The present disclosure relates generally to reducing stress in work pieces using ultrasonic cavitation, and more particularly, to reducing stress in magnetic heads, which are incorporated into hard drives, using ultrasonic cavitation during fabrication of the magnetic heads.
Magnetic disk drives are used to store and retrieve data in many electronic devices including computers, televisions, video recorders, servers, digital recorders, etc. A typical magnetic disk drive includes a head having a slider and a transducer with a read and write element that is in very close proximity to a surface of a rotatable magnetic disk. As the magnetic disk rotates beneath the head, a thin air bearing is formed between the surface of the magnetic disk and an air bearing surface (ABS) of the slider. The read and write elements of the head are alternatively used to read and write data while a suspension assembly positions the head along magnetic tracks on the magnetic disk. The magnetic tracks on the magnetic disks are typically concentric circular regions on the magnetic disks, onto which data can be stored by writing to it and retrieved by reading from it.
The slider is aerodynamically designed to fly above a rotating magnetic disk by virtue of an air bearing created between the ABS of the slider and the rotating magnetic disk. The ABS is the portion of the slider surface which is closest to the rotating magnetic disk, which is typically the head portion of the slider. In order to maximize the efficiency of the head, the sensing elements (i.e., the read and write heads) are designed to have precise dimensional relationships to each other. In addition, the distance between the ABS and the rotating magnetic disk is tightly controlled. The dimension that relates to the write function is known as the throat height and the dimension that relates to the read function is known as the stripe height. Both the stripe height and the throat height are controlled by lapping processes.
Multiple lapping processes are performed on row bars, which are rows of sliders/heads, and include backside lapping followed by frontside lapping. During the lapping process, row bars are mounted on a separate lapping tool at each lapping operation using an adhesive, tape and/or separate double-sided adhesive film. The lapping process alters and removes materials, as well as polishes, the row bars, which creates stresses on and within the surfaces of the row bars that are lapped. If these stresses are not released and are left in the finished magnetic head, which is made from a row bar, the stresses can cause the finished magnetic head to be damaged later. Therefore, these stresses are released and corrected during the manufacturing process. The damage occurs because magnetic heads which are stressed are also unstable and can change their shape later after they have been installed in a hard drive. The magnetic head's shape changes because of instability, which results from stress built up. When this change occurs it is referred to as “POPPING” because the change is a permanent over coat protrusion (POP) that occurs on the surface of the head and resembles the magnetic head surface popping up. Therefore, as part of the manufacturing process, the stress built up in the head, which is a result of processes like lapping, is released in order to stabilize the head and avoid “POPPING” later.
Conventional methods of releasing these stresses involve annealing the head at high temperatures to induce the “POPPING” to occur and therefore remove the instability from the magnetic head. The conventional high temperature annealing process, which is used to relieve stresses, is optimally performed just prior to the final lapping operation and after the rough lapping operation. However, using high temperature annealing on row bars of magnetic heads, after rough lapping, requires the row bars to be de-bonded from a lapping row tool because high temperature annealing can destroy the adhesive and mounted wire bond board. These steps of bonding and de-bonding wires to row bars require significant extra processing steps that are expensive.
Therefore, what is needed is a system and method that releases stresses built up in row bars as a result of fabrication processes, such as lapping, as well as reduces the number of times that wires are bonded and de-bonded to row bars and thus lowers magnetic head fabrication costs.
Several aspects of the present invention will be described more fully hereinafter with reference to various embodiments of methods and apparatuses related to reducing stress in semiconductor work pieces as the semiconductor work pieces are being fabricated. The stresses are a result of manufacturing processes used to fabricate the semiconductor work pieces.
One aspect of a method used to release stress in a work piece includes providing a work piece with a stressed layer formed in the work piece and releasing stress built up in the stressed layer by immersing the work piece with the stressed layer into a bath of liquid and subjecting the work piece and the stressed layer to ultrasonic waves generated in the liquid.
Another aspect of a method is used to release stresses in a magnetic head as the magnetic head is being fabricated. The stresses are a result of the manufacturing processes used to fabricate the magnetic head. The aspect of the method includes providing a substrate with at least one layer, rough lapping the substrate with the at least one layer to produce a substrate having at least one stressed layer, and treating the substrate and the stressed layer with ultrasonic waves to release stress built up after the substrate and the at least one layer have undergone rough lapping.
Another aspect of a method used to release stress in a work piece includes a step for providing a work piece with a stressed region formed in the work piece and a step for releasing stress built up in the stressed region of the work piece by subjecting the work piece to ultrasonic waves.
It will be understood that other aspects of the present invention will become readily apparent to those skilled in the art from the following disclosure, wherein it is shown and described only several embodiments of the invention by way of illustration. As will be realized by those skilled in the art, the present invention is capable of other and different embodiments and its several details are capable of modification in various other respects, all without departing from the spirit and scope of the invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.
Various aspects of the present invention will now be presented in the detailed description by way of example, and not by way of limitation, with reference to the accompanying drawings, wherein:
The detailed description is intended to provide a description of various exemplary embodiments of the present invention and is not intended to represent the only embodiments in which the invention may be practiced. The term “exemplary” used throughout this disclosure means “serving as an example, instance, or illustration,” and should not necessarily be construed as preferred or advantageous over other embodiments. The detailed description includes specific details for the purpose of providing a thorough and complete disclosure that fully conveys the scope of the invention to those skilled in the art. However, the invention may be practiced without these specific details. In some instances, well-known structures and components may be shown in block diagram form, or omitted entirely, in order to avoid obscuring the various concepts presented throughout this disclosure.
Various aspects of the present invention may be described with reference to certain shapes and geometries. Any reference to a component having a particular shape or geometry, however, should not be construed as limited to the precise shape illustrated or described, but shall include deviations that result, for example, from manufacturing techniques and/or tolerances. By way of example, a component, or any part of a component, may be illustrated or described as rectangular, but in practice may have rounded or curved features due to manufacturing techniques and/or tolerances. Accordingly, the components illustrated in the drawings are schematic in nature and their shapes are not intended to illustrate the precise shape of the component, and therefore, not intended to limit the scope of the present invention.
In the following detailed description, various aspects of the present invention will be presented in the context of releasing stress in row bars during the fabrication of magnetic heads used in magnetic disk drives. While these inventive aspects may be well suited for this application, those skilled in the art will realize that such aspects may be extended to other applications. Accordingly, any reference to apparatuses and methods related to releasing stress in row bars during magnetic head fabrication processes, which are used in magnetic disk drives, is intended only to illustrate the various aspects of the present invention, with the understanding that such aspects may have a wide range of applications.
The slider is aerodynamically designed to fly above the magnetic disk 102 by virtue of an air bearing created between the surface of the slider and the rotating magnetic disk 102. This surface of the slider is referred to as an air bearing surface (ABS). The ABS is the portion of the slider surface which is closest to the rotating magnetic disk 102, which is typically the head 104. In order to maximize the efficiency of the head 104, the sensing elements (i.e., the read and write heads) are designed to have precise dimensional relationships to each other. In addition, the distance between the ABS and the rotating magnetic disk 102 is tightly controlled. The dimension that relates to the write function is known as the throat height and the dimension that relates to the read function is known as the stripe height. Both the stripe height and the throat height are controlled by lapping processes.
Lapping processes that are used for lapping row bars during the fabrication of magnetic heads, which are used in magnetic disk drives, can induce stresses in the heads which can cause the head to be damaged later unless corrected during the manufacturing process. The damage can occur because stressed magnetic heads are unstable and their shape can change after a finished magnetic head is installed in a hard drive. The magnetic head's shape can change because of instability, which results from stress built up. When this change occurs it is referred to as “POPPING” because the change is a permanent over coat protrusion (POP) that occurs on the surface of the head and resembles the magnetic head surface popping up. Therefore, as part of the manufacturing process, the stress built up in the head, which is a result of processes like lapping, is released in order to stabilize the head and avoid “POPPING” later.
Conventional methods of releasing these stresses involve annealing a magnetic head to induce “POPPING” and therefore remove the instability from the magnetic head. Further, since, after the rough lapping operation, the stripe and throat height of a magnetic head is approximately within 50 nm of the final target stripe and throat height of a finished magnetic head, the stress within row bars is released using high temperature annealing. However, using high temperature annealing on row bars of magnetic heads, after rough lapping, requires the row bars to be de-bonded from a lapping row tool because high temperature annealing can destroy the adhesive and mounted wire bond board.
UIT provides an alternative to high temperature annealing which does not require row bars to be de-bonded from the lapping row tool. In accordance with embodiments, UIT is used to relieve stresses in the surface and sub-surface of row bars immediately after rough a lapping process. Using UIT to relieve stress solves the problem of having to de-bond row bars post rough lapping to perform high temperature annealing. Although high temperature annealing after rough lapping has conventionally been used to relieve stress because it has historically been the most effective for head stability, extra process steps are needed, which increases the cost of post rough lap annealing. These extra process steps and higher costs are avoided when UIT is used to release stress. Using UIT to relieve stress in row bars increases the stability and performance of finished magnetic heads, as described with reference to
UIT is a processing technique that utilizes ultrasound to enhance the mechanical and physical properties of metals by applying ultrasonic energy to metal objects. UIT processing can be used to control residual compressive stress, grain refinement and grain size. UIT can also be used to reduce low and high cycle fatigue and address stress corrosion cracking, corrosion fatigue, as well as other metallurgic issues. UIT equipment used to process semiconductor wafers is described in detail with reference to
UIT can also be integrated into the post rough lap cleaning processes, accomplishing the dual purposes of (1) cleaning the row bars to remove slurry and lapping debris, and (2) inducing stresses in head materials that cause “POPPING,” which thereby eliminates the need to de-bond and then re-bond/re-wire the row bar to a tool for subsequent lapping operations. According to embodiments, ultrasonic (similar to UIT) technology is integrated into post rough lap cleaning process. When row bars are cleaned and subjected to the ultrasonic technology, which is similar to UIT, the write device and/or surrounding shield materials undergo “POPPING.” This “POPPING” of the write device relieves residual stress by allowing the device to protrude from the surface, where it is lapped off at the subsequent final lapping operation, preventing an accidental “POP” after the final lapping, which would likely lead to reliability failure. As explained with reference to
As used herein a stressed layer is used generally and can include a stressed layer on the surface of a work piece, a stressed sub-layer within a work piece, combinations of stressed layers on the surface of a work piece and/or stressed sub-layers within a work piece, or combinations of multiple stressed layers on the surface of a workpiece and/or multiple stressed sub-layers within a work piece.
Next in operation 206, the stressed work piece is immersed in a bath. The bath can be any liquid and can contain solvents. For example the liquid can be water and the solvents can include polar solvents (N-methylpyrrolidone (NMP), dimethyl sulfoxide (DMSO), dimethylacetamide (DMAc), dimethylformamide (DMF), tetrahydrofuran (THF), and acetone), alcohol (isopropanol (IPA), ethanol, and propanol, diethylene glycol), or etc. In one embodiment, the solvent is NMP. The work piece is immersed into the bath so that the portion of the work piece that is stressed is completely submersed in the liquid bath.
In operation 208, the stressed work piece is subjected to ultrasonic waves generated in the bath. Energy produced by a power source outputting energy at ultrasonic frequencies is delivered to the stressed work piece through the liquid bath. In some embodiments, the ultrasonic energy applied to the stressed work piece has a similar effect as work hardening the work piece. When the ultrasonic energy impacts the stressed regions of the work piece, the stress is released by the ultrasonic energy.
In one embodiment a 60 liter tank containing NMP solvent at a temperature of 25° C. is used. The ultrasonic waves are produced using two generators. The first generator supplies a first power ranging from 850 watts to 950 watts at a first frequency ranging from 55 KHz to 65 KHz and the second generator supplies a second power ranging from 850 watts to 950 watts at a second frequency ranging from 125 KHz to 135 KHz. In one example embodiment, the first generator operates at a first frequency of approximately 58 KHz and a first power of approximately 900 watts, which provides a first power density of approximately 15 watts/liter. The second generator operates at a second frequency of approximately 132 KHz and a second power of approximately 900 watts, which provides a second power density of approximately 15 watts/liter. In this exemplary embodiment, the work piece is subjected to a total dual frequency of approximately 58 KHz and 132 KHz and a total power of approximately 1800 watts, which provides a total power density of approximately 30 watts/liter. In this exemplary embodiment, the work piece is immersed in the NMP solvent bath and subjected to ultrasonic energy for approximately 25 minutes.
In operation 210, the work piece is removed from the bath. The work piece can be removed from the bath by lifting the work piece from the bath. The process ends in operation 212 when the work piece, which has been processed with UIT, is cleaned with de-ionized (DI) water and dried with hot air.
In operation 306, the substrate with at least one layer is subjected to a manufacturing process that causes the layer to become stressed and therefore unstable. If the substrate with at least one layer is a row bar attached to a substrate, then the manufacturing process can be lapping the row bar. The lapping process can induce stress on the row bar because lapping is a mechanical process that alters and removes materials as well as polishes the row bars causing stress to build up on the surface layers and sub-surface of the row bar. Other ways that a substrate with a layer can be stressed is by subjecting the substrate and layer to high or low temperatures or by forming layers of different materials and/or crystal structures over each other.
Next in operation 308, the substrate with stressed layer is immersed in a bath. The bath can be any liquid and can contain solvents. For example the liquid can be water and the solvents can include polar solvents (N-methylpyrrolidone (NMP), dimethyl sulfoxide (DMSO), dimethylacetamide (DMAc), dimethylformamide (DMF), tetrahydrofuran (THF), and acetone), alcohol (isopropanol (IPA), ethanol, and propanol, diethylene glycol), or etc. In one embodiment, the solvent is NMP. The substrate with stressed layer is immersed into the bath so that the stressed layer is completely submersed in the liquid bath. In operation 310, the substrate with stressed layer is subjected to ultrasonic waves generated in the bath. Energy produced by a power source outputting energy at ultrasonic frequencies is delivered to the stressed layer through the liquid bath. When the ultrasonic energy impacts the stressed layer, the stress is released by the ultrasonic energy.
In one embodiment a 60 liter tank containing NMP solvent at a temperature of 25° C. is used. The ultrasonic waves are produced using two generators. The first generator supplies a first power ranging from 850 watts to 950 watts at a first frequency ranging from 55 KHz to 65 KHz and the second generator supplies a second power ranging from 850 watts to 950 watts at a second frequency ranging from 125 KHz to 135 KHz. In one example embodiment, the first generator operates at a first frequency of approximately 58 KHz and a first power of approximately 900 watts, which provides a first power density of approximately 15 watts/liter. The second generator operates at a second frequency of approximately 132 KHz and a second power of approximately 900 watts, which provides a second power density of approximately 15 watts/liter. In this exemplary embodiment, the stressed layer is subjected to a total dual frequency of approximately 58 KHz and 132 KHz and a total power of approximately 1800 watts, which provides a total power density of approximately 30 watts/liter. In this exemplary embodiment, the stressed layer is immersed in the NMP solvent bath and subjected to ultrasonic energy for approximately 25 minutes.
In operation 312, the substrate and layer, which has had its stress released, is removed from the bath. The substrate and layer can be removed from the bath by lifting the substrate and layer from the bath. The process ends in operation 314 when the substrate and layer, which has been processed with UIT, is cleaned with DI water and dried with hot air.
Next in operation 410, permanent overcoat protrusion (POP) annealing is performed on the row bars that were lapped on the frontside and backside. The POP annealing operation can be performed by heating the row bars to temperatures of about 200° C. for about four hours. The POP annealing operation induces “POPPING” of the row bars, which can remove some of the instability currently in the magnetic head. The instability is a result of stresses on the row bars. In operation 412, row/wire bonding is performed on the annealed row bars. Next in operation 414, ASL rough lapping is performed on the row bars that were previously row/wire bonded.
In operation 416, the row bars are cleaned utilizing UIT. The cleaning/UIT operation, which is performed post rough lapping on the row bars, removes any excess materials left over from the lapping processes and releases stress built up on the row bars. In operation 416, the row bars are immersed into a liquid bath containing solvents. The liquid can be water and the solvents can include polar solvents (N-methylpyrrolidone (NMP), dimethyl sulfoxide (DMSO), dimethylacetamide (DMAc), dimethylformamide (DMF), tetrahydrofuran (THF), and acetone), alcohol (isopropanol (IPA), ethanol, and propanol, diethylene glycol), or etc. In one embodiment, the solvent is NMP. The row bars, which can have stressed layers, are immersed into the bath so that the stressed layers are completely submersed in the liquid bath. The row bars, including the stressed layers, are subjected to ultrasonic waves generated in the bath. Energy produced by a power source outputting energy at ultrasonic frequencies is delivered to the row bars, and the stressed layers, through the liquid bath. When the ultrasonic energy impacts the stressed layers, the stress is released by the ultrasonic energy.
In one embodiment a 60 liter tank containing NMP solvent at a temperature of 25° C. is used. The ultrasonic waves are produced using two generators. The first generator supplies a first power ranging from 850 watts to 950 watts at a first frequency ranging from 55 KHz to 65 KHz and the second generator supplies a second power ranging from 850 watts to 950 watts at a second frequency ranging from 125 KHz to 135 KHz. In one example embodiment, the first generator operates at a first frequency of approximately 58 KHz and a first power of approximately 900 watts, which provides a first power density of approximately 15 watts/liter. The second generator operates at a second frequency of approximately 132 KHz and a second power of approximately 900 watts, which provides a second power density of approximately 15 watts/liter. In this example embodiment, the stressed layer is subjected to a total dual frequency of approximately 58 KHz and 132 KHz and a total power of approximately 1800 watts, which provides a total power density of approximately 30 watts/liter. In this exemplary embodiment, the row bars, including any stressed layers, are immersed in the NMP solvent bath and subjected to ultrasonic energy for approximately 25 minutes. The row bars are then removed from the bath by lifting the row bars from the bath. The row bars can be further cleaned with DI water and dried with hot air.
Next in operation 418, final ASL rough lapping is performed on the row bars, which have been previously row/wire bonded, cleaned, and have been stressed relieved with the use of UIT. In operation 420, the row bars are de-bonded and cleaned. The process ends in operation 422 when the row bars are sent on for further processing.
UIT converts harmonic resonations of liquid bath 512, which can be acoustically tuned, into mechanical impulses that are imparted onto the surfaces of work pieces 522 being treated. The harmonic resonations of liquid bath 512 are energized by ultrasonic transducers (518 and 520). In the conversion process, the energizing first and second ultrasonic transducer (518 and 520) have a frequency determined by first and second ultrasonic wave generator (514 and 516), respectively.
In one embodiment, tank 510 is a 60 liter tank containing 60 liters of liquid bath 512. Liquid bath 512 can be made of water and solvents. The solvents can include polar solvents (N-methylpyrrolidone (NMP), dimethyl sulfoxide (DMSO), dimethylacetamide (DMAc), dimethylformamide (DMF), tetrahydrofuran (THF), and acetone), alcohol (isopropanol (IPA), ethanol, and propanol, diethylene glycol), or etc. In one embodiment, the solvent is NMP and the liquid bath 512 is maintained at a temperature of 25° C.
The ultrasonic waves are produced using two generators. First ultrasonic wave generator 514 supplies a first power ranging from 850 watts to 950 watts at a first frequency ranging from 55 KHz to 65 KHz and second ultrasonic wave generator 516 supplies a second power ranging from 850 watts to 950 watts at a second frequency ranging from 125 KHz to 135 KHz. In one exemplary embodiment, first ultrasonic wave generator 514 operates at a first frequency of approximately 58 KHz and a first power of approximately 900 watts, which provides a first power density of approximately 15 watts/liter. Second ultrasonic wave generator 516 operates at a second frequency of approximately 132 KHz and a second power of approximately 900 watts, which provides a second power density of approximately 15 watts/liter.
First transducer 518 and second transducer 520 can be piezoelectric transducers or magnetostrictive transducers. The choice of which transducer is used depends on several factors including the frequencies at which cleaning and stress release using UIT is chosen, and electrical efficiency of the system. Piezoelectric transducers are made of lead zirconate titanate or other piezoelectric material that expands and contracts when provided with the appropriate electrical frequency and voltage. Magnetostrictive transducers are electromagnets made of a heavy nickel or alloy core which is wound with wire. As electrical current is pulsed through the wires, the core vibrates at a frequency which matches the output frequency of the ultrasonic generator.
In an exemplary embodiment, the stressed layer is subjected to a total dual frequency of approximately 58 KHz and 132 KHz and a total power of approximately 1800 watts, which provides a total power density of approximately 30 watts/liter. In this exemplary embodiment, the work pieces 522, including any stressed layers, are immersed in the NMP solvent liquid bath 512 and subjected to ultrasonic energy for approximately 25 minutes. The work pieces 522 are then removed from the liquid bath 512 by lifting the work pieces 522 from the liquid bath 512. The work pieces 522 can be further cleaned with DI water and dried with hot air.
The various aspects of this disclosure are provided to enable one of ordinary skill in the art to practice the present invention. Various modifications to exemplary embodiments presented throughout this disclosure will be readily apparent to those skilled in the art, and the concepts disclosed herein may be extended to other devices. Thus, the claims are not intended to be limited to the various aspects of this disclosure, but are to be accorded the full scope consistent with the language of the claims. All structural and functional equivalents to the various components of the exemplary embodiments described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. §112, sixth paragraph, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for.”
Number | Name | Date | Kind |
---|---|---|---|
2591083 | Maier | Apr 1952 | A |
3535159 | Shiro | Oct 1970 | A |
5117589 | Bischoff et al. | Jun 1992 | A |
5268207 | Kruger et al. | Dec 1993 | A |
5335458 | Stoffers et al. | Aug 1994 | A |
5384989 | Shibano | Jan 1995 | A |
5516323 | Carlson et al. | May 1996 | A |
5607340 | Lackey et al. | Mar 1997 | A |
5718035 | Yamanaka et al. | Feb 1998 | A |
5739048 | Kerth et al. | Apr 1998 | A |
5745983 | Quintana et al. | May 1998 | A |
5820688 | Koppl et al. | Oct 1998 | A |
5987725 | Church et al. | Nov 1999 | A |
6075673 | Wilde et al. | Jun 2000 | A |
6093083 | Lackey | Jul 2000 | A |
6097575 | Trang et al. | Aug 2000 | A |
6125014 | Riedlin, Jr. | Sep 2000 | A |
6125015 | Carlson et al. | Sep 2000 | A |
6130863 | Wang et al. | Oct 2000 | A |
6137656 | Levi et al. | Oct 2000 | A |
6144528 | Anaya-Dufresne et al. | Nov 2000 | A |
6147838 | Chang et al. | Nov 2000 | A |
6151196 | Carlson et al. | Nov 2000 | A |
6162114 | Kobayashi et al. | Dec 2000 | A |
6178064 | Chang et al. | Jan 2001 | B1 |
6181522 | Carlson | Jan 2001 | B1 |
6181673 | Wilde et al. | Jan 2001 | B1 |
6202289 | Yoshimura et al. | Mar 2001 | B1 |
6229672 | Lee et al. | May 2001 | B1 |
6236543 | Han et al. | May 2001 | B1 |
6246547 | Bozorgi et al. | Jun 2001 | B1 |
6249404 | Doundakov et al. | Jun 2001 | B1 |
6257959 | Kobayashi et al. | Jul 2001 | B1 |
6261165 | Lackey et al. | Jul 2001 | B1 |
6312313 | Gee et al. | Nov 2001 | B1 |
6315636 | Yanagida et al. | Nov 2001 | B1 |
6330131 | Nepela et al. | Dec 2001 | B1 |
6339518 | Chang et al. | Jan 2002 | B1 |
6349017 | Schott | Feb 2002 | B1 |
6354912 | Osada et al. | Mar 2002 | B1 |
6373660 | Lam et al. | Apr 2002 | B1 |
6378195 | Carlson | Apr 2002 | B1 |
6398623 | Fukuroi et al. | Jun 2002 | B1 |
6433460 | Puskas | Aug 2002 | B1 |
6443813 | Strom et al. | Sep 2002 | B1 |
6522504 | Casey | Feb 2003 | B1 |
6531084 | Strom et al. | Mar 2003 | B1 |
6538850 | Hadian et al. | Mar 2003 | B1 |
6546355 | Matsushita | Apr 2003 | B2 |
6551438 | Tanemura | Apr 2003 | B1 |
6583953 | Han et al. | Jun 2003 | B1 |
6604989 | Yanagida et al. | Aug 2003 | B2 |
6646832 | Anaya-Dufresne et al. | Nov 2003 | B2 |
6661612 | Peng | Dec 2003 | B1 |
6662069 | Khlif | Dec 2003 | B1 |
6663817 | Chang et al. | Dec 2003 | B1 |
6665146 | Hawwa et al. | Dec 2003 | B2 |
6687976 | Koyama et al. | Feb 2004 | B1 |
6690545 | Chang et al. | Feb 2004 | B1 |
6704173 | Lam et al. | Mar 2004 | B1 |
6708389 | Carlson et al. | Mar 2004 | B1 |
6717773 | Hawwa et al. | Apr 2004 | B2 |
6721142 | Meyer et al. | Apr 2004 | B1 |
6722947 | Nishioka et al. | Apr 2004 | B2 |
6733377 | Adachi et al. | May 2004 | B2 |
6744599 | Peng et al. | Jun 2004 | B1 |
6771468 | Levi et al. | Aug 2004 | B1 |
6796018 | Thornton | Sep 2004 | B1 |
6801402 | Subrahmanyam et al. | Oct 2004 | B1 |
6802115 | Shiraishi et al. | Oct 2004 | B2 |
6802761 | Beaucage et al. | Oct 2004 | B1 |
6843705 | Boutaghou | Jan 2005 | B2 |
6856489 | Hawwa et al. | Feb 2005 | B2 |
6873496 | Sun et al. | Mar 2005 | B1 |
6912103 | Peng et al. | Jun 2005 | B1 |
6913509 | Sone et al. | Jul 2005 | B2 |
6916227 | Mahadev et al. | Jul 2005 | B2 |
6926582 | Beckle et al. | Aug 2005 | B2 |
6937439 | Chang et al. | Aug 2005 | B1 |
6942544 | Beaucage et al. | Sep 2005 | B2 |
6956718 | Kulkarni et al. | Oct 2005 | B1 |
6960117 | Mahadev et al. | Nov 2005 | B1 |
6972930 | Tang et al. | Dec 2005 | B1 |
6976302 | Itoh et al. | Dec 2005 | B2 |
6994608 | Tzeng et al. | Feb 2006 | B1 |
7006330 | Subrahmanyam et al. | Feb 2006 | B1 |
7006331 | Subrahmanyam et al. | Feb 2006 | B1 |
7010847 | Hadian et al. | Mar 2006 | B1 |
7014532 | Nishioka et al. | Mar 2006 | B2 |
7019945 | Peng et al. | Mar 2006 | B1 |
7027264 | Subrahmanyam et al. | Apr 2006 | B1 |
7049809 | Luo et al. | May 2006 | B2 |
7085104 | Hadian et al. | Aug 2006 | B1 |
7099117 | Subrahmanyam et al. | Aug 2006 | B1 |
7124497 | Olim et al. | Oct 2006 | B1 |
7165462 | Luo et al. | Jan 2007 | B2 |
7174622 | Meyer et al. | Feb 2007 | B2 |
7189150 | Zhan et al. | Mar 2007 | B2 |
7258151 | Nomura et al. | Aug 2007 | B2 |
7289299 | Sun et al. | Oct 2007 | B1 |
7307816 | Thornton et al. | Dec 2007 | B1 |
7315435 | Pan | Jan 2008 | B1 |
7315436 | Sanchez | Jan 2008 | B1 |
7414814 | Pan | Aug 2008 | B1 |
7436631 | Fanslau, Jr. et al. | Oct 2008 | B1 |
7467460 | Tan et al. | Dec 2008 | B2 |
7474508 | Li et al. | Jan 2009 | B1 |
7477486 | Sun et al. | Jan 2009 | B1 |
7562435 | Mahadev et al. | Jul 2009 | B2 |
7593190 | Thornton et al. | Sep 2009 | B1 |
7595963 | Chen et al. | Sep 2009 | B1 |
7616405 | Hu et al. | Nov 2009 | B2 |
7716811 | Seki et al. | May 2010 | B2 |
7729089 | Hogan | Jun 2010 | B1 |
7995310 | Pan | Aug 2011 | B1 |
8081400 | Hu | Dec 2011 | B1 |
8087973 | Sladek et al. | Jan 2012 | B1 |
8089730 | Pan et al. | Jan 2012 | B1 |
8164858 | Moravec et al. | Apr 2012 | B1 |
8199437 | Sun et al. | Jun 2012 | B1 |
8208224 | Teo et al. | Jun 2012 | B1 |
8218268 | Pan | Jul 2012 | B1 |
8240545 | Wang et al. | Aug 2012 | B1 |
8256272 | Roajanasiri et al. | Sep 2012 | B1 |
8295012 | Tian et al. | Oct 2012 | B1 |
8295013 | Pan et al. | Oct 2012 | B1 |
8295014 | Teo et al. | Oct 2012 | B1 |
8320084 | Shum et al. | Nov 2012 | B1 |
8325446 | Liu et al. | Dec 2012 | B1 |
8325447 | Pan | Dec 2012 | B1 |
8339742 | Sladek et al. | Dec 2012 | B1 |
8339747 | Hales et al. | Dec 2012 | B1 |
8339748 | Shum et al. | Dec 2012 | B2 |
8343363 | Pakpum et al. | Jan 2013 | B1 |
8345519 | Pan | Jan 2013 | B1 |
8418353 | Moravec et al. | Apr 2013 | B1 |
8441896 | Wang et al. | May 2013 | B2 |
8446694 | Tian et al. | May 2013 | B1 |
8456643 | Prabhakaran et al. | Jun 2013 | B2 |
8456776 | Pan | Jun 2013 | B1 |
8462462 | Moravec et al. | Jun 2013 | B1 |
8477459 | Pan | Jul 2013 | B1 |
8485579 | Roajanasiri et al. | Jul 2013 | B2 |
8488279 | Pan et al. | Jul 2013 | B1 |
8488281 | Pan | Jul 2013 | B1 |
8490211 | Leary | Jul 2013 | B1 |
8514522 | Pan et al. | Aug 2013 | B1 |
8533936 | Puttichaem et al. | Sep 2013 | B1 |
8545164 | Choumwong et al. | Oct 2013 | B2 |
8553365 | Shapiro et al. | Oct 2013 | B1 |
8587901 | Puttichaem et al. | Nov 2013 | B1 |
8593764 | Tian et al. | Nov 2013 | B1 |
8599653 | Mallary et al. | Dec 2013 | B1 |
8605389 | Pan et al. | Dec 2013 | B1 |
8611050 | Moravec et al. | Dec 2013 | B1 |
8611052 | Pan et al. | Dec 2013 | B1 |
8623197 | Kobsiriphat et al. | Jan 2014 | B1 |
8624184 | Souza et al. | Jan 2014 | B1 |
8665566 | Pan et al. | Mar 2014 | B1 |
8665567 | Shum et al. | Mar 2014 | B2 |
8665677 | Panitchakan et al. | Mar 2014 | B1 |
8665690 | Moravec et al. | Mar 2014 | B1 |
8693144 | Pan et al. | Apr 2014 | B1 |
8756795 | Moravec et al. | Jun 2014 | B1 |
8758083 | Rudy et al. | Jun 2014 | B1 |
8760812 | Chen et al. | Jun 2014 | B1 |
8770463 | Puttichaem et al. | Jul 2014 | B1 |
8773664 | Wang et al. | Jul 2014 | B1 |
8792212 | Pan et al. | Jul 2014 | B1 |
8792213 | Vijay et al. | Jul 2014 | B1 |
20030005573 | Shiraishi et al. | Jan 2003 | A1 |
20030056628 | Razon | Mar 2003 | A1 |
20050007699 | Ohno et al. | Jan 2005 | A1 |
20060027542 | Mahadev et al. | Feb 2006 | A1 |
20060265863 | Murakoshi | Nov 2006 | A1 |
20070119046 | Seki et al. | May 2007 | A1 |
20130244541 | Yaemglin et al. | Sep 2013 | A1 |
20130293982 | Huber | Nov 2013 | A1 |
Entry |
---|
http://en.wikipedia.org/wiki/Ultrasonic—impact—treatment, Ultrasonic Impact Treatment. Downloaded Oct. 18, 2012. |
Mark D. Moravec , et al. U.S. Appl. No. 13/537,018, filed Jun. 28, 2012, 17 pages. |
Mark D. Moravec, et al. U.S. Appl. No. 13/333/608, filed Dec. 21, 2011, 17 pages. |
Mark D. Moravec, et al. U.S. Appl. No. 12/617,569, filed Nov. 12, 2009, 24 pages. |