In early drug discovery, high-content screening is a mainstream approach that uses high-resolution imaging techniques and fluorescent dyes to acquire information-rich images of cells on two-dimensional slides [1-3]. (It is noted that the bracketed numbers refer to publications listed in the Appendix to this specification). High-content screening and high-content analysis of the images yields micro-scale and targeted information about the action of the drug on the cells. Information such as cell shape, membrane integrity, mitochondrial membrane polarization, ATP concentrations, cytoskeletal structure, organelle density, nuclear shape, nuclear membrane integrity, among many other possibilities are extracted by the high-content analysis. Because many of the dyes or fluorophores are targeted at molecular targets, the information can be molecularly specific [4-6].
For the past decade the major pharmaceutical companies have invested heavily in target-based drug discovery, but with disappointing returns and fewer-than-expected discoveries (with some notable exceptions like Gleevec [7, 8]). Target-based drug discovery is a bottom-up approach that starts with specific molecular targets in signaling pathways and develops drugs that enhance or inhibit that target to produce desired downstream effects. The greatest problem with this approach is the probability of off-target effects of the drug that ultimately prevent its clinical use.
The opposite of target-based drug discovery is phenotypic profiling that measures the broad-spectrum cellular response to drugs. In a recent study of all drugs approved by the FDA since 1999, it was found that ⅔ of those approved were developed through phenotypic profiling and only ⅓ by target-based approaches [9]. Two-dimensional monolayer cultures are the current industry standard for phenotypic profiling. But the deficiencies of this approach are well known, such as the wrong dimensionality, the wrong cell shapes, and the subsequent modified biochemistries that are not representative of natural tissues and that lead to non-representative drug responses [10, 11].
Despite the high information content that can be extracted from high-resolution microscopy images, pharmaceutical screening in two-dimensional cell culture format has reached a barrier to further progress. Biology is an intrinsically three-dimensional phenomenon, with cells in tissues having essential three-dimensional environments [11-22]. The three-dimensional environmental context is lost in two-dimensional cell culture and monolayers, which modifies cellular response to applied drugs. It is now known that cells in 2D do not behave as cells in 3D tissues, with different genetic expression profiles [23-25], different intercellular signaling [26-29], and different forces attaching them to their environment [30-32]. Therefore, understanding relevant biological functions requires the capture of dynamical processes and motions in three dimensions. The challenge has been to find an imaging technique that is optimally sensitive to motion instead of (or in addition to) structure, and that also is able to extract information from inside tissue far from surfaces.
Holographic optical coherence-domain imaging (OCI) provides the required depth capability [33, 34], motility contrast imaging (MCI) provides the sensitivity to cellular motions [35, 36], and tissue dynamics spectroscopy (TDS) and tissue dynamics imaging (TDI) provides signatures of dynamic cellular functions [37, 38]. The holographic capture of depth-resolved images from optically-thick live tissues has evolved through several stages, from optical coherence imaging (OCI) to motility contrast imaging (MCI) and fluctuation spectroscopy (TDS) and now to tissue dynamics imaging (TDI) as disclosed herein.
Optical coherence imaging uses coherence-gated holography to optically section tissue up to 1 mm deep [39, 40]. It is a full-frame imaging approach, closely related to en face optical coherence tomography [41, 42], but relies on high-contrast speckle to provide high sensitivity to motion [43]. The first implementations of OCI used holographic recording media [44] such as photorefractive quantum wells [45] to capture the coherent backscatter and separate it from the diffuse background. Digital holography [46-49] replaced the recording media and has become the mainstay of current implementations of OCI [50]. Highly-dynamic speckle was observed in OCI of living tissues caused by intracellular motions [35], and was used directly as an endogenous imaging contrast in motility contrast imaging that could track the effects of antimitotic drugs on tissue health [36]. A system for holographic OCT is described in co-pending U.S. application Ser. No. 12/874,855, published on Dec. 30, 2010, as Pub. No. 2010/0331672, entitled “Method and Apparatus for Motility Contrast Imaging”, and in co-pending U.S. application Ser. No. 13/704,464, published on Apr. 18, 2013, as Pub. No. 2013/0088568, entitled “Digital Holographic method of Measuring Cellular Activity and of Using Results to Screen Compounds”. The disclosures of both applications are incorporated herein by reference in their entirety.
Motility contrast imaging is a form of dynamic light scattering (DLS) in tissues. DLS is performed as quasi-elastic light scattering (QELS) when light is predominantly singly-scattered, and as diffusing-wave spectroscopy (DWS) [51, 52] or diffusing correlation spectroscopy (DCS) [53] when light is multiply scattered. QELS has been applied mainly to single cells or monolayer cultures to study motion in the nucleus [54], the cytosol [55], cell motion [56] and membrane fluctuations [57]. DWS and DCS probe deeply into tissue and have been used to study actin filament networks [58], imaging dynamic heterogeneities [59], and brain activity [60]. Systems and methods for performing motility contrast imaging are described in co-pending application Ser. No. 12/874,855, entitled “Method and Apparatus for Motility Contrast Imaging”, already incorporated herein by reference above.
A key question concerning the drug-response spectrograms obtained by biodynamic imaging is how much information is contained in these spectrogram data structures. There are many types of intracellular motions, including organelle transport, endo- and exo-cytosis, membrane undulations, cytoplasmic streaming, cytoskeletal rearrangements, force relaxation and shape changes, among others. While general trends in the spectrograms are understood in terms of these types of motion, it is necessary to establish how much information can be obtained from tissue dynamics spectroscopy. In addition, most of the work-flow of the pharmaceutical industry in early drug discovery is expressed in the language of microscopic high-content screening and analysis. Therefore, while biodynamic imaging extracts high information content from three-dimensional tissue, it has not been expressed in the same data format (or language) that is required to make decisions on lead selection in drug discovery.
A method is provided for translating tissue dynamics spectrograms from biodynamic imaging into the language of high-content analysis that is suitable for decision making in lead selection. In one aspect, the method includes collecting conventional high-content data in tandem with 3-D tissue-dynamics spectrograms and then creating a functional translator matrix that produces conventional high-content data using the 3-D biodynamic data as input.
Informatics Methodology
Phenotypic Vector Spaces
A phenotypic profile includes a vector array of quantitative measurements of a number of properties or features of cells or tissues responding to an applied stimulus
|Vi>; i=1:P
where |Vi> is the i-th component of the feature vector with the index varying from 1 to P for P features. The symbolic notation in the expression combines bracket notation with contravariant vector notation. The index i that appears as a superscript denotes a column (contravariant) vector with contravariant row index i. The transpose of the foregoing equation is a row (covariant) vector denoted as <Vi| with covariant column index i. The bracket notation is borrowed from quantum mechanical theory because it provides a transparent way of constructing projection operators that will be used to project from one phenotypic space to another. The contravariant-covariant notation is borrowed from tensor analysis because it makes it easy to denote inner and outer products of vectors to construct the projection operator.
In high-content drug screening, the properties i=1:P can relate to morphological properties of cellular constituents, to densities, to functional properties such as mitochondrial membrane polarization, and to dynamic behavior, among others. The dimension of the phenotypic vector space is equal to the number of properties P. A phenotypic panel includes a set of feature vectors obtained across a panel of compounds or conditions
|Vmi>; m=1:M
for the index m varying from 1 to M compounds or conditions. The values of |Vmi> are usually arranged as M column vectors of length P, e.g., as a P by M matrix.
The feature vector space has dimension P, but the coordinate axes are not orthogonal. In other words, the features are not in general independent and have correlations among them. For instance, the covariance matrix for a phenotypic panel |Vmi> is given by
where the μi are the mean values of the i-th feature averaged across the conditions indexed by m. The off-diagonal terms of the covariance matrix are in general non-zero. The covariance matrix participates in multivariate statistical analyses such as principal component analysis and canonical correlation analysis. It is central to the process of dimensionality reduction by helping to identify the smallest number of properties, or combinations of properties, that capture most of the independent behaviors of the system.
Density Matrix
Features measured by high-content image analysis of 2D culture are substantially different than the features obtained from tissue dynamics spectroscopy (TDS). Furthermore, the experimental conditions are very different. In the case of high-content analysis (HCA), individual cells on plates are imaged using fluorophores specific to the nucleus and mitochondria. In the case of TDS, on the other hand, the cells are within tissues, and intracellular motions constitute the label-free imaging contrast. Both techniques measure physiological properties of the cells and tissues responding to the applied compounds. Therefore, it is important to explore whether HCA and TDS features relate to the same physiological processes.
The feature vectors for HCA are expressed as |Vma> and for TDS as |Vmb> where the index m spans across M compounds. The dimension of the HCA space is A, and the dimension of the TDS space is B. The feature vectors are used to construct a projection operator, also known as a density matrix, which projects from one space to another and back. The projection operator that projects from the TDS space to the HCA space is
{{circumflex over (p)}ba}m=|Vma><Vbm|
for the compound m. This A-by-B dimensional matrix is the outer product of the HCA and the TDS feature vector for the mth compound. The goal is to find a mapping that is consistent across a broad selection of compounds, and ideally across several cell lines. To construct an average mapping, a reduced projection operator is generated as the partial trace over the compounds
The reduced density matrix {circumflex over (p)}ba is the desired translation (or projection) matrix between the TDS and the HCA spaces.
Back-Projection Method
For a given compound m that has a TDS feature vector |Vmb> the back-projected HCA feature vector |Vma> for that compound is projected to be
|Vma>={circumflex over (p)}ba|Vmb>
This can be applied to each compound m to reconstruct the A-by-M matrix of HCA feature vectors. In this last equation, the reduced projection operator is the general mapping that translates the TDS feature vector into a corresponding HCA feature vector. In general, back-projection maps a higher-dimensional space to a lower-dimensional space such that B>A when the dimension of the TDS space is larger than the dimension of the HCA space.
The projection operator approach is strictly accurate only if there is a unique projection from one space to the other. However, in biological phenotypic assays, there may be features in one assay that are missed by the other, and there are often strong correlations among features within an assay. Therefore, the projection operator approach must be incomplete when translating between two assay formats, as between TDS and HCA. The question then arises how faithfully the translation matrix captures the relationships between the two assays.
Theoretical Basis of Phenotypic Back-Projection
The theoretical basis of the method disclosed herein for translating from biodynamic imaging spectrograms to conventional high-content data formats is depicted schematically in
The specific experimental details of BDI and HCA convert the features of physiological space into measurement features. This is represented by a generalized rotation matrix B for BDI and A for HCA. These transformations take, as input, features from both the dependent and independent spaces. Depending on what is measured, not all features from the physiological space are sampled. The resultant of these transformations is a measured set of dynamic features and a measured set of morphological or molecular features. Because of the correspondence of some of the features in physiological space through the transformation R, there is a correspondence among the measured feature vectors represented by the translation matrix T. The goal of the method disclosed herein is to determine the translation matrix T that allows translation from the BDI feature vectors to HCA feature vectors that fit into the work-flow and decision-making of lead selection in drug discovery.
To test the fidelity of the back-projection, consider two subspaces of eigenvectors for each of |Vma> and |Vmb>. One subspace is the dependent subspace in which as |Vma′> and |Vmb′> are related through the real-valued unitary rotation operator Rb′a′
|Vma′>=Rb′a′|Vmb′>
The second subspace is independent, denoted by double-primed indices, and have no correlations between |Vma″> and |Vmb″>, such that
where the average is over many compounds or conditions denoted by the index m. The first term is the rotation matrix. The other three terms have residual non-zero values that are of order (1/√{square root over (M)}) which reflects the random and independent character of the subspaces. (Note: all vectors must be zero-averaged and normalized for this square root dependence).
The observables for |Vma> and |Vmb> are denoted by superscripts p and q, respectively. The observables are linear combinations of the observables in the dependent and independent subspaces through
a
p
=A
j
p
a
j
b
q
=B
k
q
a
k
for j={a′, a″} and k={b′, b″} where j spans both the dependent as |Vma′> subspace and the independent as |Vma″> subspace, and k spans the dependent |Vmb′> subspace and the independent |Vmb′> subspace. The transformations Ajp and Bkq are not complete and generally non-invertible. This non-completeness means that not all eigenvectors that span a space are included in the observables (certain responses are missed). Furthermore, the non-invertibility means that some observables carry information that is partially redundant with other observables.
For a compound or condition m, the inner product between feature vectors of the two spaces is
<bqm|amp>=Aa′pBqb′<Vb′m|Vma′>+Aa′pBqb′<Vb″m|Vma′>+Aa″pBqb′<Vb′m|Vma″>+Aa″pBqb″<Vb″m|Vma″>
By using the relations in Equations 1 above after summing over a large number M of compounds and conditions, this generates the translation matrix
where the inner products among the non-correlated subspaces vanish to lowest order, and the translation matrix is equal to the reduced density operator. The residuals fall under two types. Random residual correlations are of order O(1/√{square root over (M)})). These can be made arbitrarily small by averaging over a large set of compounds and conditions. The other residual is not random and is related to the size of the independent components A″ and B″ relative to the total sizes A and B of the feature vectors. This residual cannot be reduced by increasing the number M, but depends on the relative contributions of the independent subspaces to the defined feature vector elements.
The translation matrix Tqp is not in general unitary, even though Rb′a′ is unitary, because Aa′p and Bqb′ are not complete and generally may be non-invertible and non-square matrices. If they were complete and invertible, then the translation would have perfect fidelity in the limit that the number of compounds tested M goes to infinity.
However, in the experimental situation between TDS and HCA the fidelity will be less than unity because of the finite number of compounds. The question is: how much less? The fidelity of the translation matrix is defined experimentally as
F=<a
p
|T
q
p
|b
q>m
where ap and bq are the experimentally measured feature vectors, and Tqp is obtained from the experimental correlations. Because the transformations are not complete and generally may be non-invertible, the transformation must be from the larger assay space to the smaller assay space. Since the TDS is larger, the translation matrix is constructed to translate a TDS feature vector into an HCA feature vector.
The theoretical model depicted in
Materials and Experimental Methods
Cell Lines and Spheroids
HT-29 and DLD-1 cells are products of American Type Culture Collection. DLD1 cells were grown in RPMI-1640 medium with 10% fetal bovine serum. HT-29 cells were grown in McCoy's 5A modified medium. Both cells were grown at 37° C. in a humidified 5% CO2 atmosphere. To form tumor spheroids [61-63], cells were first grown in cell flasks, then moved to a rotating drum incubator where the cells were suspended in a pure growth medium environment. The medium was refreshed every other day. The cells form optimal experimental size (300 μm-800 μm in diameter) spheroids in the incubator in about 1 week for the DLD-1 cell line and about 4 weeks for the HT-29 cell line.
To perform biodynamic imaging experiments, the tumor spheroids were loaded into S-well Lab-Tek chamber slides (Lab-Tek® II Chamber Slide System). Low-temperature porous agarose was applied to immobilize the tumor spheroids when planted in the chamber slide. The agarose powder from Sigma-Aldrich Inc. was mixed with stock growth medium without serum. The solution concentration was 1% by weight. The agarose solution was first warmed and then cooled to 37° C. The tumor spheroids were moved from the incubator to the chamber slide wells covered with growth medium, then the agarose solution was added to the chamber slide wells and fully mixed. As soon as the agarose gelled, serum and growth medium were added to the wells. Each well contained about 5 to 20 spheroids. The prepared chamber slide was placed on a temperature-stabilized plate on the biodynamic imaging system, and the experiments were performed at 37° C.
Mito Compounds
Mitochondrial dysfunction is a central concern in the development of new drug entities because mitochondrial toxicity is one of the main off-target effects that leads to drug failures in clinical trials [64]. There are many known mitochondrial toxins that work through different mechanisms. Valinomycin is a potassium ionophore that suppresses the mitochondrial membrane potential (MMP) without adversely affecting the viability, while accompanied by an increase in mitochondrial motility [65]. FCCP is a well-studied mitochondrial uncoupler that permeabilizes the mitochondrial membrane to proton transport that also has a minor effect on cellular viability. Nicardipine is a calcium-channel blocking agent that increases the MMP, and decreases intracellular calcium that is accompanied by increased mitochondrial motility [66]. Ionomycin is a potent calcium ionophore that disables MMP accompanied by extinguished mitochondrial motility in astrocytes [67, 68] and cell death. Each of these drugs affects the mitochondria and cellular viability by different mechanisms that are expected to lead to different TDS drug-response signatures.
Raf Kinase Inhibitors
Contrasted to mitochondrial toxins, signaling-pathway inhibitors have more subtle effects on cellular physiology, and many perform as cyotostatic drugs rather than as cytotoxic drugs. Somatic point mutations in BRAF occur in approximately 8% of human tumors [70, 71], and in colon cancer it is as high as 12% [72]. A single glutamic acid for valine substitution at codon 600 (V600E) is present in approximately 90% of BRAF mutations and are associated with poor survival. These patients may be expected to respond to Raf inhibitors [72]. Sorafenib (Nexavar) was the first RAF inhibitor approved by the FDA. However, it is not highly selective to Raf and may operate primarily through anti-angiogenic pathways [73, 74]. PLX4032/RG7204 (Plexikon/Roche) is active against three Raf isoforms at nanomolar concentrations in serum [75-77]. In cells with V600E BRaf mutation, this drug induces cell cycle arrest and sometimes cell death [76]. PLX4032 has minimal toxicity and can be tolerated at serum levels up to 50 μM [78]. PLX4032 has a paradoxical effect on wild-type BRaf, including lines with Ras mutation, in which the Raf inhibitor actually causes activation of ERK in the MAP kinase pathway [79, 80] with similar effects for PLX-4720 [81] and GDC [82]. This would normally require genetic testing of patients to prevent the selection of PLX therapy for cancers that have wild-type BRAF [78], but the development of phenotypic screening methods may provide a fast and inexpensive alternative to genetic testing.
Biodynamic Imaging Experiments
Biodynamic imaging measures intracellular motions by performing digital holography with low-coherence light and capturing the fluctuating intensities of dynamic speckle. It uses a continuous-wave low-coherence light source (Superlum) with a 20 mW output intensity at a wavelength of 840 nm and a bandwidth of 50 nm with a coherence length of approximately 15 microns. The light path is divided into a signal and reference arm in an ultrastable Mach-Zender interferometer by a polarizing beam splitter with variable polarizers to adjust the relative intensities in the signal and reference arms. The light scattering is performed in a back-scatter geometry because the intensity fluctuation rates depend on the momentum transfer vector that selects longitudinal motion along the backscatter direction. The light scattered by the living biological sample is collected by a long focal-length lens and transformed to a Fourier plane where the CCD pixel array is placed. The reference wave is incident on the CCD array at a small angle of 3 degrees relative to the signal axis, creating an off-axis digital hologram that is acquired on a Fourier plane of the optical imaging system. This Fourier-domain hologram is transformed using an FFT algorithm into the image domain. The transformation performs two functions: demodulating the spatial carrier frequency represented by the holographic interference fringes, and coherence-gating the low-coherence light to a specified depth inside the tissue sample. The coherence-gating role of digital holography creates a full-frame optical coherence tomography (OCT) section of the tumor spheroid at a fixed depth. Successive frames are acquired at a fixed coherence-gated depth at a frame rate of 25 fps.
The reconstructed images includes speckle intensities that are modulated by the dynamic intracellular motion of the target, causing intensity fluctuations on each pixel. The fluctuating intensities of the speckle images have characteristic time scales that relate to the specific types of intracellular motion inside the living tissue samples. When there are many processes and many different characteristic times, the frequency domain is best suited to analyze the influence of applied drugs on dynamic light scattering. The time-traces of the fluctuating intensities are transformed into the frequency domain as a spectral power density denoted by S(ω). The measured power spectrum is affected by the frame rate of the acquisition and by the exposure time of the shutter.
When a drug is applied to the sample, or the environmental conditions change, the relative power density at different frequencies is altered. This change is captured through the differential relative spectral power density. An example of a differential relative spectrogram is shown in
The two-dimensional time-frequency data format for each drug is decomposed into feature values that become the coordinates of a high-dimensional feature vector. The composition is not unique, but one quasi-orthogonal choice of twelve feature masks is shown in
Tissue dynamic spectroscopy was performed on 140 different drugs, doses and conditions. Time-frequency tissue-response spectrograms were generated in each case and decomposed into feature vectors using the feature masks of
High-Content Analysis Experiments
HCA of mitochondrial toxicity was performed [83] using live DLD-1 and HT-29 cell cultures stained with three fluorescent dyes: TMRM, Hoechst33342, and TO-PRO-3 (Invitrogen, Carlsbad, Calif.). The lipophilic cationic dye TMRM was used to monitor mitochondrial membrane potential (MMP). The cell-permeable nuclear marker Hoechst33342 was used to identify cell events and to monitor nuclear morphology. The membrane-impermeable nuclear marker TO-PRO-3 was used to characterize cell viability based on plasma membrane integrity. Detailed mitochondrial toxicity HCA with data collection and analysis protocols were recently described [80] and are briefly summarized here. Following a four hour incubation of cells with the tool compounds, a cocktail of the three fluorescent dyes was added, and cultures were incubated for an additional 45 min at 37° and 5% CO2 before analysis. The final concentrations of dyes in each of 96 wells were 125 nM TMRM, 133 nM TO-PRO-3, and 1.5 μg/ml Hoechst33342. Along with the dyes, 20 μM Verapamil was added to the cocktail to maintain consistent TMRM cell loading through multi-drug inhibition. Liquid handling was performed using a BioMek FX Laboratory Automation Workstation (Beckman Coulter). Data were collected using an imaging cytometer iCys (Compucyte) configured with three excitation lasers (405 nm, 488 nm, 633 nm) and four emission detector PMTs. TMRM emission was recorded using a PMT with a 580/30 band-pass filter, Hoechst33342 with a 463/39 filter, and TO-PRO-3 with a 650 long-pass (LP) filter. Six fields of view (500×368.6 μm each) were arbitrarily collected per well using a 20× objective at 0.5 μm resolution.
Image segmentation was performed based on Hoechst33342 intensity using the iCysCytometric Analysis software (CompuCyte corp., Westwood, Mass.) to identify cell events. Primary contours were defined on the basis of adjacent Hoechst33342 pixels above the preset intensity threshold value (3500 a.u. for DLD1 cell line and 7900 a.u. for HT29) and expanded by four pixels for the analysis. A low pass 5×5 smoothing filter and watershed algorithm were applied to separate closely-spaced nuclei. Additionally, an area filter was applied to eliminate clumps with areas larger than 250 μm2 and cell debris with areas less than 20 μm2. Peripheral contours were defined as a 14 pixel-width ring outside the expanded primary contour. Integrated TMRM intensity within the peripheral contour (TMRM PI) and maximum TMRM pixel intensity within the peripheral contour (TMRM max) were selected as TMRM-based parameters. Nuclear area, nuclear circularity, nuclear average and integral intensities were used as Hoechst33342-based parameters. TO-PRO-3 average intensity was used as a viability measure.
After image feature extraction, statistical analysis of the population distribution was performed using Matlab 7.12.0 (The MathWorks). Kolmogorov-Smirnov (KS) values were used as statistical measures for TMRM- and Hoechst-based parameters. KS values were computed for each compound, dilution, and parameter of interest as
KS(comp,dmso)=max(cdfcomp-cdfdmso),
where cdf is the cumulative distribution function of compound-treated and DMSO-treated (untreated) negative control samples respectively. The sign of KS reflects the direction of the shift of the distribution relative to the negative control (DMSO). Percentage of live cells (viability factor) was evaluated on TO-PRO-3-derived parameters. The viability factor was rescaled from −1 (all dead) to +1 (all live) to match the range for KS values.
Statistical measures of seven parameters (TMRM PI, TMRM max pix, nuclear area, circularity, average and total intensity, and cell viability) measured at three different concentrations (100 μM, 33.3 μM, 11.1 μM) for both cell lines were concatenated to create 21-parameter numerical vectors for phenotypic cell response characterization. Each experiment was performed in duplicates or quadruplicates and the obtained vectors were analyzed individually to evaluate statistical variability.
As an example of the HCA dataset and analysis, DLD1 cells were incubated for four hours with 100 μM of different compounds including vehicle negative control DMSO (no treatment). Cells were stained with a cell marker cocktail including three fluorescent dyes: Hoechst33342, TMRM and ToPro3 and analyzed with iCys imaging cytometer. Arbitrary images (500×368 μm) demonstrate a light-scatter channel, individual fluorescence channels for each cell marker and a merged channels with combination of all three fluorescence channels (color image). Examples of DLD1 responses to all 8 tested compounds and non-treated control (DMSO) are demonstrated in
Application of the Method
Density Matrix Projection Operator
The first step in the method is the construction of a joint feature vector data format in which the TDS and the HCA feature vectors are concatenated for each of the tested compounds and cell lines. The joint concatenated feature vectors are shown in
As discussed above, the density operator {circumflex over (p)}ba is the outer product of the HCA and TDS feature vectors of a given compound m. The reduced density operator is the partial trace over a large set of M compounds, which is equivalent to calculating the correlation coefficients between each of the seven HCA and twelve TDS features in the present example.
The translation matrix according to the present disclosure that is obtained from the joint feature vectors of
Experimental Back-Projection and Fidelity
The projection from TDS back to HCA is tested by calculating the correlation between the original HCA vector and the back-projected HCA vector that is obtained by applying Tqp to the TDS feature vectors. This procedure is performed in a “leave-one-out” process in which the translation matrix is constructed of 15 out of the 16 drug/cell line combinations (i.e., 8 drugs compounds for two cell lines). The condition that is left out is then the test TDS vector that is translated into an equivalent HCA vector. The actual HCA vector is compared to the translated HCA vector and the correlation coefficient is calculated. The results of the leave-one-out correlation analysis are shown in
The agreement demonstrated in
TDS Morphological Fingerprints
Each row of the translation matrix Tqp contains a linear superposition of all TDS features. This makes it possible to define a TDS feature mask that contains the time-frequency features that correlate most strongly with each HCA property. This is expressed as
M
p(ω,t)=ΣqTqpMq(ω,t)
where Mq (ω,t) is the qth TDS feature mask. Examples of the linear superpositions are shown in
The resulting masks Mp (ω,t) can subsequently be used as their own feature masks to generate pseudo-HCA feature vectors based on TDS datasets. The p-th HCA feature is obtained from a time-frequency TDS spectrogram S(ω,t) by
where the pseudo-HCA feature value is normalized by the modulus of the mask Mp (ω,t). This aspect of the disclosed method takes an experimental TDS spectrogram as an input, matches that spectrogram with patterns that have an HCA context, provides a mechanistic means to interpret TDS datasets, and generates data in a format that can be used in established workflows that operate on HCA data. Because TDS data are obtained from 3D tissues that have greater biological relevance, this method can provide valuable and more reliable information to researchers in many areas in the life sciences.
Those skilled in the art will recognize that numerous modifications can be made to the specific implementations described above. The implementations should not be limited to the particular limitations described and described in the claims provided below. Other implementations may be possible.
This application is a utility application of and claims priority to co-pending provisional application No. 61/896,732, filed on Oct. 29, 2013, the entire disclosure of which is incorporated herein by reference.
This invention was made with government support under CBET1263753 awarded by the National Science Foundation. The government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
61896732 | Oct 2013 | US |