1. Field of the Invention
The present invention relates to electrically heated furnaces, and more particularly to electrically heated furnaces in which the heating within the furnace takes place as a result of an electric current that flows into a wall of the furnace.
2. Description of the Related Art
In furnace operations, high demands are often placed on the insulation of the heated volume. High demands are also placed on the requirement of uniform temperature distribution within the furnace in respect of different applications. In other words, the greatest acceptable temperature difference throughout the heated volume is often very low. In other applications, it is desired to check and control temperature distribution to a very high degree of accuracy in accordance with a predefined distribution.
Examples of such applications are furnaces for single crystal growth, diffusion furnaces and tube-like furnaces where electric current through the tube wall generates the thermal energy that heats the enclosed volume of the furnace. This heating of the furnace volume requires a high amperage input, which means that the devices through which electric current is taken into and out of the furnace must have a large cross-sectional surface area. The furnace may be a continuous conveyor furnace having open ends, or a furnace that fully encloses the furnace volume.
Tube-like furnace may consist of a tube to which current is supplied. The tube may include an internal ceramic lining. The tube may also be a process tube situated within a surrounding heating coil.
When a temperature gradient exists between the furnace and its surroundings, all devices that are in direct contact with the furnace surface will lead thermal energy away from the furnace to the colder surroundings. This thermal energy drain takes place from the point at which the device concerned is in contact with the furnace surface and is more effective the better the device conducts heat and the larger the contact surface is between said device and the furnace.
Examples of such devices include supports for holding the furnace in place, different measuring devices, and current outlets for supplying current to the furnace surface or leading current away from said surface. These devices are often made of metal and are therefore good heat conductors. When the device in question is a current input device, large electrical contact surfaces are often required due to the strong current required to heat the furnace to the desired temperature.
Typical working conditions for a given type of electrically-heated tube-like furnace include temperatures of from 500-1200° C. inclusive. At these temperatures, a typical highest acceptable deviation from the predetermined temperature distribution in the furnace is 10-20° C. When heating material for single crystal growth by diffusion, the temperature range may be 500-1400° C. with an accuracy of +/−0.1° C. The electric currents required to achieve such working temperatures are so strong as to require the use of relatively powerful current input devices.
Other types of furnaces may be heated in ways other than by supplying electrical energy to the furnace casing. Furthermore, different devices that do not normally conduct current may be applied to the furnace casing and thereby cause the punctiform flow of thermal energy from the heated furnace volume.
Accordingly, the present invention relates to a method of transmitting electric current to a furnace which is heated, either totally or partially, by current conducted in the furnace wall, and where electric current is conducted through devices lying against or connected to the furnace wall. At least one of said devices has close to the furnace wall a section whose cross-sectional area is smaller than the remaining part of the device in question. The electric current passing through said smaller cross-sectional area causes in said region of smaller cross-sectional area the development of heat that corresponds substantially or totally to the heat transfer that would have taken place from the furnace wall to the device in the absence of said smaller cross-sectional area.
The invention also relates to a furnace arrangement.
The invention will now be described in more detail partly in connection with the embodiments of the invention shown in the accompanying drawings, in which
The invention can as well be applied with a tube-like furnace for batch-wise heating of products, in which case the ends of the tube are closed during product heating operations. Furnaces of this nature may be used, for instance, in the manufacture of electronic circuits.
NiCr is a typical metal alloy used in furnace manufacture. However, this metal alloy spatters at high temperatures, due to material oxidation. This spattering influences the mass distribution of the furnace casing and therewith its electrical resistance. In turn, this makes control of the furnace temperature difficult to achieve as a result of the strength of the current applied. For this reason, FeCrAl is a preferred material in respect of tube-like furnaces according to the present invention, since this material does not splatter.
A number of electric current devices 2-6 are connected to the furnace casing, of which certain terminals 2-4 are current input devices and the remaining terminals 5,6 are current drainage or current discharge devices. Electric current is caused to flow into the furnace casing 1 through the current input devices 2-4 and to leave the tube-like furnace through the current drainage devices 5, 6, by applying an electric voltage across the current input devices 2-4 and the current drainage devices 5, 6. Because of the power developed in the furnace casing 1, the current will heat the enclosed furnace volume as a result of the electrical resistance in the casing 1.
The voltage across each pair of current input devices and current drainage devices can be adjusted individually, so as to enable the current therebetween to be controlled. This enables the object of being able to control heating of the enclosed furnace volume to be achieved, so that the magnitude of the heating effect will be different at different places along the longitudinal axis 9 of the furnace.
One problem with this construction is that heat is dissipated from the furnace casing 1 through the current input devices, since said devices are in direct contact with the furnace casing. This heat dissipation contributes to the disturbance of the predefined temperature distribution desired with regard to the enclosed furnace volume.
Instead of providing the current input device with a waist, the current density can be increased by removing material from the central part of said device, for instance by providing a hole therein.
The tube-like furnace can be held in a desired position with the aid of different types of supports (not shown in the figure). These supports lie in direct contact with the barrel surface of the furnace and therewith contribute to the drainage of thermal energy from the furnace surface 1 to the surroundings through the support surfaces in contact with the furnace housing 1, in much the same way as do the current input devices, resulting in a temperature imbalance in the heated furnace volume.
Similar to the electric current input devices 24, the supports can be made of an electrically conductive material and a voltage can be applied across the supports so as to cause current to flow therethrough, wherewith the applied current through the resistance effect will contribute to the flow of heat into the furnace housing 1 through the cross-sectional area of the supply. The net heat flow loss can be brought to zero, by regulating the applied voltage and by adjusting the cross-sectional area of the support. In a preferred embodiment, the electrical resistance of the support is influenced by providing the support in the proximity of its contact surface with the tubular casing 1 with a waist that has a smaller cross-sectional area than the remainder of the support. This waist contributes towards increasing the resistance of the support and thereby the subsequent flow of heat into the tubular housing. The supports and the current input devices may, of course, be integrated with one another.
The energy balance in the furnace will also be disturbed by other heat conducting elements that are in direct contact with the surface of the tube-like furnace. An electric current can be passed through all such devices, wherewith said current can be brought into thermal energy equilibrium with the furnace surface 1 in combination with appropriately chosen dimensions of said devices or said waists. Two such devices are referenced 7, 8 in the figure.
The geometrical shape of the contact surfaces of the current input devices 2-6 can be chosen selectively to suit the remaining conditions of the embodiment, provided that the geometrical shape is of an order of magnitude that enables the present objects to be achieved.
Although the invention has been described above with reference to a number of exemplifying embodiments, it will be understood that the design of the current input devices, the number of said devices, and the number of current drainage devices can be varied, as can also the design of said waists.
The present invention shall not therefore be considered to be restricted to the described embodiments, since variations can be made within the scope of the accompanying claims.
Number | Date | Country | Kind |
---|---|---|---|
0203844 | Dec 2002 | SE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE03/01886 | 12/4/2003 | WO | 00 | 3/25/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2004/057917 | 7/8/2004 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3271561 | Fiedler et al. | Sep 1966 | A |
3974561 | Schnoeller | Aug 1976 | A |
4247735 | Rigatti-Luchini | Jan 1981 | A |
4286142 | Taylor | Aug 1981 | A |
5239614 | Ueno et al. | Aug 1993 | A |
5869810 | Reynolds et al. | Feb 1999 | A |
Number | Date | Country |
---|---|---|
0 819 905 | Jan 1998 | EP |
Number | Date | Country | |
---|---|---|---|
20090020519 A1 | Jan 2009 | US |