In a wireless system a transmitting device typically sends a packet or frame to an intended receiving device that provides the receiver with the time in which a subsequent frame will be sent. The time defined in the frame is based on the local clock of the transmitter. The receiver then synchronizes its local clock to that of the transmitter's clock. Synchronization allows the receiver to turn on its CCA module at the proper time and receive the correct frame.
One example of the scheduling of data receipt or transmission is disclosed in the wireless Universal Serial Bus (USB) draft specification. The specification allows a host to send a micro-management control (MMC) frame to a device. The MMC frame schedules a time with the device whereby the host will receive from or transmit data to the device.
The MBOA (MultiBand OFDM Alliance) Wireless Medium Access Control (MAC) specification defines another form of clock synchronization for devices operating on the same channel. All devices send a beacon frame at a specified time. The beacons will not transmit at the same time when one or more device clocks have drifted away from the common time. All devices then synchronize to the device whose beacon is sent last, which corrects or compensates for the clock drift.
The accuracy of the WUSB and MBOA clock synchronization techniques are in the order of one microsecond or more. In some systems, however, this level of accuracy is not sufficient. For example, in time frequency interleaving (TFI) systems, a receiver operates in a particular TFI channel while other devices operate in other TFI channels. The frames from the other TFI channels can interfere with the frames transmitting over the particular TFI channel, resulting in simultaneous operating piconet (SOP) interferences. SOP interferences can result in clear channel assessment (CCA) detection failures.
In accordance with the invention, methods for synchronizing a receiver's clock to a sender's clock in a wireless system are provided. A sender transmits one or more frames to a receiver. The receiver either calculates a carrier frequency difference or a time difference using the one or more frames. A clock in the receiver is synchronized with a clock in the sender using the carrier frequency difference or the time difference.
The invention will best be understood by reference to the following detailed description of embodiments in accordance with the invention when read in conjunction with the accompanying drawings, wherein:
The following description is presented to enable one skilled in the art to make and use embodiments in accordance with the invention. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the generic principles herein may be applied to other embodiments. Thus, the invention is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the appended claims and with the principles and features described herein.
With reference to the figures and in particular with reference to
Field 204 is configured as a Start of Frame Delimiter (SFD) field. SFD indicates the start of frame 200. Fields 202, 204 form a PLCP (Physical Layer Convergence Protocol) preamble 206 in an embodiment in accordance with the invention.
Fields 208, 210, 212 form a PLCP header 214 in an embodiment in accordance with the invention. Field 208 is configured as a length field that indicates the length of the payload in bytes. Field 210 is a signaling field that indicates the rate or speed of the signal. Field 212 is configured as a frame check sequence that is used for error checking. Typically frame check sequence 212 includes a cyclical redundancy check (CRC). And finally, field 216 is configured as a payload or client data field.
Field 304 is configured as a start frame delimiter that indicates the start of frame 300. Fields 306, 308 are a destination address field and a source address field, respectively. The destination address field is used to identify the device or devices that receive frame 300. The source address field identifies the device that transmitted or sent frame 300.
Field 310 is configured as a length field that indicates the length in bytes of the data field 312. Field 314 is a frame check sequence that is used for error checking. Typically frame check sequence 314 includes a cyclical redundancy check (CRC).
Field 316 is a pad field that typically includes extra data bits that are added in order to bring the frame length up to a particular length. For example, under 802.3z standard, a MAC frame has a minimum length of 512 bytes. The extra data bits are used to provide carrier frequency difference information in an embodiment in accordance with the invention. Pursuant to the MBOA MAC-PHY interface specification 0v941, the PHY clock accuracy is represented by eight bits located at address 38(h) in static parameter coding. The clock accuracy is passed to the receiver's MAC controller as parameter “PHYClockAccuracy.”
Referring to
A subsequent frame is then received by the receiver, as shown in block 504. A timestamp is then associated to the subsequent frame (block 506). The timestamp indicates the time of the receiver's clock when the frame was received. The receiver then calculates a time difference using the two timestamps (block 508). The difference includes a guard time, the propagation time, and the clock synchronization differences in an embodiment in accordance with the invention. Using the calculated time difference the receiver synchronizes its clock to the sender's clock (block 510).
Referring to
For example, a sender transmits a MMC frame at block 600 in an embodiment in accordance with the invention. The MMC frame indicates to the receiver when a frame of USB data will be sent. The frame of USB data is the second frame received by the receiver at block 602. Based on the time difference between the time the receiver received the second frame and the time the receiver received the first frame, the receiver calculates the time difference.
In another embodiment in accordance with the invention, a sender transmits a MMC frame at block 600 in an embodiment in accordance with the invention. The MMC frame indicates to the receiver when a subsequent MMC frame will be sent. The subsequent MMC frame is the second frame received by the receiver at block 602. Based on the time difference between the time the receiver received the second frame and the time the receiver received the first frame, the receiver calculates the time difference.
The one or more frames include information regarding a time defined by local clock 714 in an embodiment in accordance with the invention. For example, in one embodiment in accordance with the invention the one or more frames are configured as MAC PHY frames. In other embodiments in accordance with the invention, the one or more frames are configured as MBOA MAC PHY frames or MMC frames.
PHY layer 716 in receiver 704 receives the frame or frames and MAC layer 718 determines a time difference or a carrier frequency difference using an embodiment shown in
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2006/050136 | 1/13/2006 | WO | 00 | 6/27/2008 |
Number | Date | Country | |
---|---|---|---|
60644078 | Jan 2005 | US | |
60676363 | Apr 2005 | US |