This invention is related to commonly owned U.S. Pat. No. 4,631,603 entitled “METHOD AND APPARATUS FOR PROCESSING A VIDEO SIGNAL SO AS TO BE ABLE TO PROHIBIT THE MAKING OF ACCEPTABLE VIDEO TAPE RECORDINGS THEREOF” which issued on Dec. 12, 1986; to U.S. Pat. No. 4,695,901 entitled “METHOD AND APPARATUS FOR REMOVING PSEUDO-SYNC PULSES AND/OR AGC PULSES FROM A VIDEO SIGNAL” which issued on Sep. 22, 1987; to U.S. Pat. No. 4,907,093 for METHOD AND APPARATUS FOR PREVENTING THE COPYING OF A VIDEO PROGRAM” which issued Mar. 6, 1990; to U.S. Pat. No. 4,819,098 for “METHOD AND APPARATUS FOR CLUSTERING MODIFICATIONS MADE TO A VIDEO SIGNAL TO INHIBIT THE MAKING OF ACCEPTABLE VIDEO TAPE RECORDINGS” which issued on Apr. 4, 1989; to U.S. Pat. No. 5,157,510 for “METHOD AND APPARATUS FOR DISABLING ANTI-COPY PROTECTION SYSTEM IN VIDEO SIGNALS USING PULSE NARROWING which issued on Oct. 20, 1992; to U.S. Pat. No. 5,194,965 for “METHOD AND APPARATUS FOR DISABLING ANTI-COPY PROTECTION SYSTEM IN VIDEO SIGNALS” issued on Mar. 16, 1993; to U.S. Pat. No. 5,625,691 for “METHOD AND APPARATUS TO DEFEAT CERTAIN COPY PROTECTION PULSES WITHIN A VIDEO SIGNAL” issued on Apr. 29, 1997; to U.S. Pat. No. 5,633,927 for “VIDEO COPY PROTECTION PROCESS ENHANCEMENT TO INTRODUCE HORIZONTAL AND VERTICAL PICTURE DISTORTIONS” issued on May 27, 1997; to U.S. Pat. No. 5,748,733 for “METHOD AND APPARATUS TO REDUCE EFFECTS OF CERTAIN COPY PROTECTION PULSES WITHIN A VIDEO SIGNAL” issued on May 5, 1998; to U.S. Pat. No. 5,661,801 for “METHOD AND APPARATUS FOR STABILIZING AND BRIGHTENING PRERECORDED TV SIGNALS ENCODED WITH COPY PROTECTION” issued on Aug. 26, 1997; to U.S. Pat. No. 4,336,554 for “CODE SIGNAL BLANKING APPARATUS” issued on Jun. 22, 1982 and to U.S. Pat. No. 5,583,936 for “VIDEO COPY PROTECTION PROCESS ENHANCEMENT TO INTRODUCE HORIZONTAL AND VERTICAL PICTURE DISTORTIONS” issued on Dec. 10, 1996. All of the above are incorporated by reference.
Also related is U.S. Pat. No. 4,163,253 for “METHOD APPARATUS FOR MODIFYING A VIDEO SIGNAL TO PREVENT UNAUTHORIZED RECORDING AND REPRODUCTION THEREOF” issued on Jul. 31, 1979.
1. Field of the Invention
The field of the invention is in the mechanisms and/or methods for defeating, removing, or reducing the effects of the video copy protection signals. These mechanisms are also used to synthesize and improve the performance of a video copy protection signal.
2. Description of the Prior Art
The Hollywood movie industry is very concerned about the unauthorized copying of movies and programs. As an example, on Sep. 17, 1997 Jack Valenti, President and Chief Executive Office of the Motion Picture Association of America stated “If you can't protect what you own—You don't own anything.” The U.S. Pat. No. 4,631,603, by Ryan, incorporated by reference, discloses a way to process an ordinary program video source to have copy protection. The copy protected video is viewable on a TV set but it produces a recording lacking any entertainment value. That is, the video programs that are not recordable suffer from artifacts ranging from low contrast to synchronizing problems. The '603 patent describes a method for “confusing” or causing misoperation of the AGC system in a videocassette recorder while not causing a black depression problem in a television receiver displaying the copy protected signal.
A Polish Patent Application (PL 304477 ('477)) by Tomasz Urbaniec entitled “Method and Device for Protecting Videophonic Recordings Against Unauthorized Copying” filed Jul. 28, 1994, hereby incorporated by reference, discloses a variation of the '603 patent by Ryan.
As is well known in the art, the videocassette system has a limited luminance frequency response, less than 2 MHz. A signal as described by Ryan recorded on a videocassette duplicating recorder with the AGC turned off (to avoid the effects of copy protection) will produce a video signal with pulse shapes modified by the limited frequency response of the duplicating recorder. Since there is no gap between the pseudo sync pulses and the AGC pulses of Ryan, the AGC system of a home duplicating recorder will respond to the combination of the pseudo sync pulses and the AGC pulses.
The limited bandwidth of the recording VCR responds slightly differently to the combination of pseudo-sync and AGC pulses separated by a time gap of 0.5 μseconds to 2.0 μseconds. If the time gap is as low as 0.5 μseconds, the limited bandwidth of the recording videocassette recorder distorts the time gap to effectively remove it and the effectiveness of the copy protection is essentially the same as that achieved by Ryan. As the gap widens, the effectiveness of the copy protection is reduced or removed.
To defeat the copy protection process, there are a number of known ways such as attenuating, blanking, narrowing, level shifting, modifying and/or clipping the copy protection pulses as described in U.S. Pat. Nos. 4,695,901 ('901), 4,336,554 ('554), 5,157,510 ('510), 5,194,965 ('965), 5,583,936 ('936), 5,633,927 ('927), 5,748,733 ('733) and 5,661,801 ('801) cited above and hereby incorporated by reference.
In the patents mentioned above, the AGC and/or sync or pseudo sync pulses (see U.S. Pat. No. 4,695,901) are changed in amplitude, changed in level relative to normal sync pulses, and/or changed in pulse width, so as to allow a satisfactory recording.
In particular, U.S. Pat. Nos. 5,194,965 and 5,157,510 disclose narrowing of the AGC and/or pseudo sync pulses so that the record VCR does not sense these narrowed added pulses and thus, makes a satisfactory copy.
To defeat the anti-copy signal, the present invention discloses a method and apparatus utilizing pulse position and pulse width modulation of the AGC and/or sync or pseudo sync pulses. The invention also discloses the insertion of a sufficiently wide time gap between the AGC and/or pseudo sync pulses such that the record VCR will respond to or sense the sync or pseudo sync pulses but still will allow for a recordable copy.
The copy protection defeating mechanisms of this invention can also be used in combination with any of the defeat inventions mentioned above. For example, to defeat the copy protection process, one can shift (delay) the AGC pulse by about 1.5 μseconds away from the preceding pseudo sync pulse and then trim the trailing edge of the preceding pseudo sync pulse by 0.6 μsecond. Thus a gap of about 2.1 μseconds exists between the trailing edge of the trimmed pseudo sync pulse and the leading edge of the delayed AGC pulse. If this gap is, for example, near blanking level for 2.1 μseconds, then the VCR will sample the voltage in the gap instead of the added AGC pulses for its AGC amplifier. By sampling this gap voltage near blanking level, the copy protection signal is then nullified. Alternatively, the gap voltage level may be set above or below blanking level. It is important to note that by simply delaying or shifting the position of the leading edge of the AGC pulse relative to the trailing edge of the pseudo sync pulse, the gap between the pseudo sync pulses and the AGC pulses will nullify or partially nullify the effects of the AGC copy protection signal. It is also possible to create this gap in other ways such as moving the trailing edge of pseudo sync pulse away from the leading edge of the upcoming AGC pulse, or some combination of moving the position of both the AGC pulse and pseudo sync pulse to form a gap that would defeat the copy protection process. Typical gap durations of 1.5 μseconds or more have proved effective in defeating the copy protection signal. Compounding the narrowing of the pseudo sync pulses and/or AGC pulses with this gap further enhances defeating the copy protection signal.
It should be noted that the defeat method as described above can be varied and then used as a copy protection signal. By dynamically varying the gap from zero to greater than 1.5 μseconds between the trailing edge of the pseudo sync pulse relative to the leading edge of the upcoming AGC pulse, a new copy protection signal is made to effectively mimic the Ryan '603 patent with amplitude modulated AGC pulses. By varying the gap via position modulation of the pseudo sync pulses relative to the AGC pulse or vice versa, or dynamically narrowing or changing the pulse width of the added pulses (AGC pulse and/or sync or pseudo sync pulse), an easier copy protection implementation is possible in the digital domain and/or analog domain. Today's digital domain is the format of choice for implementing copy protection in cable systems and the like (i.e. digital versatile disc players). The range of pulse widths can be for example, between about 50% to 100% of the normal pulse widths (i.e. the pseudo sync pulse normal widths are about 2.3 μseconds and the AGC normal widths are about 2.3 μseconds to 3 μseconds depending on how many added pulses are in a television (TV) line).
In general the copy protection process of the invention may start having the added pulse pairs as for example in
The method of using relative position modulation between the sync and AGC pulses for defeating and/or synthesizing a copy protection signal can be applied to the copy protection pulses within or around a horizontal blanking interval. The method can also be combined with narrowing any portion of the added pulses.
In order to produce a further effective copy protection signal, a variation of the U.S. Pat. No. 4,631,603 has been developed. To this end, the AGC pulses also are amplitude modulated from full amplitude to zero and vice versa over the period of for example about 20 to 30 seconds. As a result, the illegal copy will have constantly changing brightness levels. This causes more annoyance when compared to a constant dim picture (when the AGC pulses are static and at full amplitude).
a illustrates a the basic anticopy process consisting of AGC and pseudo sync pulses;
b illustrates the Urbaniec modification to the basic anticopy process consisting of AGC and pseudo sync pulses;
a to 5e illustrate the waveforms generated at various points in the circuit of
a to 6E illustrate several waveforms related or generated by the circuit of
a to 7e illustrate the relevant waveforms that are generated at various points in the circuit of
a and 8b illustrate position delay or modulation of the raised back porches as mentioned in '098 which can be used as a defeat process or as a copy protection signal. By varying the gap between the trailing edge of (horizontal) normal sync pulses and their raised back porch AGC pulses, the VCR will respond to these as if the raised back porch AGC pulses are being amplitude modulated up and down, which results in yet another dynamic copy protection process of the invention;
a illustrates a prior art copy protection signal.
As previously discussed,
For a new copy protection signal that is dynamically varied from on to off, one technique of the invention starts for example, with several seconds of the waveform D of
In
The waveform D′ of
Alternatively, by employing narrowed pseudo sync pulses and/or AGC pulses that are varied in width,
a through 5e illustrate the waveforms generated at different locations of
a to 6e show the result of this kind of narrowing.
One method for generating position modulated AGC pulses is to induce pulse width modulation on an inverted pseudo sync pulse signal and then trigger off the trailing edge of this pulse width modulated inverted pseudo sync pulse signal to generate AGC pulses. To this end, the output of AND gate 96 triggers a voltage controlled one shot timer 98 on the leading edge of an “inverted” pseudo sync pulse signal. The output (c) of one shot timer 98 is a pulse with a minimum width of the output of AND gate 96, and a maximum pulse width of 1.5 μseconds (or more) than its minimum pulse width. For example if the output of AND gate 96 has a pulse width of 2.3 μseconds, then the output of one shot timer 98 has pulse widths that vary according to voltage control VC1 from 2.3 μseconds to at least 2.3 μsecond+1.5 μseconds or at least 3.8 μseconds. The output of one shot timer 98 is OR'd by an OR gate 100 with the output of AND gate 96 to ensure that the output (d) of OR gate 100 has a minimum width of the “inverted” pseudo sync pulse from the AND gate. The output of the OR gate 100 triggers on the trailing edge to output AGC pulses whose widths can be controlled voltage wise via a voltage control VC2 supplied to a voltage controlled one shot timer 102. The output of one shot timer 102 then provides AGC pulses that are varying in delay from the pseudo sync pulses' trailing edge on the order of from zero to at least 1.5 μseconds. The output of one shot timer 102 (AGC pulses) is fed to a summing amplifier 104 along with the input video signal. The output of the inverted pseudo sync pulse from AND gate 96 is negatively summed with the output of amplifier 104 via a (negative) summing amplifier 106. The output (e) of amplifier 106 then has position modulated AGC pulses relative to the pseudo sync pulses and is thus a dynamic copy protection signal.
Note
a, 8b illustrate that the circuit of
It should be noted that the copy protection process of the present invention can have position, pulse width and/or gap width modulation, and/or amplitude modulation, done on individual pseudo sync pulses, horizontal sync pulses, AGC pulses or raised back porch AGC pulses, over time from maximum separation (defeated copy protection) to minimum separation (full copy protection). For instance if there are 40 added pulse pairs of normal pseudo sync pulses and AGC pulses, one can in any combination slowly increase the separation between the AGC pulses and pseudo sync pulses in any number of pulse pair(s) at a time or all of them at a time until sufficient pulse pairs of copy protection pulse pairs have maximum separation to turn off copy protection. Additionally, one can in any combination slowly decrease the separation from maximum separation (defeated copy protection) to minimum separation (full copy protection).
As a further example, copy protection signals can be applied throughout the vertical blanking interval and its vicinity, and the copy protection signals can include different amounts of added pulses per video line. In one embodiment for example, a single pseudo sync pulse and/or AGC pulse in a video line can be modulated. As previously mentioned, the AGC or raised back porch AGC pulses also can be amplitude modulated in combination with the above-mentioned processes.
a depicts a waveform of a prior art copy protection signal.
Also it is possible to use the techniques described for
Referring to
Although the invention has been described herein relative to specific embodiments, various additional features and advantages will be apparent from the description and drawings, and thus the scope of the invention is defined by the following claims and their equivalents.
The present application is a divisional application of U.S. patent application Ser. No. 09/388,296, filed Sep. 1, 1999 now U.S. Pat. No. 6,836,549.
Number | Name | Date | Kind |
---|---|---|---|
4163253 | Morio et al. | Jul 1979 | A |
4336554 | Okada et al. | Jun 1982 | A |
4631603 | Ryan | Dec 1986 | A |
4695901 | Ryan | Sep 1987 | A |
4697211 | Balaban et al. | Sep 1987 | A |
4698679 | Balaban et al. | Oct 1987 | A |
4819098 | Ryan | Apr 1989 | A |
4888649 | Kagota | Dec 1989 | A |
4907093 | Ryan | Mar 1990 | A |
4933774 | Ishimaru | Jun 1990 | A |
5155767 | Noller | Oct 1992 | A |
5157510 | Quan | Oct 1992 | A |
5194965 | Quan et al. | Mar 1993 | A |
5305109 | Harford | Apr 1994 | A |
5339114 | Lagoni et al. | Aug 1994 | A |
5394470 | Buynak et al. | Feb 1995 | A |
5402488 | Karlock | Mar 1995 | A |
5410364 | Karlock | Apr 1995 | A |
5418835 | Frohman et al. | May 1995 | A |
5583936 | Wonfor et al. | Dec 1996 | A |
5625691 | Quan | Apr 1997 | A |
5633927 | Ryan et al. | May 1997 | A |
5661801 | Sperber | Aug 1997 | A |
5748733 | Quan | May 1998 | A |
5815630 | Sato | Sep 1998 | A |
5864591 | Holcombe | Jan 1999 | A |
5907655 | Oguro | May 1999 | A |
5953417 | Quan | Sep 1999 | A |
6041158 | Sato | Mar 2000 | A |
6058191 | Quan | May 2000 | A |
6173109 | Quan | Jan 2001 | B1 |
6188832 | Ryan | Feb 2001 | B1 |
6191725 | Lavoie | Feb 2001 | B1 |
6295360 | Ryan et al. | Sep 2001 | B1 |
6404889 | Ryan et al. | Jun 2002 | B1 |
6459795 | Quan | Oct 2002 | B1 |
20010026617 | Wonfor et al. | Oct 2001 | A1 |
20010038422 | Yamada et al. | Nov 2001 | A1 |
20040047469 | Ryan et al. | Mar 2004 | A1 |
Number | Date | Country |
---|---|---|
304477 | Feb 1996 | PL |
2007052 | Jan 1994 | RU |
2014746 | Jun 1994 | RU |
WO 9715142 | Apr 1997 | WO |
WO 9716022 | May 1997 | WO |
WO 0013413 | Mar 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20050117749 A1 | Jun 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09388296 | Sep 1999 | US |
Child | 10970895 | US |