip or other location downstream of the ulnar pressure site. Digital plethysmography is employed in a preferred embodiment.
In another embodiment, the method further includes confirming patency of the radial artery during the step of applying a pressure to the radial artery by sensing skin blood flow and/or pulsation at a fingertip or other location downstream of the access site. In this embodiment, the sensing is performed while the ulnar artery is fully compressed (allowing no flow through the ulnar artery) and/or partially compressed (allowing less flow than when not compressed at all). Patency is confirmed, in an embodiment, by obtaining a metric relating to the sensing and comparing the metric with a standard metric for the patient, or with a previously-sensed metric. Preferably, the previously sensed metric is read after the applying the ulnar pressure step and before the step of removing the sheath from the radial artery. Digital plethysmography is employed in a preferred embodiment. In yet another embodiment, the method further includes administering anticoagulant at a dose lower than a conventional dose when an increased flow of blood is provided in the artery that is punctured at the access site.
In an embodiment of the present invention method, the step of compressing the ulnar artery includes: providing an ulnar impinger, securing the ulnar impinger over the wrist such that the impinger contacts a first location over the ulnar artery, and activating the impinger to press on the ulnar artery at the first location.
In a preferred embodiment of the present invention, the step of compressing the ulnar artery includes: providing an ulnar impingement band having an inflatable bladder, securing the ulnar impingement band over the wrist such that the bladder contacts a first location over the ulnar artery, and inflating the bladder to impinge upon the ulnar artery at the first location.
There is further disclosed a device for use in applying a compressing force to the ulnar artery of a patient. The device includes a trunk having an inflatable bladder. The trunk is defined by a lower portion and an upper portion. The bladder is defined by an expandable envelopment existing between the lower portion and the upper portion. A pair of limbs are connected to and extend from the upper portion of the trunk. Together, the pair of limbs and the trunk form a general Y-shape. A first limb of the pair of limbs is adapted to lay across the palm of a hand, between the thumb and the index finger and connect to the trunk to secure the first limb to the trunk and to secure the bladder to a portion of the patient's wrist corresponding with a first location over the ulnar artery. A second limb of the pair of limbs is adapted to lay over the wrist/distal forearm and connect to the trunk. This is to secure the second limb to the trunk and to further secure the bladder to the first location over the ulnar artery. One or more connectors are utilized for fixing the pair of limbs to the trunk.
In use, the bladder is located at the first location over the ulnar artery, and the pair of limbs are fixed around the hand and wrist to the trunk with the connectors. The bladder is inflated with a tube connected to an inflator to cause the bladder to impinge upon the ulnar artery at the first location.
There is further disclosed a device for use in applying a compressing force to the ulnar artery of a patient. The device comprises a trunk having an impinger. The trunk is defined by a lower portion and an upper portion. The impinger is defined by any device sufficient to apply a compression force. A pair of limbs are connected to and extend from the upper portion of the trunk. The pair of limbs together with the trunk form a general Y-shape. A first limb of the pair of limbs is adapted to lay across the palm of a hand, between the thumb and the index finger. The first limb connects to the trunk to secure the first limb to the trunk, and also to secure the impinger to a portion of the patient's wrist corresponding with a first location over the ulnar artery. A second limb of the pair of limbs is adapted to lay over the wrist/distal forearm and connect to the trunk to secure the second limb to the trunk and to further secure the bladder to the first location over the ulnar artery. One or more connectors are employed to fix the pair of limbs to the trunk. In use, the impinger is located at the first location over the ulnar artery. The pair of limbs are fixed around the hand and wrist to the trunk with the connectors. The impinger is activated to cause the bladder to impinge upon the ulnar artery at the first location.
Additional features, advantages, and embodiments of the invention may be set forth or are apparent from consideration of the following detailed description, drawings, and claims. Moreover, it is to be understood that both the foregoing summary of the invention and the following detailed description are exemplary and intended to provide further explanation without limiting the scope of the invention as claimed.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate preferred embodiments of the invention and together with the detailed description serve to explain the principles of the invention. In the drawings:
The invention is directed to a method of obtaining patent hemostasis of the radial artery by compressing the un-instrumented ulnar artery to increase radial artery flow while applying pressure to the radial artery access site. The invention further concerns a device for applying blunt pressure to the ulnar artery, and a method of use. In the description, the word “bladder” means the same as the word “balloon” and the two words are used interchangeably.
A present invention method of catheterization of the radial artery directed at minimizing occurrences of radial artery occlusion is disclosed. Referring to
Once the catheterization procedure is complete, an ulnar pressure is applied to the homolateral ulnar artery at an ulnar pressure site while the sheath remains inserted in the radial artery. The sheath is then removed from the radial artery while maintaining the first pressure to the ulnar artery. Once the sheath is removed, and while continuing to apply the ulnar pressure, pressure is applied to the radial artery at the access site to obtain hemostasis at the access site.
In a preferred embodiment, the step of “applying a pressure to the radial artery at the access site to obtain hemostasis at the access site” is accomplished while maintaining the first pressure to the ulnar artery.
The radial artery and the ulnar artery are the two conduits for the flow of oxygenated blood to the hand. The arteries are interconnected and therefore form an interdependent flow network. When flow is reduced in one of the arteries, by compression for example, flow increases in the other artery. When the ulnar artery is compressed, flow in the ulnar artery is reduced, which causes an increase in pressure and flow in the radial artery. When the radial artery is compressed, flow in the radial artery is reduced, which causes an increase in pressure and flow in the ulnar artery.
In an embodiment, a further step includes confirming that the application of ulnar pressure has reduced blood flow through the ulnar artery. This is done by monitoring flow of the ulnar artery prior to and after applying the ulnar pressure. In a further embodiment, monitoring flow of the ulnar artery includes sensing skin blood flow and/or pulsation at a fingertip or other location downstream of the ulnar pressure site. Digital plethysmography is employed in one embodiment.
In another embodiment, the method 1000 further includes confirming patency of the radial artery during the step of applying a pressure to the radial artery. In a preferred embodiment, patency is accomplished by sensing skin blood flow and/or pulsation at a fingertip or other location downstream of the access site. Other sensing locations both upstream and downstream may be used to confirm patency of the radial artery. In the preferred embodiment, the sensing is performed while the ulnar artery is fully compressed (allowing no flow through the ulnar artery) and/or partially compressed (allowing less flow than when not compressed at all). Patency is confirmed, in an embodiment, by obtaining a metric relating to the sensing and comparing the metric with a standard metric for the patient, or with a previously-sensed metric. Metric is understood to mean a sensible, quantifiable value or reading, relating to the characteristic sensed. Preferably, the previously sensed metric is read after the applying the ulnar pressure step and before the step of removing the sheath from the radial artery. Digital plethysmography is employed, in a preferred embodiment, to obtain the metrics. Other sensing modes may be employed, so long as the selected mode is capable of confirming patency in one form or another.
In an embodiment of the present invention method 1000, the step of compressing the ulnar artery includes: providing an ulnar impinger, securing the ulnar impinger over the wrist such that the impinger contacts a first location over the ulnar artery, and activating the impinger to press on the ulnar artery at the first location. In a preferred embodiment, the first location is over the Guyon's canal, demarcated by pisiform bone on the medial aspect, directly over the ulnar artery pulse.
Impinger is understood to include any device capable of applying a force to the ulnar artery, whether alone or part of a system, sufficient to compress the ulnar artery. One exemplary class includes mechanical devices that expand in size to cause a band surrounding the wrist to constrict an object to compress the ulnar artery. Another exemplary class of impingers includes mechanical devices that constrict a band worn around the wrist sufficient to cause an object to press on the ulnar artery.
In a preferred embodiment, the step of compressing the ulnar artery includes: providing an ulnar impingement band having an inflatable bladder, securing the ulnar impingement band over the wrist such that the bladder contacts a first location over the ulnar artery, and inflating the bladder to impinge upon the ulnar artery at the first location.
Turning to the Figures generally, and particularly
In use, the bladder 15 is located at the first location 25 over the ulnar artery, and the pair of limbs 19 are fixed around the hand and wrist to the trunk 13 with the connectors 21. The bladder 15 is inflated with a tube connected to an inflator to cause the bladder 15 to impinge upon the ulnar artery at the first location 25.
There is further disclosed a device 13 for use in applying a compressing force to the ulnar artery of a patient. The device 13 comprises a trunk 13 having an impinger 23. The trunk 13 is defined by a lower portion 13a and an upper portion 13b. The impinger 23 is defined by any device sufficient to apply a compression force. Examples include expanding springs, expanding screw-type appurtenances, or other devices and systems as discussed herein. A pair of limbs 19 are connected to and extend from the upper portion 13b of the trunk 13. The pair of limbs 19 together with the trunk 13 form a general Y-shape. A first limb 19a of the pair of limbs 19 is adapted to lay across the palm of a hand, between the thumb and the index finger. The first limb 19a connects to the trunk 13 to secure the first limb 19a to the trunk 13, and also to secure the impinger 23 to a portion of the patient's wrist corresponding with a first location 25 over the ulnar artery. A second limb 19b of the pair of limbs 19 is adapted to lay over the wrist/distal forearm and connect to the trunk 13 to secure the second limb 19b to the trunk 13 and to further secure the impinge 23 to the first location over the ulnar artery. One or more connectors 21 are employed to fix the pair of limbs 19 to the trunk 13. In use, the impinger 23 is located at the first location 25 over the ulnar artery. The pair of limbs 19 are fixed around the hand and wrist to the trunk 13 with the connectors 21. The impinger 23 is activated to cause the impinger 23 to impinge upon the ulnar artery at the first location 25.
In another embodiment of the present invention method 1000, an introducer sheath and/or a catheter is placed in a radial artery after sterile preparation as well as with administration of local anesthetic. The radial artery is punctured at an access site and, after placement of a guidewire, either an introducer sheath or a catheter is introduced in the radial artery lumen. The catheterization procedure is performed in a manner deemed appropriate by the operator.
In one embodiment, the present invention method further comprises administering an anticoagulant at any time after introduction of the catheter or introducer sheath and before removal of the catheter or the introducer sheath. In another embodiment, an anticoagulant is administered before the introduction of the catheter or introducer sheath. Examples of anticoagulants include, without limitation, unfractionated heparin, bivalirudin or Enoxaparin. In one embodiment, wherein a method for obtaining patent hemostasis at an access site of an artery comprises increasing the flow of blood in the artery that is punctured at the access site, unfractionated heparin is administered at a dose that is lower than a conventional dose.
The flow of blood is increased in the radial artery if the radial artery is punctured for catheterization; the flow of blood is increased in the ulnar artery if the ulnar artery is punctured for catheterization; the flow of blood is increased in femoral artery if the femoral artery is punctured for catheterization; or the flow of blood is increased in any other artery that is punctured at an access site. The flow of blood in an artery can be increased by different techniques. For example, the flow of blood in artery can be increased by a pharmacological method, e.g., administration of a drug. Examples of drugs that can be used to increase the flow of blood in an artery include vasodilators that reduce distal resistance and increase proximal flow, which include all vasodilator agents (e.g., nitrates, calcium channel blockers) or agents that increase cardiac output (e.g., dobutamine, epinephrine, milrinone). The flow of blood in an artery can also be increased using external forces. For example, flow of blood in a radial artery can be increased by applying a compressive force on the ulnar artery, and the flow of blood in the ulnar artery can be increased by applying a compressive force on the radial artery. The flow of blood in an artery could also be increased by using mechanical devices, e.g., pump. The device could be implantable in the human body or external to the human body. For example, use of a pump to increase flow of blood in a femoral artery is known in the art.
Increasing the flow of blood in an artery leads to an increase in the velocity of blood in the artery. The increase in velocity results in decrease in residence time or contact time of blood at the puncture site on the artery. The residence time or contact time (t, seconds) is calculated by dividing the diameter (d, mm) of the puncture hole with the velocity (v, mm/second) of the blood in the artery. t=d/v. For a given puncture hole with diameter (d), higher the velocity (v), lower is the contact time t. A lower contact time results in lower exposure of blood to external environment thereby lowering the potential for transmural clotting and vessel lumen occlusion during the catheterization procedure. A lower than conventional dose of anticoagulant can then be used by increasing the flow of blood in an artery punctured for a catherization procedure.
In one embodiment, a method of reducing dosage of an anticoagulant when performing a catheterization procedure at an access site of an artery comprises administering the anticoagulant at a dosage less than a conventional dose of an equivalent of 50 units of unfractionated heparin per kg of body weight, obtaining an increase in velocity of blood in the artery that is punctured at the access site, and maintaining the increase in the velocity of blood in the artery for a period of time during the catheterization procedure. In another embodiment, a method of reducing a dosage of an anticoagulant when performing a catheterization procedure at an access site of an artery comprises administering the anticoagulant at a dose less than a conventional dose of an equivalent of 50 units of unfractionated heparin per kg of body weight, reducing a contact time of blood at the access site of the artery, and maintaining the contact time of blood at a reduced level for a period of time during the catheterization procedure. Unfractionated heparin or another anticoagulant may be used at a dose that is lower than a conventional dose. An anticoagulant is selected from a group comprising heparin, dalteparin, Fragmin®, danaparoid, enoxaparin, unfractionated heparin, other low molecular weight heparin, direct thrombin inhibitors including hirudin, argatroban, bivalirudin and all substances derived from and/or related to the foregoing substances.
In one embodiment, the anticoagulant is unfractionated heparin and the dosage of the unfractionated heparin is less than 50 units per kilogram of body weight, administered parenterally. In yet another embodiment, the dosage of unfractionated heparin is about 25 units per kilogram of body weight. In another embodiment, the dosage of unfractionated heparin is less than 25 units per kilogram of body weight. In yet another embodiment, the dosage of unfractionated heparin is in the range of 20-40 units per kilogram of body weight. In another embodiment, the dosage of unfractionated heparin is in the range of 15-30 units per kilogram of body weight. The dosage of other anticoagulants is similar to dosage of unfractionated heparin and is measured as equivalent of units of unfractionated heparin per kg of body weight.
After completion of the catheterization procedure, the present invention method comprises applying hemostatic compression to the access site using a device. In one embodiment, the device is a band having at least two inflatable bladders wherein one inflatable bladder is used to apply compressive hemostatic pressure at the access site on the radial artery, and a second inflatable bladder is used to apply an ulnar pressure at an ulnar pressure site. In another embodiment, a device such as an impinger that is capable of applying a mechanical compressive force is used to apply the ulnar pressure. In yet another embodiment, a device such as an impinger that is capable of applying a mechanical compressive force is used to apply the compressive hemostatic pressure at the access site on the radial artery. In another embodiment, a band with at least one inflatable bladder is used to apply compressive hemostatic pressure at the access site on the radial artery, and another device is used to apply ulnar pressure at an ulnar pressure site. Manual compression may also be used.
The band having at least two inflatable bladders is wrapped around the wrist of a patient, and secured near both ends of the band with fastener. In one embodiment, the first bladder covering the puncture site on the radial artery is filled with air to apply a first occlusive pressure to the radial artery, thereby stopping both bleeding and intra-arterial blood flow at the puncture site. Then, the second balloon covering the ulnar artery is filled with air to apply a second occlusive pressure to the ulnar artery, thereby stopping intra-arterial blood flow. As a result, there will be limited blood supply to the hand as occlusive pressure on both the radial artery and the ulnar artery has been applied. Subsequently, pressure on the radial artery is released over a period of time by slowly deflating the first bladder until a blood spurt is seen from the puncture site of the radial artery under the first bladder. Once blood flow from the puncture site has been observed, the pressure in the first bladder covering the puncture site is slightly increased by introducing small amount of air to stop the bleeding. In one embodiment, inflation of the balloons is done manually using syringes to inject fluid, e.g., air in the balloons. In another embodiment, deflation of the balloons is also done manually using syringes to remove fluid from the balloons. In yet another embodiment, deflation of balloons is done automatically using valves designed to eject fluid from a balloon periodically over a period of time.
In one embodiment of the present invention method, wherein an anticoagulant such as unfractionated heparin is administered to a patient, the method further comprises applying hemostatic compression for a time less than 120 minutes. In another embodiment, the hemostatic compression time is about 60 minutes. In yet another embodiment, the hemostatic compression time is less than 60 minutes. In one embodiment, during the hemostatic compression time when the radial artery is compressed at the access site, the ipsilateral ulnar artery is also compressed simultaneously. In another embodiment, the ipsilateral ulnar artery is compressed continuously during the entire hemostatic compression time. In yet another embodiment, the ipsilateral ulnar artery is compressed continuously for only a part of the hemostatic compression time. In another embodiment, the ulnar artery is compressed intermittently during the hemostatic compression time. In some embodiments, the ulnar artery may be compressed fully, and in other embodiments, the ulnar artery may be compressed partially.
In one embodiment of present invention, a method of obtaining hemostasis of a radial artery of a patient after performing a catheterization procedure at an access site of the radial artery, comprises performing the following steps: (a) applying a hemostatic pressure to the radial artery at the access site; (b) providing an increased flow of blood in the radial artery; (c) administering a dose of unfractionated heparin to the patient; and (d) maintaining simultaneously the hemostatic pressure and the increased flow of blood in the radial artery; wherein step (b) comprises applying an ulnar pressure to an ulnar artery at an ulnar pressure site; and wherein step (c) comprises administering the dose of unfractionated heparin that is less than 50 units per kg body weight.
In another embodiment of present invention, a method of obtaining hemostasis of an artery of a patient after performing a catheterization procedure at an access site of the artery, comprises performing the following steps: (i) applying a hemostatic pressure to the artery at the access site; (ii) providing an increased flow of blood in the artery; (iii) administering a dose of unfractionated heparin or other anticoagulant to the patient; and (iv) maintaining simultaneously the hemostatic pressure and the increased flow of blood in the artery for a duration of time; wherein step (iii) comprises administering the dose of unfractionated heparin that is less than 50 units per kg body weight; and wherein the duration of time in step (iv) is less than 120 minutes.
In yet another embodiment of the present invention, a method of obtaining hemostasis of a radial artery of a patient after performing a catheterization procedure at an access site of the radial artery, comprising performing the following steps: (A) applying a hemostatic pressure to the radial artery at the access site; (B) providing an increased flow of blood in the radial artery; (C) administering a dose of an anticoagulant to the patient; and (D) maintaining simultaneously the hemostatic pressure and the increased flow of blood in the radial artery for a duration of time; wherein step (B) comprises applying an ulnar pressure to an ulnar artery at an ulnar pressure site; wherein the dose of the anticoagulant in step (C) is less than an equivalent of 50 units of unfractionated heparin per kg of body weight; and wherein the duration of time in step (D) is less than 120 minutes. In one embodiment, the increased flow of blood in the radial artery is provided by compressing the ulnar artery.
In one embodiment of the present invention, a hemostatic pressure on the radial artery is applied using a first band comprising at least one inflatable bladder, wherein the inflatable bladder of the first band applies the hemostatic pressure at the access site, and the ulnar pressure is applied using a technique selected from a group consisting of (i) a second band comprising at least one inflatable bladder, wherein the inflatable bladder of the second band applies a pressure at the ulnar pressure site, (ii) a mechanical device applies a compressing force at the ulnar pressure site; (iii) manual pressure is applied at the ulnar pressure site.
In one embodiment, after about 60 minutes of compression of the radial artery at the access site, the pressure of compression is gradually reduced and weaned off from the radial artery access site, and the site is lightly dressed. In another embodiment, the duration of reducing the compression and weaning off the hemostatic compression pressure is in the range of 5-10 minutes. This technique improves patient comfort and increases the number of patients who can be treated.
In another embodiment, a method of obtaining hemostasis of a radial artery of a patient when performing a catheterization procedure at an access site of the radial artery, comprises administering a dose of an anticoagulant to the patient during the catheterization procedure and performing the following steps: (a) applying a hemostatic pressure to the radial artery at the access site for a duration of time at least until hemostasis of the radial artery; (b) applying an ulnar pressure to an ulnar artery at an ulnar pressure site to fully compress the ulnar artery, thereby providing an increased flow of blood in the radial artery; (c) applying an ulnar pressure to the ulnar artery at the ulnar pressure site to partially compress the ulnar artery, thereby providing an increased flow of blood in the radial artery; (d) maintaining simultaneously the hemostatic pressure and the increased flow of blood in the radial artery; and attaining hemostasis of the radial artery. In one embodiment, step (b) precedes step (c). In another embodiment, step (c) comprises continuous partial compression of the ulnar artery at least until hemostasis of the radial artery.
In yet another embodiment, a method of obtaining hemostasis of a radial artery of a patient when performing a catheterization procedure at an access site of the radial artery, comprises performing the following steps: (a) administering a dose of an anticoagulant to the patient during the catheterization procedure, (b) applying a hemostatic pressure to the radial artery at the access site for a duration of time at least until hemostasis of the radial artery; (c) applying an ulnar pressure to an ulnar artery at an ulnar pressure site to fully compress the ulnar artery; (d) applying continuously an ulnar pressure to the ulnar artery at the ulnar pressure site to partially compress the ulnar artery for a part of the duration of time; and attaining hemostasis of the radial artery; wherein step (a) precedes all other steps, and step (c) precedes step (d).
In another embodiment, a method of obtaining hemostasis of a radial artery of a patient when performing a catheterization procedure at an access site of the radial artery, comprises performing the following steps: (a) administering a dose of an anticoagulant to the patient during the catheterization procedure; (b) applying a hemostatic pressure to the radial artery at the access site for a duration of time at least until hemostasis of the radial artery; (c) applying an ulnar pressure to an ulnar artery at an ulnar pressure site to fully compress the ulnar artery; (d) applying an ulnar pressure to the ulnar artery at the ulnar pressure site, wherein the ulnar pressure is applied intermittently; and (e) attaining hemostasis of the radial artery; wherein step (a) precedes all other steps, and step (c) precedes step (d). In yet another embodiment, the ulnar pressure in step (d) is applied intermittently at least until hemostasis of the radial artery.
A period of 2 hours (120 minutes) is the time it typically takes for hemostasis to occur. In practice, the time for hemostasis could last for more than 2 hours or less than 2 hours. An important consideration during the hemostasis process is hand ischemia. The risk of hand ischemia has to be minimized and the benefit of patent hemostasis maximized. Because the radial artery is generally compressed continuously at the radial puncture site for about 2 hours to obtain hemostasis, one safe approach considering the potential for hand ischemia is to compress the ulnar artery to a point of occlusion intermittently over the duration of time for hemostasis, i.e., compressing the ulnar artery fully for several minutes and then removing the pressure on the ulnar artery for several minutes and repeating the cycle, thereby providing periodic blood flow to the hand during the hemostasis period.
In one embodiment, ulnar artery is compressed continuously for the duration of time at least until hemostasis of the radial artery wherein the ulnar artery is fully compressed for a fraction of the duration of time and partially compressed for the remainder of the period. See, for example,
In an embodiment of the invention, a band comprising a radial balloon and an ulnar balloon is applied to the instrumented forearm with the radial balloon above or at the radial puncture site, and the distal end of the band aligned with the crease of the wrist at the distal end of the forearm. The ulnar balloon is inflated to totally occlude the ulnar artery flow at the outset. Then inflate the radial balloon, and remove the introducer sheath, observe the puncture site and inflate the radial balloon to the point where there is no further bleeding from the radial puncture site. In about 15 minutes after full compression of the ulnar artery, and no later than 30 minutes, deflate the ulnar balloon to allow flow in the ulnar artery, making the ulnar artery partially compressed. In another embodiment, reduce the pressure on the ulnar artery to zero in the time range of about 15 minutes to about 30 minutes after full compression of the ulnar artery. Adjust the pressure in the radial balloon to allow for radial artery patency and for maintenance of radial hemostasis. Deflate the ulnar balloon partially or fully at any point if the patient experiences discomfort at the ulnar compression site.
In another embodiment as shown in
In another embodiment as shown in
In one embodiment, a method of attaining patent hemostasis of a radial artery of a patient when performing a catheterization procedure at an access site of the radial artery, comprises performing the following steps:
In another embodiment, a surface of the balloon in contact with puncture site is coated with a composition. In one embodiment, composition comprises a hydrocolloid adhesive or zinc oxide-based adhesive that can be used upon the surface of the balloon when pressing the balloon on the skin of the patient. The hydrocolloid or zinc oxide-based adhesive can be used either alone or in combination with another medical grade adhesive. Hydrocolloid and zinc oxide-based adhesives have a reduced tendency to excoriate the skin of a patient when removed. This can be particularly important for patients whose skin is more sensitive or fragile. In one embodiment, the coated composition has a peel-off laminate (liner) that is removed before placing the balloon on the puncture site. In another embodiment, the composition also contains antimicrobials. In one embodiment, the composition contains oil. Such compositions are known in the art and commercially available. See, e.g., compositions and laminates sold by Vancive Medical Technologies, Avery Dennison business. In another embodiment, vasodilator medication is present on the surface of a balloon pressing on the puncture site to reduce the incidence of spasm. Spasm is thought to play a role in the process of interruption of the flow of blood that can lead to thrombosis and resultant lumen damage or obliteration with fibrosis. Prevention of and relief from spasm may reduce the probability of occlusion. An example of such vasodilator medication is nitroglycerine. In one embodiment, the surface of balloon in contact with the puncture site is disposed with a composition comprising nitroglycerine. In another embodiment, the surface of balloon in contact with the puncture site is disposed with a composition comprising a steroid. The steroid can help reduce inflammation. In another embodiment, the coated composition comprises wound healing and/or hemostatic components. In another embodiment, the coated composition comprises chitosan. In one embodiment, the chitosan comprises a gel system of transparent, stable, solubilized chitosan that controls bleeding. The chitosan gel system can comprise water, chitosan, an acid, a plasticizer, a rheology modifying agent, an antioxidant stabilizer, an alcohol, and a multi-valent salt. Additional components of the chitosan gel system can comprise a bifunctional organic acid, a trifunctional organic acid, a multi-functional organic acid, a phosphoric acid, a polyphosphoric acid and a salt.
Another embodiment of the present invention is a system comprising a dressing or a patch to place on the skin at the access site on the radial artery and a band having at least two inflatable bladders wherein at least a first inflatable bladder is used to apply compressive hemostatic pressure at the access site on the radial artery, and at least a second inflatable bladder is used to apply an ulnar pressure at an ulnar pressure site. The at least first inflatable bladder is placed over the dressing or the patch at the access site. In one embodiment, the dressing or the patch comprises hemostatic materials that modify hemostasis. In one embodiment, the dressing or the patch comprises an absorbent layer comprising a non-woven fabric layer of water-insoluble chitosan fibers having a coating of water-absorbent starch on at least one face of the fabric layer. In another embodiment, the hemostatic material comprises a hemostatic agent deposited on a hemostatic substrate, wherein the hemostatic agent comprises microporous polysaccharide microspheres, and wherein the hemostatic substrate comprises chitosan. In another embodiment, the dressing or the patch comprises at least one of kaolin, chitosan, silicate nanoparticles, bioactive glass particles, diatomaceous earth, silver particles, hydrogen peroxide, or combinations thereof. In another embodiment, the dressing or patch comprises a steroid. In yet another embodiment, the dressing or patch comprises a vasodilator medication. In one embodiment, the patch or the dressing comprises composition comprising a hydrocolloid adhesive or zinc oxide-based adhesive or any medical grade oxide-based adhesive. The hydrocolloid or zinc oxide-based adhesive can be used either alone or in combination with another medical grade adhesive.
In another embodiment, a method of attaining patent hemostasis of a radial artery of a patient when performing a catheterization procedure at an access site of the radial artery, comprises performing the following steps:
Embodiments of the invention disclosed above pertain to attaining patent hemostasis of the radial artery at an access site present on the radial artery. However, an access site may be present on an ulnar artery instead of the radial artery. All embodiments of the invention disclosed above can also be used to attain patent hemostasis of the ulnar artery if the access site is on the ulnar artery. Patent hemostasis of the ulnar artery is attained by increasing the flow of blood in the ulnar artery by compressing the radial artery.
In one embodiment, a method of attaining patent hemostasis of an ulnar artery of a patient when performing a catheterization procedure at an access site of the ulnar artery, comprises performing the following steps:
In another embodiment, a method of attaining patent hemostasis of an ulnar artery of a patient when performing a catheterization procedure at an access site of the ulnar artery, comprises performing the following steps:
In one embodiment of present invention, a method of obtaining hemostasis of an ulnar artery of a patient after performing a catheterization procedure at an access site of the ulnar artery, comprises performing the following steps: (a) applying a hemostatic pressure to the ulnar artery at the access site; (b) providing an increased flow of blood in the ulnar artery; and (c) maintaining simultaneously the hemostatic pressure and the increased flow of blood in the ulnar artery; wherein step (b) comprises applying a radial pressure to a radial artery at a radial pressure site.
In another embodiment of the present invention, a method of obtaining hemostasis of an ulnar artery of a patient after performing a catheterization procedure at an access site of the ulnar artery, comprising performing the following steps: (A) applying a hemostatic pressure to the ulnar artery at the access site; (B) providing an increased flow of blood in the ulnar artery; (C) administering a dose of an anticoagulant to the patient; and (D) maintaining simultaneously the hemostatic pressure and the increased flow of blood in the ulnar artery for a duration of time; wherein step (B) comprises applying a radial pressure to a radial artery at a radial pressure site; wherein the dose of the anticoagulant in step (C) is less than an equivalent of 50 units of unfractionated heparin per kg of body weight; and wherein the duration of time in step (D) is less than 120 minutes. In one embodiment, the increased flow of blood in the ulnar artery is provided by compressing the radial artery.
In one embodiment of the present invention, a hemostatic pressure at a access site on the ulnar artery is applied using a first band comprising at least one inflatable bladder, wherein the at least one inflatable bladder of the first band applies the hemostatic pressure at the access site, and the radial pressure to increase the flow of blood in the ulnar artery for a purpose of attaining patent hemostasis of the ulnar artery is applied using a technique selected from a group consisting of (i) a second band comprising at least one inflatable bladder, wherein the inflatable bladder of the second band applies a pressure at the radial pressure site, (ii) a mechanical device applies a compressing force at the radial pressure site; (iii) manual pressure is applied at the radial pressure site.
In one embodiment, after about 60 minutes of compression of the ulnar artery at the access site, the pressure of compression is gradually reduced and weaned off from the ulnar artery access site, and the site is lightly dressed. In another embodiment, the duration of reducing the compression and weaning off the hemostatic compression pressure is in the range of 5-10 minutes. This technique improves patient comfort and increases the number of patients who can be treated.
In another embodiment, a method of obtaining patent hemostasis of an ulnar artery of a patient when performing a catheterization procedure at an access site of the ulnar artery, comprises performing the following steps: (a) applying a hemostatic pressure to the ulnar artery at the access site for a duration of time at least until hemostasis of the ulnar artery; (b) applying a radial pressure to a radial artery at a radial pressure site to fully compress the radial artery, thereby providing an increased flow of blood in the ulnar artery for a purpose of attaining patent hemostasis of the ulnar artery (c) applying a radial pressure to the radial artery at the radial pressure site to partially compress the radial artery, thereby providing an increased flow of blood in the ulnar artery for a purpose of attaining patent hemostasis of the ulnar artery; (d) maintaining simultaneously the hemostatic pressure and the increased flow of blood in the ulnar artery; and attaining hemostasis of the ulnar artery. In one embodiment, step (b) precedes step (c). In another embodiment, step (c) comprises continuous partial compression of the radial artery at least until hemostasis of the ulnar artery.
In yet another embodiment, a method of obtaining hemostasis of an ulnar artery of a patient when performing a catheterization procedure at an access site of the ulnar artery, comprises performing the following steps: (a) administering a dose of an anticoagulant to the patient during the catheterization procedure, (b) applying a hemostatic pressure to the ulnar artery at the access site for a duration of time to attain hemostasis of the ulnar artery; (c) applying a radial pressure to a radial artery at a radial pressure site to fully compress the radial artery for a first period of time; (d) applying a radial pressure to the radial artery at the radial pressure site to partially compress the radial artery for a second period of time; and attaining hemostasis of the ulnar artery; wherein step (a) precedes all other steps. In one embodiment, step (c) precedes step (b). In another embodiment, step (b) precedes step (c). In yet another embodiment, step (c) precedes step (d). In another embodiment, the sum of first period of time in step (c) and the second period of time in step (d) is less than the duration of time in step (b).
In another embodiment, a method of obtaining hemostasis of an ulnar artery of a patient when performing a catheterization procedure at an access site of the ulnar artery, comprises performing the following steps: (a) administering a dose of an anticoagulant to the patient during the catheterization procedure; (b) applying a hemostatic pressure to the ulnar artery at the access site for a duration of time to attain hemostasis of the ulnar artery; (c) applying a radial pressure to a radial artery at a radial pressure site to fully compress the radial artery for a purpose of attaining patent hemostasis of the ulnar artery; (d) applying a radial pressure to the radial artery at the radial pressure site, wherein the radial pressure is applied intermittently for the purpose of attaining patent hemostasis of the ulnar artery; and (e) attaining patent hemostasis of the ulnar artery; wherein step (a) precedes all other steps, and step (c) precedes step (d). In yet another embodiment, the radial pressure in step (d) is applied intermittently at least until hemostasis of the ulnar artery.
It will be appreciated that several of the above-disclosed and other features and functions, or alternatives or varieties thereof, may be desirably combined into many other different methods, systems or applications. Also, that various alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.
In the description above, for the purposes of explanation, numerous specific requirements and several specific details have been set forth in order to provide an understanding of certain embodiments. It will be apparent however, to one skilled in the art, that one or more other embodiments may be practiced without one or more of these specific details. The particular embodiments described are not provided to limit the invention, but to illustrate it. The scope of the invention is not to be determined by the specific examples provided above. In other instances, well-known structures, devices, and operations have been shown in block diagram form or without detail in order to avoid obscuring the understanding of the description. Where considered appropriate, reference numerals or terminal portions of reference numerals have been repeated among the figures to indicate corresponding or analogous elements, which may optionally have similar characteristics.
It should also be appreciated that reference throughout this specification to “one embodiment”, “an embodiment”, “one or more embodiments”, or “different embodiments”, for example, means that a particular feature may be included in the practice of the invention. Similarly, it should be appreciated that in the description various features are sometimes grouped together in a single embodiment, figure, or description thereof to streamlining the disclosure and aiding in the understanding of various inventive aspects. This method of disclosure, however, is not to be interpreted or construed as reflecting an intention that the invention requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects may lie in less than all features of a single disclosed embodiment. In another situation, an inventive aspect may include a combination of embodiments described herein or in a combination of less than all aspects described in a combination of embodiments.
This application is a continuation of co-pending U.S. patent application Ser. No. 16/888,792 filed May 31, 2020, which is a non-provisional of co-pending U.S. Provisional Application No. 62/858,192 filed Jun. 6, 2019, and continuation-in-part of co-pending U.S. patent application Ser. No. 16/255,834 filed Jan. 24, 2019, which is a continuation of U.S. patent application Ser. No. 16/138,958 filed Sep. 21, 2018, now U.S. Pat. No. 10,213,214 issued Feb. 26, 2019, which is a non-provisional of U.S. Provisional Application No. 62/653,172 filed Apr. 5, 2018 and continuation-in-part of U.S. patent application Ser. No. 15/708,123, filed Sep. 18, 2017, now U.S. Pat. No. 10,342,551 issued Jul. 9, 2019 which is non-provisional of U.S. Provisional Application No. 62/549,923 filed Aug. 24, 2017 and is a continuation-in-part of U.S. patent application Ser. No. 15/426,056, filed Feb. 7, 2017, now U.S. Pat. No. 9,949,738, issued Apr. 24, 2018, which is non-provisional of U.S. Provisional Application No. 62/405,951 filed Oct. 9, 2016 and is a continuation-in-part of U.S. patent application Ser. No. 15/340,023, filed Nov. 1, 2016, now U.S. Pat. No. 9,592,060 issued Mar. 14, 2017, which is a continuation of U.S. patent application Ser. No. 15/062,150, filed Mar. 6, 2016, now U.S. Pat. No. 9,510,838 issued Dec. 6, 2016, which is a continuation of U.S. patent application Ser. No. 13/941,219, filed Jul. 12, 2013, now U.S. Pat. No. 9,308,000 issued Apr. 12, 2016. The entire content of all above applications is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62858192 | Jun 2019 | US | |
62653172 | Apr 2018 | US | |
62549923 | Aug 2017 | US | |
62405951 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16888792 | May 2020 | US |
Child | 18386248 | US | |
Parent | 16138958 | Sep 2018 | US |
Child | 16255834 | US | |
Parent | 15062150 | Mar 2016 | US |
Child | 15340023 | US | |
Parent | 13941219 | Jul 2013 | US |
Child | 15062150 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16255834 | Jan 2019 | US |
Child | 16888792 | US | |
Parent | 15708123 | Sep 2017 | US |
Child | 16138958 | US | |
Parent | 15426056 | Feb 2017 | US |
Child | 15708123 | US | |
Parent | 15340023 | Nov 2016 | US |
Child | 15426056 | US |