Method to use gene expression to determine likelihood of clinical outcome of renal cancer

Information

  • Patent Grant
  • 9551034
  • Patent Number
    9,551,034
  • Date Filed
    Friday, January 7, 2011
    13 years ago
  • Date Issued
    Tuesday, January 24, 2017
    7 years ago
Abstract
The present disclosure provides gene and gene sets, the expression of which is important in the classification and/or prognosis of cancer, in particular of renal cell carcinoma.
Description
TECHNICAL FIELD

The present disclosure relates to molecular diagnostic assays that provide information concerning prognosis in renal cancer patients.


INTRODUCTION

Each year in the United States there are approximately 51,000 cases of renal cell carcinoma (kidney cancer) and upper urinary tract cancer, resulting in more than 12,900 deaths. These tumors account for approximately 3% of adult malignancies. Renal cell carcinoma (RCC) represents about 3 percent of all cancers in the United States. Predictions for the United States for the year 2007 were that 40,000 new patients would be diagnosed with RCC and that 13,000 would die from this disease.


The clinical outcome for a renal cell carcinoma patient depends largely on the aggressiveness of their particular cancer. Surgical resection is the most common treatment for this disease as systemic therapy has demonstrated only limited effectiveness. However, approximately 30% of patients with localized tumors will experience a relapse following surgery, and only 40% of all patients with renal cell carcinoma survive for 5 years.


In the US, the number of adjuvant treatment decisions that will be made by patients with early stage renal cell carcinoma in 2005 exceeded 25,000. The rates in the European Union are expected to be similar. Physicians require prognostic information to help them make informed treatment decisions for patients with renal cell carcinoma and recruit appropriate high-risk patients for clinical trials. Surgeons must decide how much kidney and surrounding tissue to remove based, in part, on predicting the aggressiveness of a particular tumor. Today, cancer tumors are generally classified based on clinical and pathological features, such as stage, grade, and the presence of necrosis. These designations are made by applying standardized criteria, the subjectivity of which has been demonstrated by a lack of concordance amongst pathology laboratories.


SUMMARY

The present disclosure provides biomarkers, the expression of which has prognostic value in renal cancer.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1a-1c: Consistency between Stage I and III for exemplary genes associated with RFI



FIG. 2: Consistent results across endpoints (OS and RFI) for exemplary genes



FIG. 3: Kaplan-Meier curve: Recurrence Free Internal (RFI) by Cleveland Clinic Foundation (CCF) histologic necrosis



FIG. 4: Performance of Mayo prognostic tool applied to CCF data



FIG. 5: Example of using one gene to improve estimate: EMCN in addition to Mayo Criteria



FIG. 6: Example of using one gene to improve estimate: AQP1 in addition to Mayo Criteria



FIG. 7: Example of using one gene to improve estimate: PPAP2B in addition to Mayo Criteria





DETAILED DESCRIPTION
Definitions

Unless defined otherwise, technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Singleton et al., Dictionary of Microbiology and Molecular Biology 2nd ed., J. Wiley & Sons (New York, N.Y. 1994), and March, Advanced Organic Chemistry Reactions, Mechanisms and Structure 4th ed., John Wiley & Sons (New York, N.Y. 1992), provide one skilled in the art with a general guide to many of the terms used in the present application.


One skilled in the art will recognize many methods and materials similar or equivalent to those described herein, which could be used in the practice of the present invention. Indeed, the present invention is in no way limited to the methods and materials described. For purposes of the present invention, the following terms are defined below.


The term “tumor” is used herein to refer to all neoplastic cell growth and proliferation, and all pre-cancerous and cancerous cells and tissues. The term “primary tumor” is used herein to refer to a tumor that is at the original site where it first arose. For example, a primary renal cell carcinoma tumor is one that arose in the kidney. The term “metastatic tumor” is used herein to refer to a tumor that develops away from the site of origin. For example, renal cell carcinoma metastasis most commonly affects the spine, ribs, pelvis, and proximal long bones.


The terms “cancer” and “carcinoma” refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth. The pathology of cancer includes, for example, abnormal or uncontrollable cell growth, metastasis, interference with the normal functioning of neighboring cells, release of cytokines or other secretory products at abnormal levels, suppression or aggravation of inflammatory or immunological response, neoplasia, premalignancy, malignancy, invasion of surrounding or distant tissues or organs, such as lymph nodes, blood vessels, etc.


As used herein, the terms “renal cancer” or “renal cell carcinoma” refer to cancer that has arisen from the kidney.


The terms “renal cell cancer” or “renal cell carcinoma” (RCC), as used herein, refer to cancer which originates in the lining of the proximal convoluted tubule. More specifically, RCC encompasses several relatively common histologic subtypes: clear cell renal cell carcinoma, papillary (chromophil), chromophobe, collecting duct carcinoma, and medullary carcinoma. Further information about renal cell carcinoma may be found in Y. Thyavihally, et al., Int Semin Surg Oncol 2:18 (2005), the contents of which are incorporated by reference herein. Clear cell renal cell carcinoma (ccRCC) is the most common subtype of RCC. Incidence of ccRCC is increasing, comprising 80% of localized disease and more than 90% of metastatic disease.


The staging system for renal cell carcinoma is based on the degree of tumor spread beyond the kidney. According to the tumor, node, metastasis (TNM) staging system of the American Joint Committee on Cancer (AJCC) (Greene, et al., AJCC Cancer Staging Manual, pp. 323-325 (6th Ed. 2002), the various stages of renal cell carcinoma are provided below. “Increased stage” as used herein refers to classification of a tumor at a stage that is more advanced, e.g., Stage 4 is an increased stage relative to Stages 1, 2, and 3.












Description of RCC Stages















Stages for Renal Cell Carcinoma


Stage 1: T1, N0, M0


Stage 2: T2, N0, M0


Stage 3: T1-T2, N1, M0; T3, N0-1, M0; T3a, N0-1, M0; T3b, N0-1,


M0; and T3c, N0-1, M0


Stage 4: T4, N0-1, M0; Any T, N2, M0; and Any T, any N, M1


Primary tumor (T)


TX: Primary tumor cannot be assessed


T0: No evidence of primary tumor


T1: Tumor 7 cm or less in greatest dimension and limited to the kidney


T1a: Tumor 4 cm or less in greatest dimension and limited to the kidney


T1b: Tumor larger than 4 cm but 7 cm or less in greatest dimension and


limited to the kidney


T2: Tumor larger than 7 cm in greatest dimension and limited to the


kidney


T3: Tumor extends into major veins or invades adrenal gland or


perinephric tissues but not beyond Gerota fascia


T3a: Tumor directly invades adrenal gland or perirenal and/or renal sinus


fat but not beyond Gerota fascia


T3b: Tumor grossly extends into the renal vein or its segmental


(i.e., muscle-containing) branches, or it extends into the vena cava


below the diaphragm


T3c: Tumor grossly extends into the vena cava above the diaphragm or


invades the wall of the vena cava


T4: Tumor invades beyond Gerota fascia


Regional lymph nodes (N)


NX: Regional lymph nodes cannot be assessed


N0: No regional lymph node metastasis


N1: Metastasis in a single regional lymph node


N2: Metastasis in more than one regional lymph node


Distant metastasis (M)


MX: Distant metastasis cannot be assessed


M0: No distant metastasis


M1: Distant metastasis









The term “early stage renal cancer”, as used herein, refers to Stages 1-3, as defined in the American Joint Committee on Cancer (AJCC) Cancer Staging Manual, pp. 323-325 (6th Ed. 2002).


Reference to tumor “grade” for renal cell carcinoma as used herein refers to a grading system based on microscopic appearance of tumor cells. According to the TNM staging system of the AJCC, the various grades of renal cell carcinoma are:


GX (grade of differentiation cannot be assessed);


G1 (well differentiated);


G2 (moderately differentiated); and


G3-G4 (poorly differentiated/undifferentiated).


“Increased grade” as used herein refers to classification of a tumor at a grade that is more advanced, e.g., Grade 4 (G4) 4 is an increased grade relative to Grades 1, 2, and 3. Tumor grading is an important prognostic factor in renal cell carcinoma. H. Rauschmeier, et al., World J Urol 2:103-108 (1984).


The terms “necrosis” or “histologic necrosis” as used herein refer to the death of living cells or tissues. The presence of necrosis may be a prognostic factor in cancer. For example, necrosis is commonly seen in renal cell carcinoma (RCC) and has been shown to be an adverse prognostic factor in certain RCC subtypes. V. Foria, et al., J Clin Pathol 58(1):39-43 (2005).


The terms “nodal invasion” or “node-positive (N+)” as used herein refer to the presence of cancer cells in one or more lymph nodes associated with the organ (e.g., drain the organ) containing a primary tumor. Nodal invasion is part of tumor staging for most cancers, including renal cell carcinoma.


The term “prognostic gene,” when used in the single or plural, refers to a gene, the expression level of which is correlated with a good or bad prognosis for a cancer patient. A gene may be both a prognostic and predictive gene, depending on the association of the gene expression level with the corresponding endpoint.


The terms “correlated” and “associated” are used interchangeably herein to refer to the strength of association between two measurements (or measured entities). The disclosure provides genes and gene subsets, the expression levels of which are associated with a particular outcome measure, such as between the expression level of a gene and the likelihood of a recurrence event or relapse. For example, the increased expression level of a gene may be positively correlated (positively associated) with an increased likelihood of good clinical outcome for the patient, such as a decreased likelihood of recurrence of cancer. Such a positive correlation may be demonstrated statistically in various ways, e.g. by a hazard ratio less than 1.0. In another example, the increased expression level of a gene may be negatively correlated (negatively associated) with an increased likelihood of good clinical outcome for the patient. In that case, for example, a patient with a high expression level of a gene may have an increased likelihood of recurrence of the cancer. Such a negative correlation could indicate that the patient with a high expression level of a gene likely has a poor prognosis, or might respond poorly to a chemotherapy, and this may be demonstrated statistically in various ways, e.g., a hazard ratio greater than 1.0.


“Co-expression” is used herein to refer to strength of association between the expression levels of two different genes that are biologically similar, such that expression level of a first gene may be substituted with an expression level of a second gene in a given analysis in view of their correlation of expression. Such co-expressed genes (or correlated expression) indicates that these two genes are substitutable in an expression algorithm, for example, if a first gene is highly correlated, positively or negatively, with increased likelihood of a good clinical outcome for renal cell carcinoma, then the second co-expressed gene also correlates, in the same direction as the first gene, with the same outcome. Pairwise co-expression may be calculated by various methods known in the art, e.g., by calculating Pearson correlation coefficients or Spearman correlation coefficients or by clustering methods. The methods described herein may incorporate one or more genes that co-express, with a Pearson correlation co-efficient of at least 0.5. Co-expressed gene cliques may also be identified using graph theory. An analysis of co-expression may be calculated using normalized or standardized and normalized expression data.


The terms “prognosis” and “clinical outcome” are used interchangeably herein to refer to an estimate of the likelihood of cancer-attributable death or progression, including recurrence, and metastatic spread of a neoplastic disease, such as renal cell carcinoma. The terms “good prognosis” or “positive clinical outcome” mean a desired clinical outcome. For example, in the context of renal cell carcinoma, a good prognosis may be an expectation of no local recurrences or metastasis within two, three, four, five or more years of the initial diagnosis of renal cell carcinoma. The terms “poor prognosis” or “negative clinical outcome” are used herein interchangeably to mean an undesired clinical outcome. For example, in the context of renal cell carcinoma, a poor prognosis may be an expectation of a local recurrence or metastasis within two, three, four, five or more years of the initial diagnosis of renal cell carcinoma.


The term “predictive gene” is used herein to refer to a gene, the expression of which is correlated, positively or negatively, with likelihood of beneficial response to treatment.


A “clinical outcome” can be assessed using any endpoint, including, without limitation, (1) aggressiveness of tumor growth (e.g., movement to higher stage); (2) metastasis; (3) local recurrence; (4) increase in the length of survival following treatment; and/or (5) decreased mortality at a given point of time following treatment. Clinical response may also be expressed in terms of various measures of clinical outcome. Clinical outcome can also be considered in the context of an individual's outcome relative to an outcome of a population of patients having a comparable clinical diagnosis, and can be assessed using various endpoints such as an increase in the duration of Recurrence-Free interval (RFI), an increase in the duration of Overall Survival (OS) in a population, an increase in the duration of Disease-Free Survival (DFS), an increase in the duration of Distant Recurrence-Free Interval (DRFI), and the like.


The term “treatment”, as used herein, refers to therapeutic compounds administered to patients to cease or reduce proliferation of cancer cells, shrink the tumor, avoid progression and metastasis, or cause primary tumor or metastases regression. Examples of treatment include, for example, cytokine therapy, progestational agents, anti-angiogenic therapy, hormonal therapy, and chemotherapy (including small molecules and biologics).


The terms “surgery” or “surgical resection” are used herein to refer to surgical removal of some or all of a tumor, and usually some of the surrounding tissue. Examples of surgical techniques include laproscopic procedures, biopsy, or tumor ablation, such as cryotherapy, radio frequency ablation, and high intensity ultrasound. In cancer patients, the extent of tissue removed during surgery depends on the state of the tumor as observed by a surgeon. For example, a partial nephrectomy indicates that part of one kidney is removed; a simple nephrectomy entails removal of all of one kidney; a radical nephrectomy, all of one kidney and neighboring tissue (e.g., adrenal gland, lymph nodes) removed; and bilateral nephrectomy, both kidneys removed.


The terms “recurrence” and “relapse” are used herein, in the context of potential clinical outcomes of cancer, to refer to a local or distant metastases. Identification of a recurrence could be done by, for example, CT imaging, ultrasound, arteriogram, or X-ray, biopsy, urine or blood test, physical exam, or research center tumor registry.


The term “recurrence-free interval” as used herein refers to the time from surgery to first recurrence or death due to recurrence of renal cancer. Losses to follow-up, second primary cancers, other primary cancers, and deaths prior to recurrence are considered censoring events.


The term “overall survival” is defined as the time from surgery to death from any cause. Losses to follow-up are considered censoring events. Recurrences are ignored for the purposes of calculating overall survival (OS).


The term “disease-free survival” is defined as the time from surgery to first recurrence or death from any cause, whichever occurs first. Losses to follow-up are considered censoring events.


The term “Hazard Ratio (HR)” as used herein refers to the effect of an explanatory variable on the hazard or risk of an event (i.e. recurrence or death). In proportional hazards regression models, the HR is the ratio of the predicted hazard for two groups (e.g. patients with or without necrosis) or for a unit change in a continuous variable (e.g. one standard deviation change in gene expression).


The term “Odds Ratio (OR)” as used herein refers to the effect of an explanatory variable on the odds of an event (e.g. presence of necrosis). In logistic regression models, the OR is the ratio of the predicted odds for a unit change in a continuous variable (e.g. one standard deviation change in gene expression).


The term “prognostic clinical and/or pathologic covariate” as used herein refers to clinical and/or prognostic covariates that are significantly associated (p≦0.05) with clinical outcome. For example, prognostic clinical and pathologic covariates in renal cell carcinoma include tumor stage (e.g. size, nodal invasion, etc.), and grade (e.g., Fuhrman grade), histologic necrosis, and gender.


The term “proxy gene” refers to a gene, the expression of which is correlated (positively or negatively) with one or more prognostic clinical and/or pathologic covariates. The expression level(s) of one or more proxy genes may be used instead of, or in addition to, classification of a tumor by physical or mechanical examination in a pathology laboratory.


The term “microarray” refers to an ordered arrangement of hybridizable array elements, preferably polynucleotide probes, on a substrate.


The term “polynucleotide,” when used in singular or plural, generally refers to any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. Thus, for instance, polynucleotides as defined herein include, without limitation, single- and double-stranded DNA, DNA including single- and double-stranded regions, single- and double-stranded RNA, and RNA including single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or include single- and double-stranded regions. In addition, the term “polynucleotide” as used herein refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA. The strands in such regions may be from the same molecule or from different molecules. The regions may include all of one or more of the molecules, but more typically involve only a region of some of the molecules. One of the molecules of a triple-helical region often is an oligonucleotide. The term “polynucleotide” specifically includes DNAs (e.g., cDNAs) and RNAs that contain one or more modified bases. Thus, DNAs or RNAs with backbones modified for stability or for other reasons are “polynucleotides” as that term is intended herein. Moreover, DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritiated bases, are included within the term “polynucleotides” as defined herein. In general, the term “polynucleotide” embraces all chemically, enzymatically and/or metabolically modified forms of unmodified polynucleotides, as well as the chemical forms of DNA and RNA characteristic of viruses and cells, including simple and complex cells.


The term “oligonucleotide” refers to a relatively short polynucleotide, including, without limitation, single-stranded deoxyribonucleotides, single- or double-stranded ribonucleotides, RNA:DNA hybrids and double-stranded DNAs. Oligonucleotides, such as single-stranded DNA probe oligonucleotides, are often synthesized by chemical methods, for example using automated oligonucleotide synthesizers that are commercially available. However, oligonucleotides can be made by a variety of other methods, including in vitro recombinant DNA-mediated techniques and by expression of DNAs in cells and organisms.


The term “expression level” as applied to a gene refers to the normalized level of a gene product.


The terms “gene product” or “expression product” are used herein interchangeably to refer to the RNA transcription products (RNA transcript) of a gene, including mRNA, and the polypeptide translation product of such RNA transcripts. A gene product can be, for example, an unspliced RNA, an mRNA, a splice variant mRNA, a microRNA, a fragmented RNA, a polypeptide, a post-translationally modified polypeptide, a splice variant polypeptide, etc.


“Stringency” of hybridization reactions is readily determinable by one of ordinary skill in the art, and generally is an empirical calculation dependent upon probe length, washing temperature, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes need lower temperatures. Hybridization generally depends on the ability of denatured DNA to re-anneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature that can be used. As a result, it follows that higher relative temperatures would tend to make the reaction conditions more stringent, while lower temperatures less so. For additional details and explanation of stringency of hybridization reactions, see Ausubel et al., Current Protocols in Molecular Biology, (Wiley Interscience, 1995).


“Stringent conditions” or “high stringency conditions”, as defined herein, typically: (1) employ low ionic strength solutions and high temperature for washing, for example 0.015 M sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate at 50° C.; (2) employ during hybridization a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1% polyvinylpyrrolidone/50 mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 42° C.; or (3) employ 50% formamide, 5×SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5×Denhardt's solution, sonicated salmon sperm DNA (50 μg/ml), 0.1% SDS, and 10% dextran sulfate at 42° C., with washes at 42° C. in 0.2×SSC (sodium chloride/sodium citrate) and 50% formamide at 55° C., followed by a high-stringency wash consisting of 0.1×SSC containing EDTA at 55° C.


“Moderately stringent conditions” may be identified as described by Sambrook et al., Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Press, 1989), and include the use of washing solution and hybridization conditions (e.g., temperature, ionic strength and % SDS) less stringent that those described above. An example of moderately stringent condition is overnight incubation at 37° C. in a solution comprising: 20% formamide, 5×SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5×Denhardt's solution, 10% dextran sulfate, and 20 mg/ml denatured sheared salmon sperm DNA, followed by washing the filters in 1×SSC at about 37-50° C. The skilled artisan will recognize how to adjust the temperature, ionic strength, etc. as necessary to accommodate factors such as probe length and the like.


In the context of the present invention, reference to “at least one,” “at least two,” “at least five,” etc. of the genes listed in any particular gene set means any one or any and all combinations of the genes listed.


The terms “splicing” and “RNA splicing” are used interchangeably and refer to RNA processing that removes introns and joins exons to produce mature mRNA with continuous coding sequence that moves into the cytoplasm of an eukaryotic cell.


In theory, the term “exon” refers to any segment of an interrupted gene that is represented in a mature RNA product (B. Lewin, Genes IV(Cell Press, 1990)). In theory the term “intron” refers to any segment of DNA that is transcribed but removed from within the transcript by splicing together the exons on either side of it. Operationally, exon sequences occur in the mRNA sequence of a gene as defined by Ref. SEQ ID numbers. Operationally, intron sequences are the intervening sequences within the genomic DNA of a gene, bracketed by exon sequences and usually having GT and AG splice consensus sequences at their 5′ and 3′ boundaries.


A “computer-based system” refers to a system of hardware, software, and data storage medium used to analyze information. The minimum hardware of a patient computer-based system comprises a central processing unit (CPU), and hardware for data input, data output (e.g., display), and data storage. An ordinarily skilled artisan can readily appreciate that any currently available computer-based systems and/or components thereof are suitable for use in connection with the methods of the present disclosure. The data storage medium may comprise any manufacture comprising a recording of the present information as described above, or a memory access device that can access such a manufacture.


To “record” data, programming or other information on a computer readable medium refers to a process for storing information, using any such methods as known in the art. Any convenient data storage structure may be chosen, based on the means used to access the stored information. A variety of data processor programs and formats can be used for storage, e.g. word processing text file, database format, etc.


A “processor” or “computing means” references any hardware and/or software combination that will perform the functions required of it. For example, a suitable processor may be a programmable digital microprocessor such as available in the form of an electronic controller, mainframe, server or personal computer (desktop or portable). Where the processor is programmable, suitable programming can be communicated from a remote location to the processor, or previously saved in a computer program product (such as a portable or fixed computer readable storage medium, whether magnetic, optical or solid state device based). For example, a magnetic medium or optical disk may carry the programming, and can be read by a suitable reader communicating with each processor at its corresponding station.


The present disclosure provides methods for assessing a patient's risk of recurrence of cancer, which methods comprise assaying an expression level of at least one gene, or its gene product, in a biological sample obtained from the patient. In some embodiments, the biological sample can be a tumor sample obtained from the kidney, or surrounding tissues, of the patient. In other embodiments, the biological sample is obtained from a bodily fluid, such as blood or urine.


The present disclosure provides genes useful in the methods disclosed herein. The genes are listed in Tables 3a and 3b, wherein increased expression of genes listed in Table 3a is significantly associated with a lower risk of cancer recurrence, and increased expression of genes listed in Table 3b is significantly associated with a higher risk of cancer recurrence. In some embodiments, a co-expressed gene may be used in conjunction with, or substituted for, a gene listed in Tables 3a or 3b with which it co-expresses.


The present disclosure further provides genes significantly associated, positively or negatively, with renal cancer recurrence after adjusting for clinical/pathologic covariates (stage, tumor grade, tumor size, nodal status, and presence of necrosis). For example, Table 8a lists genes wherein increased expression is significantly associated with lower risk of renal cancer recurrence after adjusting for clinical/pathologic covariates, and Table 8b lists genes wherein increased expression is significantly associated with a higher risk of renal cancer recurrence after adjusting for clinical/pathologic covariates. Of those genes listed in Tables 8a and 8b, 16 genes with significant association, positively or negatively, with good prognosis after adjusting for clinical/pathologic covariates and controlling the false discovery rate at 10% are listed in Table 9. One or more of these genes may be used separately, or in addition to, at least one of the genes listed in Tables 3a and 3b, to provide information concerning a patient's prognosis.


The present disclosure also provides proxy genes that are useful for assessing the status of clinical and/or pathologic covariates for a cancer patient. Proxy genes for tumor stage are listed in Tables 4a and 4b, wherein increased expression of genes listed in Table 4a is significantly associated with higher tumor stage, and increased expression of genes listed in Table 4b is significantly associated with lower tumor stage. Proxy genes for tumor grade are listed in Tables 5a and 5b wherein increased expression of genes listed in Table 5a is significantly associated with higher tumor grade, and increased expression of genes listed in Table 5b is significantly associated with lower tumor grade. Proxy genes for the presence of necrosis are listed in Tables 6a and 6b, wherein expression of genes listed in Table 6a is significantly associated with the presence of necrosis, and increased expression of genes listed in Table 6b is significantly associated with the absence of necrosis. Proxy genes for nodal involvement are listed in Tables 7a and 7b wherein higher expression of genes listed in Table 7a are significantly associated with the presence of nodal invasion, and increased expression of genes listed in Table 7b are significantly associated with the absence of nodal invasion. One or more proxy genes may be used separately, or in addition to, at least one of the genes listed in Tables 3a and 3b, to provide information concerning a patient's prognosis. In some embodiments, at least two of the following proxy genes are used to provide information concerning the patient's prognosis: TSPAN7, TEK, LDB2, TIMP3, SHANK3, RGS5, KDR, SDPR, EPAS1, ID1, TGFBR2, FLT4, SDPR, ENDRB, JAG1, DLC1, and KL. In some embodiments, a co-expressed gene may be used in conjunction with, or substituted for, a proxy gene with which it co-expresses.


The present disclosure also provides sets of genes in biological pathways that are useful for assessing the likelihood that a cancer patient is likely to have a positive clinical outcome, which sets of genes are referred to herein as “gene subsets”. The gene subsets include angiogenesis, immune response, transport, cell adhesion/extracellular matrix, cell cycle, and apoptosis. In some embodiments, the angiogenesis gene subset includes ADD1, ANGPTL3, APOLD1, CEACAM1, EDNRB, EMCN, ENG, EPAS1, FLT1, JAG1, KDR, KL, LDB2, NOS3, NUDT6, PPAP2B, PRKCH, PTPRB, RGS5, SHANK3, SNRK, TEK, ICAM2, and VCAM1; the immune response gene subset includes CCL5, CCR7, CD8A, CX3CL1, CXCL10, CXCL9, HLA-DPB1, IL6, IL8, and SPP1, and; the transport gene subset includes AQP1 and SGK1; the cell adhesion/extracellular matrix gene subset includes ITGB1, A2M, ITGB5, LAMB1, LOX, MMP14, TGFBR2, TIMP3, and TSPAN7; the cell cycle gene subset includes BUB1, C13orf15, CCNB1, PTTG1, TPX2, LMNB1, and TUBB2A; the apoptosis gene subset includes CASP10; the early response gene subset includes EGR1 and CYR61; the metabolic signaling gene subset includes CA12, ENO2, UGCG, and SDPR; and the signaling gene subset includes ID1 and MAP2K3.


The present disclosure also provides genes in biological pathways targeted by chemotherapy that are correlated, positively or negatively, to a risk of cancer recurrence. These genes include KIT, PDGFA, PDGFB, PDGFC, PDGFD, PDGFRb, KRAS, RAF1, MTOR, HIF1AN, VEGFA, VEGFB, and FLT4. In some embodiments, the chemotherapy is cytokine and/or anti-angiogenic therapy. In other embodiments, the chemotherapy is sunitinib, sorafenib, temsirolimus, bevacizumab, everolimus, and/or pazopanib.


In some embodiments, a co-expressed gene may be used in conjunction with, or substituted for, a gene with which it co-expresses.


In some embodiments, the cancer is renal cell carcinoma. In other embodiments, the cancer is clear cell renal cell carcinoma (ccRCC), papillary, chromophobe, collecting duct carcinoma, and/or medullary carcinoma.


Various technological approaches for determination of expression levels of the disclosed genes are set forth in this specification, including, without limitation, reverse-transciption polymerase chain reaction (RT-PCR), microarrays, high-throughput sequencing, serial analysis of gene expression (SAGE), and Digital Gene Expression (DGE), which will be discussed in detail below. In particular aspects, the expression level of each gene may be determined in relation to various features of the expression products of the gene, including exons, introns, protein epitopes, and protein activity.


The expression levels of genes identified herein may be measured in tumor tissue. For example, the tumor tissue may be obtained upon surgical resection of the tumor, or by tumor biopsy. The expression level of the identified genes may also be measured in tumor cells recovered from sites distant from the tumor, including circulating tumor cells or body fluid (e.g., urine, blood, blood fraction, etc.).


The expression product that is assayed can be, for example, RNA or a polypeptide. The expression product may be fragmented. For example, the assay may use primers that are complementary to target sequences of an expression product and could thus measure full transcripts as well as those fragmented expression products containing the target sequence. Further information is provided in Tables A and B, which provide examples of sequences of forward primers, reverse primers, probes and amplicons generated by use of the primers.


The RNA expression product may be assayed directly or by detection of a cDNA product resulting from a PCR-based amplification method, e.g., quantitative reverse transcription polymerase chain reaction (qRT-PCR). (See e.g., U.S. Pub. No. US2006-0008809A1.) Polypeptide expression product may be assayed using immunohistochemistry (IHC). Further, both RNA and polypeptide expression products may also be is assayed using microarrays.


Clinical Utility

Currently, of the expected clinical outcome for RCC patients is based on subjective determinations of a tumor's clinical and pathologic features. For example, physicians make decisions about the appropriate surgical procedures and adjuvant therapy based on a renal tumor's stage, grade, and the presence of necrosis. Although there are standardized measures to guide pathologists in making these decisions, the level of concordance between pathology laboratories is low. (See Al-Ayanti M et al. (2003) Arch Pathol Lab Med 127, 593-596) It would be useful to have a reproducible molecular assay for determining and/or confirming these tumor characteristics.


In addition, standard clinical criteria, by themselves, have limited ability to accurately estimate a patient's prognosis. It would be useful to have a reproducible molecular assay to assess a patient's prognosis based on the biology of his or her tumor. Such information could be used for the purposes of patient counseling, selecting patients for clinical trials (e.g., adjuvant trials), and understanding the biology of renal cell carcinoma. In addition, such a test would assist physicians in making surgical and treatment recommendations based on the biology of each patient's tumor. For example, a genomic test could stratify RCC patients based on risk of recurrence and/or likelihood of long-term survival without recurrence (relapse, metastasis, etc.). There are several ongoing and planned clinical trials for RCC therapies, including adjuvant radiation and chemotherapies. It would be useful to have a genomic test able to identify high-risk patients more accurately than standard clinical criteria, thereby further enriching an adjuvant RCC population for study. This would reduce the number of patients needed for an adjuvant trial and the time needed for definitive testing of these new agents in the adjuvant setting.


Finally, it would be useful to have a molecular assay that could predict a patient's likelihood to respond to treatment, such as chemotherapy. Again, this would facilitate individual treatment decisions and recruiting patients for clinical trials, and increase physician and patient confidence in making healthcare decisions after being diagnosed with cancer.


Reporting Results

The methods of the present disclosure are suited for the preparation of reports summarizing the expected clinical outcome resulting from the methods of the present disclosure. A “report,” as described herein, is an electronic or tangible document that includes report elements that provide information of interest relating to a likelihood assessment and its results. A subject report includes at least a likelihood assessment, e.g., an indication as to the risk of recurrence for a subject with renal cell carcinoma. A subject report can be completely or partially electronically generated, e.g., presented on an electronic display (e.g., computer monitor). A report can further include one or more of: 1) information regarding the testing facility; 2) service provider information; 3) patient data; 4) sample data; 5) an interpretive report, which can include various information including: a) indication; b) test data, where test data can include a normalized level of one or more genes of interest, and 6) other features.


The present disclosure thus provides for methods of creating reports and the reports resulting therefrom. The report may include a summary of the expression levels of the RNA transcripts, or the expression products of such RNA transcripts, for certain genes in the cells obtained from the patient's tumor. The report can include information relating to prognostic covariates of the patient. The report may include an estimate that the patient has an increased risk of recurrence. That estimate may be in the form of a score or patient stratifier scheme (e.g., low, intermediate, or high risk of recurrence). The report may include information relevant to assist with decisions about the appropriate surgery (e.g., partial or total nephrectomy) or treatment for the patient.


Thus, in some embodiments, the methods of the present disclosure further include generating a report that includes information regarding the patient's likely clinical outcome, e.g. risk of recurrence. For example, the methods disclosed herein can further include a step of generating or outputting a report providing the results of a subject risk assessment, which report can be provided in the form of an electronic medium (e.g., an electronic display on a computer monitor), or in the form of a tangible medium (e.g., a report printed on paper or other tangible medium).


A report that includes information regarding the patient's likely prognosis (e.g., the likelihood that a patient having renal cell carcinoma will have a good prognosis or positive clinical outcome in response to surgery and/or treatment) is provided to a user. An assessment as to the likelihood is referred to below as a “risk report” or, simply, “risk score.” A person or entity that prepares a report (“report generator”) may also perform the likelihood assessment. The report generator may also perform one or more of sample gathering, sample processing, and data generation, e.g., the report generator may also perform one or more of: a) sample gathering; b) sample processing; c) measuring a level of a risk gene; d) measuring a level of a reference gene; and e) determining a normalized level of a risk gene. Alternatively, an entity other than the report generator can perform one or more sample gathering, sample processing, and data generation.


For clarity, it should be noted that the term “user,” which is used interchangeably with “client,” is meant to refer to a person or entity to whom a report is transmitted, and may be the same person or entity who does one or more of the following: a) collects a sample; b) processes a sample; c) provides a sample or a processed sample; and d) generates data (e.g., level of a risk gene; level of a reference gene product(s); normalized level of a risk gene for use in the likelihood assessment. In some cases, the person(s) or entity(ies) who provides sample collection and/or sample processing and/or data generation, and the person who receives the results and/or report may be different persons, but are both referred to as “users” or “clients” herein to avoid confusion. In certain embodiments, e.g., where the methods are completely executed on a single computer, the user or client provides for data input and review of data output. A “user” can be a health professional (e.g., a clinician, a laboratory technician, a physician (e.g., an oncologist, surgeon, pathologist), etc.).


In embodiments where the user only executes a portion of the method, the individual who, after computerized data processing according to the methods of the present disclosure, reviews data output (e.g., results prior to release to provide a complete report, a complete, or reviews an “incomplete” report and provides for manual intervention and completion of an interpretive report) is referred to herein as a “reviewer.” The reviewer may be located at a location remote to the user (e.g., at a service provided separate from a healthcare facility where a user may be located).


Where government regulations or other restrictions apply (e.g., requirements by health, malpractice, or liability insurance), all results, whether generated wholly or partially electronically, are subjected to a quality control routine prior to release to the user.


Methods of Assaying Expression Levels of a Gene Product

Numerous assay methods for measuring an expression level of a gene product are known in the art, including assay methods for measuring an expression level of a nucleic acid gene product (e.g., an mRNA), and assay methods for measuring an expression level of a polypeptide gene product.


Measuring a Level of a Nucleic Acid Gene Product


In general, methods of measuring a level of a nucleic acid gene product (e.g., an mRNA) include methods involving hybridization analysis of polynucleotides, and methods involving amplification of polynucleotides. Commonly used methods known in the art for the quantification of mRNA expression in a sample include northern blotting and in situ hybridization (See for example, Parker & Barnes, Methods in Molecular Biology 106:247-283 (1999)); RNAse protection assays (Hod, Biotechniques 13:852-854 (1992)); and reverse transcription polymerase chain reaction (RT-PCR) (Weis et al., Trends in Genetics 8:263-264 (1992)). Alternatively, antibodies may be employed that can recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. Representative methods for sequencing-based gene expression analysis include Serial Analysis of Gene Expression (SAGE), and gene expression analysis by massively parallel signature sequencing (MPSS).


Expression Methods Based on Hybridization


The level of a target nucleic acid can be measured using a probe that hybridizes to the target nucleic acid. The target nucleic acid could be, for example, a RNA expression product of a response indicator gene associated with response to a VEGF/VEGFR Inhibitor, or a RNA expression product of a reference gene. In some embodiments, the target nucleic acid is first amplified, for example using a polymerase chain reaction (PCR) method.


A number of methods are available for analyzing nucleic acid mixtures for the presence and/or level of a specific nucleic acid. mRNA may be assayed directly or reverse transcribed into cDNA for analysis.


In some embodiments, the method involves contacting a sample (e.g., a sample derived from a cancer cell) under stringent hybridization conditions with a nucleic acid probe and detecting binding, if any, of the probe to a nucleic acid in the sample. A variety of nucleic acid hybridization methods are well known to those skilled in the art, and any known method can be used. In some embodiments, the nucleic acid probe will be detectably labeled.


Expression Methods Based on Target Amplification


Methods of amplifying (e.g., by PCR) nucleic acid, methods of performing primers extension, and methods of assessing nucleic acids are generally well known in the art. (See e.g., Ausubel, et al, Short Protocols in Molecular Biology, 3rd ed., Wiley & Sons, 1995 and Sambrook, et al, Molecular Cloning: A Laboratory Manual, Third Edition, (2001) Cold Spring Harbor, N.Y.)


A target mRNA can be amplified by reverse transcribing the mRNA into cDNA, and then performing PCR (reverse transcription-PCR or RT-PCR). Alternatively, a single enzyme may be used for both steps as described in U.S. Pat. No. 5,322,770.


The fluorogenic 5′ nuclease assay, known as the TaqMan® assay (Roche Molecular Systems, Inc.), is a powerful and versatile PCR-based detection system for nucleic acid targets. For a detailed description of the TaqMan assay, reagents and conditions for use therein, see, e.g., Holland et al., Proc. Natl. Acad. Sci., U.S.A. (1991) 88:7276-7280; U.S. Pat. Nos. 5,538,848, 5,723,591, and 5,876,930, all incorporated herein by reference in their entireties. Hence, primers and probes derived from regions of a target nucleic acid as described herein can be used in TaqMan analyses to detect a level of target mRNA in a biological sample. Analysis is performed in conjunction with thermal cycling by monitoring the generation of fluorescence signals. (TaqMan is a registered trademark of Roche Molecular Systems.)


The fluorogenic 5′ nuclease assay is conveniently performed using, for example, AmpliTaq Gold® DNA polymerase, which has endogenous 5′ nuclease activity, to digest an internal oligonucleotide probe labeled with both a fluorescent reporter dye and a quencher (see, Holland et al., Proc Nat Acad Sci USA (1991) 88:7276-7280; and Lee et al., Nucl. Acids Res. (1993) 21:3761-3766). Assay results are detected by measuring changes in fluorescence that occur during the amplification cycle as the fluorescent probe is digested, uncoupling the dye and quencher labels and causing an increase in the fluorescent signal that is proportional to the amplification of target nucleic acid. (AmpliTaq Gold is a registered trademark of Roche Molecular Systems.)


The amplification products can be detected in solution or using solid supports. In this method, the TaqMan probe is designed to hybridize to a target sequence within the desired PCR product. The 5′ end of the TaqMan probe contains a fluorescent reporter dye. The 3′ end of the probe is blocked to prevent probe extension and contains a dye that will quench the fluorescence of the 5′ fluorophore. During subsequent amplification, the 5′ fluorescent label is cleaved off if a polymerase with 5′ exonuclease activity is present in the reaction. Excision of the 5′ fluorophore results in an increase in fluorescence that can be detected.


The first step for gene expression analysis is the isolation of mRNA from a target sample. The starting material is typically total RNA isolated from human tumors or tumor cell lines, and corresponding normal tissues or cell lines, respectively. Thus RNA can be isolated from a variety of primary tumors, including breast, lung, colon, prostate, brain, liver, kidney, pancreas, spleen, thymus, testis, ovary, uterus, head and neck, etc., tumor, or tumor cell lines, with pooled DNA from healthy donors. If the source of mRNA is a primary tumor, mRNA can be extracted, for example, from frozen or archived paraffin-embedded and fixed (e.g., formalin-fixed) tissue samples.


General methods for mRNA extraction are well known in the art and are disclosed in standard textbooks of molecular biology, including Ausubel et al., Current Protocols of Molecular Biology (Wiley and Sons, 1997). Methods for RNA extraction from paraffin embedded tissues are disclosed, for example, M. Cronin, Am J. Pathol 164(1):35-42 (2004), the contents of which are incorporated herein. In particular, RNA isolation can be performed using kits and reagents from commercial manufacturers according to the manufacturer's instructions. For example, total RNA from cells in culture can be isolated using RNeasy® mini-columns (Qiagen GmbH Corp.). Other commercially available RNA isolation kits include MasterPure™ Complete DNA and RNA Purification Kit (EPICENTRE® Biotechnologies, Madison, Wis.), mirVana (Applied Biosystems, Inc.), and Paraffin Block RNA Isolation Kit (Ambion, Inc.). Total RNA from tissue samples can be isolated using RNA STAT-60™ (IsoTex Diagnostics, Inc., Friendswood Tex.). RNA prepared from tumor can be isolated, for example, by cesium chloride density gradient centrifugation. (RNeasy is a registered trademark of Qiagen GmbH Corp.; MasterPure is a trademark of EPICENTRE Biotechnologies; RNA STAT-60 is a trademark of Tel-Test Inc.)


As RNA cannot serve as a template for PCR, the first step in gene expression profiling by RT-PCR is the reverse transcription of the RNA template into cDNA, followed by its exponential amplification in a PCR reaction. The two most commonly used reverse transcriptase enzymes are avilo myeloblastosis virus reverse transcriptase (AMV-RT) and Moloney murine leukemia virus reverse transcriptase (MMLV-RT). The reverse transcription step is typically primed using specific primers, random hexamers, or oligo-dT primers, depending on the circumstances and the goal of expression profiling. For example, extracted RNA can be reverse-transcribed using a GeneAmp® RNA PCR kit (Applied Biosystems Inc., Foster City, Calif.) according to the manufacturer's instructions. The derived cDNA can then be used as a template in a subsequent PCR reaction. (GeneAmp is a registered trademark of Applied Biosystems Inc.)


Although the PCR step can use a variety of thermostable DNA-dependent DNA polymerases, it typically employs the Taq DNA polymerase, which has a 5′-3′ nuclease activity but lacks a 3′-5′ proofreading endonuclease activity. Thus, TaqMan PCR typically utilizes the 5′-nuclease activity of Taq or Tth polymerase to hydrolyze a hybridization probe bound to its target amplicon, but any enzyme with equivalent 5′ nuclease activity can be used. Two oligonucleotide primers are used to generate an amplicon. A third oligonucleotide, or probe, is designed to detect nucleotide sequence located between the two PCR primers. The probe is non-extendible by Taq DNA polymerase enzyme, and is labeled with a reporter fluorescent dye and a quencher fluorescent dye. Any laser-induced emission from the reporter dye is quenched by the quenching dye when the two dyes are located close together as they are on the probe. During the amplification reaction, the Taq DNA polymerase enzyme cleaves the probe in a template-dependent manner. The resultant probe fragments disassociate in solution, and signal from the released reporter dye is free from the quenching effect of the second fluorophore. One molecule of reporter dye is liberated for each new molecule synthesized, and detection of the unquenched reporter dye provides the basis for quantitative interpretation of the data. (TaqMan is a registered mark of Applied Biosystems.)


TaqMan RT-PCR can be performed using commercially available equipment, such as, for example, the ABI PRISM 7700® Sequence Detection System (Applied Biosystems, Foster City, Calif., USA), or the Lightcycler® (Roche Molecular Biochemicals, Mannheim, Germany). In a preferred embodiment, the 5′ nuclease procedure is run on a real-time quantitative PCR device such as the ABI PRISM 7900™ Sequence Detection System™. The system consists of a thermocycler, laser, charge-coupled device (CCD), camera and computer. The system amplifies samples in a 96-well format on a thermocycler. During amplification, laser-induced fluorescent signal is collected in real-time through fiber optics cables for all 96 wells, and detected at the CCD. The system includes software for running the instrument and for analyzing the data. (PRISM 7700 is a registered trademark of Applied Biosystems; Lightcycler is a registered trademark of Roche Diagnostics GmbH LLC.)


5′-Nuclease assay data are initially expressed as Ct, or the threshold cycle. As discussed above, fluorescence values are recorded during every cycle and represent the amount of product amplified to that point in the amplification reaction. The point when the fluorescent signal is first recorded as statistically significant is the threshold cycle (Ct).


To minimize the effect of sample-to-sample variation, quantitative RT-PCR is usually performed using an internal standard, or one or more reference genes. The ideal internal standard is expressed at a constant level among different tissues, and is unaffected by the experimental treatment. RNAs that can be used to normalize patterns of gene expression include, e.g., mRNAs for the reference genes glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) and β-actin.


A more recent variation of the RT-PCR technique is the real time quantitative PCR, which measures PCR product accumulation through a dual-labeled fluorogenic probe (i.e., TaqMan® probe). Real time PCR is compatible both with quantitative competitive PCR, where internal competitor for each target sequence is used for normalization, and with quantitative comparative PCR using a normalization gene contained within the sample, or a reference gene for RT-PCR. For further details see, e.g., Held et al., Genome Research 6:986-994 (1996).


Factors considered in PCR primer design include primer length, melting temperature (Tm), and G/C content, specificity, complementary primer sequences, and 3′-end sequence. In general, optimal PCR primers are generally 17-30 bases in length, and contain about 20-80%, such as, for example, about 50-60% G+C bases. Tm's between 50 and 80° C., e.g., about 50 to 70° C. can be used.


For further guidelines for PCR primer and probe design see, e.g., Dieffenbach, C. W. et al., “General Concepts for PCR Primer Design” in: PCR Primer, A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York, 1995, pp. 133-155; Innis and Gelfand, “Optimization of PCRs” in: PCR Protocols, A Guide to Methods and Applications, CRC Press, London, 1994, pp. 5-11; and Plasterer, T. N. PrimerSelect: Primer and probe design. Methods Mol. Biol. 70:520-527 (1997), the entire disclosures of which are hereby expressly incorporated by reference.


Other suitable methods for assaying a level of a nucleic acid gene product include, e.g., microarrays; serial analysis of gene expression (SAGE); MassARRAY® analysis; digital gene expression (DGE) (J. Marioni, Genome Research 18(9):1509-1517 (2008), gene expression by massively parallel signature sequencing (see, e.g., Ding and Cantor, Proc. Nat'l Acad Sci 100:3059-3064 (2003); differential display (Liang and Pardee, Science 257:967-971 (1992)); amplified fragment length polymorphism (iAFLP) (Kawamoto et al., Genome Res. 12:1305-1312 (1999)); BeadArray™ technology (Illumina, San Diego, Calif.; Oliphant et al., Discovery of Markers for Disease (Supplement to Biotechniques), June 2002; Ferguson et al., Analytical Chemistry 72:5618 (2000)); BeadsArray for Detection of Gene Expression (BADGE), using the commercially available Luminex100 LabMAP system and multiple color-coded microspheres (Luminex Corp., Austin, Tex.) in a rapid assay for gene expression (Yang et al., Genome Res. 11:1888-1898 (2001)); and high coverage expression profiling (HiCEP) analysis (Fukumura et al., Nucl. Acids. Res. 31(16) e94 (2003)).


Introns


Assays to measure the amount of an RNA gene expression product can be targeted to intron sequences or exon sequences of the primary transcript. The amount of a spliced intron that is measured in human tissue samples is generally indicative of the amount of a corresponding exon (i.e. an exon from the same gene) present in the samples. Polynucleotides that consist of or are complementary to intron sequences can be used, e.g., in hybridization methods or amplification methods to assay the expression level of response indicator genes.


Measuring Levels of a Polypeptide Gene Product


Methods of measuring a level of a polypeptide gene product are known in the art and include antibody-based methods such as enzyme-linked immunoabsorbent assay (ELISA), radioimmunoassay (RIA), protein blot analysis, immunohistochemical analysis and the like. The measure of a polypeptide gene product may also be measured in vivo in the subject using an antibody that specifically binds a target polypeptide, coupled to a paramagnetic label or other label used for in vivo imaging, and visualizing the distribution of the labeled antibody within the subject using an appropriate in vivo imaging method, such as magnetic resonance imaging. Such methods also include proteomics methods such as mass spectrometric methods, which are known in the art.


Methods of Isolating RNA from Body Fluids


Methods of isolating RNA for expression analysis from blood, plasma and serum (See for example, Tsui N B et al. (2002) 48, 1647-53 and references cited therein) and from urine (See for example, Boom R et al. (1990) J Clin Microbiol. 28, 495-503 and reference cited therein) have been described.


Methods of Isolating RNA from Paraffin-Embedded Tissue


The steps of a representative protocol for profiling gene expression using fixed, paraffin-embedded tissues as the RNA source, including mRNA isolation, purification primer extension and amplification are provided in various published journal articles. (See, e.g., T. E. Godfrey et al., J. Molec. Diagnostics 2: 84-91 (2000); K. Specht et al., Am. J. Pathol. 158: 419-29 (2001), M. Cronin, et al., Am J Pathol 164:35-42 (2004)).


Manual and Computer-Assisted Methods and Products

The methods and systems described herein can be implemented in numerous ways. In one embodiment of particular interest, the methods involve use of a communications infrastructure, for example the Internet. Several embodiments are discussed below. It is also to be understood that the present disclosure may be implemented in various forms of hardware, software, firmware, processors, or a combination thereof. The methods and systems described herein can be implemented as a combination of hardware and software. The software can be implemented as an application program tangibly embodied on a program storage device, or different portions of the software implemented in the user's computing environment (e.g., as an applet) and on the reviewer's computing environment, where the reviewer may be located at a remote site associated (e.g., at a service provider's facility).


For example, during or after data input by the user, portions of the data processing can be performed in the user-side computing environment. For example, the user-side computing environment can be programmed to provide for defined test codes to denote a likelihood “risk score,” where the score is transmitted as processed or partially processed responses to the reviewer's computing environment in the form of test code for subsequent execution of one or more algorithms to provide a results and/or generate a report in the reviewer's computing environment. The risk score can be a numerical score (representative of a numerical value) or a non-numerical score representative of a numerical value or range of numerical values (e.g., low, intermediate, or high).


The application program for executing the algorithms described herein may be uploaded to, and executed by, a machine comprising any suitable architecture. In general, the machine involves a computer platform having hardware such as one or more central processing units (CPU), a random access memory (RAM), and input/output (I/O) interface(s). The computer platform also includes an operating system and microinstruction code. The various processes and functions described herein may either be part of the microinstruction code or part of the application program (or a combination thereof) that is executed via the operating system. In addition, various other peripheral devices may be connected to the computer platform such as an additional data storage device and a printing device.


As a computer system, the system generally includes a processor unit. The processor unit operates to receive information, which can include test data (e.g., level of a risk gene, level of a reference gene product(s); normalized level of a gene; and may also include other data such as patient data. This information received can be stored at least temporarily in a database, and data analyzed to generate a report as described above.


Part or all of the input and output data can also be sent electronically; certain output data (e.g., reports) can be sent electronically or telephonically (e.g., by facsimile, e.g., using devices such as fax back). Exemplary output receiving devices can include a display element, a printer, a facsimile device and the like. Electronic forms of transmission and/or display can include email, interactive television, and the like. In an embodiment of particular interest, all or a portion of the input data and/or all or a portion of the output data (e.g., usually at least the final report) are maintained on a web server for access, preferably confidential access, with typical browsers. The data may be accessed or sent to health professionals as desired. The input and output data, including all or a portion of the final report, can be used to populate a patient's medical record which may exist in a confidential database at the healthcare facility.


A system for use in the methods described herein generally includes at least one computer processor (e.g., where the method is carried out in its entirety at a single site) or at least two networked computer processors (e.g., where data is to be input by a user (also referred to herein as a “client”) and transmitted to a remote site to a second computer processor for analysis, where the first and second computer processors are connected by a network, e.g., via an intranet or internet). The system can also include a user component(s) for input; and a reviewer component(s) for review of data, generated reports, and manual intervention. Additional components of the system can include a server component(s); and a database(s) for storing data (e.g., as in a database of report elements, e.g., interpretive report elements, or a relational database (RDB) which can include data input by the user and data output. The computer processors can be processors that are typically found in personal desktop computers (e.g., IBM, Dell, Macintosh), portable computers, mainframes, minicomputers, or other computing devices.


The networked client/server architecture can be selected as desired, and can be, for example, a classic two or three tier client server model. A relational database management system (RDMS), either as part of an application server component or as a separate component (RDB machine) provides the interface to the database.


In one example, the architecture is provided as a database-centric client/server architecture, in which the client application generally requests services from the application server which makes requests to the database (or the database server) to populate the report with the various report elements as required, particularly the interpretive report elements, especially the interpretation text and alerts. The server(s) (e.g., either as part of the application server machine or a separate RDB/relational database machine) responds to the client's requests.


The input client components can be complete, stand-alone personal computers offering a full range of power and features to run applications. The client component usually operates under any desired operating system and includes a communication element (e.g., a modem or other hardware for connecting to a network), one or more input devices (e.g., a keyboard, mouse, keypad, or other device used to transfer information or commands), a storage element (e.g., a hard drive or other computer-readable, computer-writable storage medium), and a display element (e.g., a monitor, television, LCD, LED, or other display device that conveys information to the user). The user enters input commands into the computer processor through an input device. Generally, the user interface is a graphical user interface (GUI) written for web browser applications.


The server component(s) can be a personal computer, a minicomputer, or a mainframe and offers data management, information sharing between clients, network administration and security. The application and any databases used can be on the same or different servers.


Other computing arrangements for the client and server(s), including processing on a single machine such as a mainframe, a collection of machines, or other suitable configuration are contemplated. In general, the client and server machines work together to accomplish the processing of the present disclosure.


Where used, the database(s) is usually connected to the database server component and can be any device that will hold data. For example, the database can be a any magnetic or optical storing device for a computer (e.g., CDROM, internal hard drive, tape drive). The database can be located remote to the server component (with access via a network, modem, etc.) or locally to the server component.


Where used in the system and methods, the database can be a relational database that is organized and accessed according to relationships between data items. The relational database is generally composed of a plurality of tables (entities). The rows of a table represent records (collections of information about separate items) and the columns represent fields (particular attributes of a record). In its simplest conception, the relational database is a collection of data entries that “relate” to each other through at least one common field.


Additional workstations equipped with computers and printers may be used at point of service to enter data and, in some embodiments, generate appropriate reports, if desired. The computer(s) can have a shortcut (e.g., on the desktop) to launch the application to facilitate initiation of data entry, transmission, analysis, report receipt, etc. as desired.


Computer-Readable Storage Media


The present disclosure also contemplates a computer-readable storage medium (e.g. CD-ROM, memory key, flash memory card, diskette, etc.) having stored thereon a program which, when executed in a computing environment, provides for implementation of algorithms to carry out all or a portion of the results of a response likelihood assessment as described herein. Where the computer-readable medium contains a complete program for carrying out the methods described herein, the program includes program instructions for collecting, analyzing and generating output, and generally includes computer readable code devices for interacting with a user as described herein, processing that data in conjunction with analytical information, and generating unique printed or electronic media for that user.


Where the storage medium provides a program that provides for implementation of a portion of the methods described herein (e.g., the user-side aspect of the methods (e.g., data input, report receipt capabilities, etc.)), the program provides for transmission of data input by the user (e.g., via the internet, via an intranet, etc.) to a computing environment at a remote site. Processing or completion of processing of the data is carried out at the remote site to generate a report. After review of the report, and completion of any needed manual intervention, to provide a complete report, the complete report is then transmitted back to the user as an electronic document or printed document (e.g., fax or mailed paper report). The storage medium containing a program according to the present disclosure can be packaged with instructions (e.g., for program installation, use, etc.) recorded on a suitable substrate or a web address where such instructions may be obtained. The computer-readable storage medium can also be provided in combination with one or more reagents for carrying out response likelihood assessment (e.g., primers, probes, arrays, or other such kit components).


Methods of Data Analysis

Reference Normalization


In order to minimize expression measurement variations due to non-biological variations in samples, e.g., the amount and quality of expression product to be measured, raw expression level data measured for a gene product (e.g., cycle threshold (Ct) measurements obtained by qRT-PCR) may be normalized relative to the mean expression level data obtained for one or more reference genes. In one approach to normalization, a small number of genes are used as reference genes; the genes chosen for reference genes typically show a minimal amount of variation in expression from sample to sample and the expression level of other genes is compared to the relatively stable expression of the reference genes. In the global normalization approach, the expression level of each gene in a sample is compared to an average expression level in the sample of all genes in order to compare the expression of a particular gene to the total amount of material.


Unprocessed data from qRT-PCR is expressed as cycle threshold (Ct), the number of amplification cycles required for the detectable signal to exceed a defined threshold. High Ct is indicative of low expression since more cycles are required to detect the amplification product. Normalization may be carried out such that a one-unit increase in normalized expression level of a gene product generally reflects a 2-fold increase in quantity of expression product present in the sample. For further information on normalization techniques applicable to qRT-PCR data from tumor tissue, see, e.g., Silva S et al. (2006) BMC Cancer 6, 200; de Kok J et al. (2005) Laboratory Investigation 85, 154-159. Gene expression may then be standardized by dividing the normalized gene expression by the standard deviation of expression across all patients for that particular gene. By standardizing normalized gene expression the hazard ratios across genes are comparable and reflect the relative risk for each standard deviation of gene expression.


Statistical Analysis

One skilled in the art will recognize that variety of statistical methods are available that are suitable for comparing the expression level of a gene (or other variable) in two groups and determining the statistical significance of expression level differences that are found. (See e.g., H. Motulsky, Intuitive Biostatistics(Oxford University Press, 1995); D. Freedman, Statistics (W.W. Norton & Co, 4th Ed., 2007). For example, a Cox proportional hazards regression model may be fit to a particular clinical time-to-event endpoint (e.g., RFI, OS). One assumption of the Cox proportional hazards regression model is the proportional hazards assumption, i.e. the assumption that model effects multiply the underlying hazard. Assessments of model adequacy may be performed including, but not limited to, examination of the cumulative sum of martingale residuals. One skilled in the art would recognize that there are numerous statistical methods that may be used (e.g., Royston and Parmer (2002), smoothing spline, etc.) to fit a flexible parametric model using the hazard scale and the Weibull distribution with natural spline smoothing of the log cumulative hazards function, with effects allowed to be time-dependent. (See, P. Royston, M. Parmer, Statistics in Medicine 21(15:2175-2197 (2002).) The relationship between recurrence risk and (1) recurrence risk groups; and (2) clinical/pathologic covariates (e.g., tumor stage, tumor grade, presence of necrosis, lymphatic or vascular invasion, etc.) may also be tested for significance. Additional examples of models include logistic or ordinal logistic regression models in which the association between gene expression and dichotomous (for logistic) or ordinal (for ordinal logistic) clinical endpoints (i.e. stage, necrosis, grade) may be evaluated. (See e.g., D. Hosmer and S. Lemeshow, Applied Logistic Regression (John Wiley and Sons, 1989).


In an exemplary embodiment, results were adjusted for multiple hypothesis tests, and allowed for a 10% false discovery rate (FDR), using Storey's procedure, and using TDRAS with separate classes (M. Crager, Gene identification using true discovery rate degree of association sets and estimates corrected for regression to the mean, Statistics in Medicine (published online December 2009). In another embodiment, genes with significant association with RFI were identified through cross-validation techniques in which forward stepwise Cox PH regression was employed using a subset of factors identified through Principal Component Analysis (PCA).


Methods for calculating correlation coefficients, particularly the Pearson product-moment correlation coefficient are known in the art. (See e.g., J. Rodgers and W. Nicewander, The American Statistician, 42, 59-66 (1988); H. Motulsky, H., Intuitive Biostatistics (Oxford University Press, 1995). To perform particular biological processes, genes often work together in a concerted way, i.e. they are co-expressed. Co-expressed gene groups identified for a disease process like cancer can serve as biomarkers for disease progression and response to treatment. Such co-expressed genes can be assayed in lieu of, or in addition to, assaying of the prognostic and/or predictive gene with which they are co-expressed.


One skilled in the art will recognize that many co-expression analysis methods now known or later developed will fall within the scope and spirit of the present invention. These methods may incorporate, for example, correlation coefficients, co-expression network analysis, clique analysis, etc., and may be based on expression data from RT-PCR, microarrays, sequencing, and other similar technologies. For example, gene expression clusters can be identified using pair-wise analysis of correlation based on Pearson or Spearman correlation coefficients. (See, e.g., Pearson K. and Lee A., Biometrika 2, 357 (1902); C. Spearman, Amer. J. Psychol 15:72-101 (1904); J. Myers, A. Well, Research Design and Statistical Analysis, p. 508 (2nd Ed., 2003).) In general, a correlation coefficient of equal to or greater than 0.3 is considered to be statistically significant in a sample size of at least 20. (See, e.g., G. Norman, D. Streiner, Biostatistics: The Bare Essentials, 137-138 (3rd Ed. 2007).)


All aspects of the present disclosure may also be practiced such that a limited number of additional genes that are co-expressed with the disclosed genes, for example as evidenced by high Pearson correlation coefficients, are included in a prognostic or predictive test in addition to and/or in place of disclosed genes.


Having described the invention, the same will be more readily understood through reference to the following Examples, which are provided by way of illustration, and are not intended to limit the invention in any way. All citations throughout the disclosure are hereby expressly incorporated by reference.


Examples

Two studies were performed to demonstrate the feasibility of gene expression profiling from renal tumors obtained from renal cell carcinoma patients. (See Abstract by M. Zhou, et al., Optimized RNA extraction and RT-PCR assays provide successful molecular analysis on a wide variety of archival fixed tissues, AACR Annual Meeting (2007)).


Study Design


Renal tumor tissue was obtained from approximately 1200 patients from the Cleveland Clinic Foundation (CCF) database. This database consists of patients who were diagnosed with renal carcinoma, clear cell type, stage I, II and III between the years of 1985 and 2003, who had available paraffin-embedded tumor (PET) blocks and adequate clinical follow-up, and who were not treated with adjuvant/neo-adjuvant systemic therapy. Patients with inherited VHL disease or bilateral tumors were also excluded. Tumors were graded using (1) Fuhrman grading system as noted in the World Health Organization Classification of Tumours: Pathology and Genetics: Tumours of the Urinary System and Male Genital Organs; and (2) the modified Fuhrman grading system (Table 1). In general, if no nodal involvement is expected or observed for patients, inspection of nodal involvement is not conducted and Nx is noted. In this study, Nx was treated as N0 for purposes of stage classification. The expression of 732 genes was quantitatively assessed for each patient tissue sample.









TABLE 1







Fuhrman Grading Systems










Fuhrman Grade




(Modified)
Fuhrman Grade (WHO)













1
Nuclei small as
Small, round, uniform nuclei (~10 um);



lymphocyte with
nucleoli absent or inconspicuous (at 400x)



condensed



chromatin


2
Nuclei both small as
Larger nuclei (~15 um) with irregular



lymphocytes with
outline; small nucleoli present (at 400x)



condensed



chromatin



and other nuclei



demonstrating



enlarged,



open chromatin


3
All nuclei enlarged
Larger nuclei (approaching 20 um) with



with open
more irregular outline; prominent nucleoli



chromatin
present (at 100x)


4
Large bizarre nuclei
Grade 3 features with pleomorphic or




multilobed nuclei, with or without spindle




cells










Inclusion Criteria


(1) Patients who underwent nephrectomy at CCF and who have a minimum of 6 months clinical follow-up or have recurrent RCC, documented in the clinical chart, database or registry.


(2) Diagnosed with RCC, clear cell type, stage I, II, or III.


(3) Renal blocks fixed in Formalin, Hollandes fluid or Zenkers fixative.


Exclusion Criteria


(1) No tumor block available from initial diagnosis in the Cleveland Clinic archive.


(2) No tumor or very little tumor (<5% of invasive cancer cell area) in block as assessed by examination of the Hollandes and/or hematoxylin and eosin stained (H&E) slide.


(3) High cycle threshold (Ct) values of reference genes. All samples regardless of their RNA amount will be tested by RT-qPCR, but only plates where the average Ct of reference genes is less than 35 will be analyzed.


(4) Patients with inherited VHL disease and/or bilateral tumors


(5) Patients who received neo-adjuvant or adjuvant systemic therapy


Concordance for Clinical and Pathologic Factors


Two separate pathology laboratories conducted analyses of several clinical and pathologic factors using the same standardized measures. The level of concordance, by covariate, is provided in Table 2, below. For purposes of the statistical analysis, the determination of only one of the central laboratories was used.









TABLE 2







Concordance between two central laboratories for clinical/pathologic


covariates











Covariate
Method of analysis
Concordance







Presence of necrosis
Microscopic technique per
47%




Leibovich BC et al. (2003)




Cancer 97(3), 1663-1671.



Tumor grade
Fuhrman
65%











Expression Profile Gene Panel


The RNA from paraffin embedded tissue (PET) samples obtained from 942 patients who met all inclusion/exclusion criteria was extracted using protocols optimized for fixed renal tissue and perform molecular assays of quantitative gene expression using TaqMan® RT-PCR. RT-PCR was performed with RNA input at 1.0 ng per 5 μL-reaction volume using two 384 well plates.


RT-PCR analysis of PET samples was conducted using 732 genes. These genes were evaluated for association with the primary and secondary endpoints, recurrence-free interval (RFI), disease-free survival (DFS) and overall survival (OS).


All primary and secondary analyses were conducted on reference normalized gene expression levels using the mean of the reference genes for normalization. Three normalization schemes were tested using AAMP, ARF1, ATP5E, EEF1A1, GPX1, RPS23, SDHA, UBB, and RPLP1. Some or all of the other genes in the test panel were used in analyses of alternative normalization schemes.


Of the 732 genes, 647 were deemed evaluable for further consideration. The outcome analyses of the 647 evaluable genes were adjusted for multiple hypothesis tests, by allowing for a 10% false discovery rate (FDR), using Storey's procedure, and using True Discovery Rate Degree of Association Sets (TDRDAS) with separate classes (M. Crager, Gene identification using true discovery rate degree of association sets and estimates corrected for regression to the mean, Statistics in Medicine 29:33-45 (2009)). Unadjusted for baseline covariates and without controlling the FDR, a subset of 448 (69%) of genes were identified as significantly associated with RFI (p≦0.05). Additional analysis was conducted using a supervised principal component analysis (PCA) on a subset of 188 genes that have maximum lower bound (MLB) >1.2 using TDRDAS analysis, controlling the FDR but not taking into account the separate classes. The top 10 factors were modified by keeping the genes with high factor loadings (loading/max loading >0.7) were kept. The modified top 10 factors were put into a 5-fold cross validation to assess performance of the gene groups and identify factors that were appearing most frequently.


Genes that had a significant association (p≦0.05) with risk of recurrence are listed in Tables 3a and 3b, wherein genes that are positively associated with a good prognosis (i.e., increased expression indicates a lower risk of recurrence) are listed in Table 3a. Genes that are negatively associated with a good prognosis (i.e., increased expression indicates a higher risk of recurrence) are listed in Table 3b. Genes that were associated, positively or negatively, with a good prognosis but not associated with clinical/pathologic covariates are BBC3, CCR7, CCR4, and VCAN. In addition, genes associated positively with a good prognosis after adjusting for clinical and pathologic covariates (stage, tumor grade, tumor size, nodal status, and presence of necrosis) are listed in Table 8a. Genes associated negatively with a good prognosis after adjusting for clinical/pathologic covariates are listed in Table 8b. Of those genes listed in Tables 8a and 8b, 16 genes with significant association, positively or negatively, with a good prognosis after adjusting for clinical and pathologic covariates and controlling the false discovery rate at 10% are listed in Table 9.


For the majority of these genes significantly associated with RFI (p≦0.05) (82%), increased expression is associated with a good prognosis. Most of the genes significantly associated with RFI showed consistency between (1) between stages (I-III); (2) primary and secondary endpoints (RFI and OS). See, e.g., FIGS. 1 and 2, respectively.


From this analysis, certain gene subsets emerged as significantly associated with recurrence and overall survival. For example, increased expression of angiogenesis genes (e.g., EMCN, PPAP2B, NOS3, NUDT6, PTPRB, SNRK, APOLD1, PRKCH, and CEACAM1), cell adhesion/extracellular matrix genes (e.g., ITGB5, ITGB1, A2M, TIMP3), immune response genes (e.g., CCL5, CCXL9, CCR7, IL8, IL6, and CX3CL1), cell cycle (e.g., BUB1, TPX2), apoptosis (e.g., CASP10), and transport genes (AQP1) were strongly associated, positively or negatively, with RFI.


Also, certain genes that are associated with pathway targets for renal cancer drugs (sunitinib, sorafenib, temsirolimus, bevacizumab, everolimus, pazopanib) were identified as having a significant association with outcome, including: KIT, PDGFA, PDGFB, PDGFC, PDGFD, PDGFRb, KRAS, RAF1, MTOR, HIF1AN, VEGFA, VEGFB, and FLT4.


It was determined that the presence of necrosis in these tumors was associated with a higher risk of recurrence, at least in the first 4 years after surgery. See FIG. 3. However, the prognostic effect of necrosis after year 4 was negligible.


It was also determined that expression of certain genes was correlated, positively or negatively, with pathologic and/or clinical factors (“proxy genes”). For example, increased expression of the proxy genes listed in Tables 4a-7b correlate, positively or negatively, with tumor stage, tumor grade, presence of necrosis, and nodal invasion, respectively. In Tables 4a-7b, gene expression was normalized and then standardized such that the odds ratio (OR) reflects a one standard deviation change in gene expression.


From these, key genes were identified as good proxies for baseline covariates (stage, grade, necrosis), including TSPAN7, TEK, LDB2, TIMP3, SHANK3, RGS5, KDR, SDPR, EPAS1, ID1, TGFBR2, FLT4, SDPR, ENDRB, JAG1, DLC1, and KL. Several of these genes are in the hypoxia-induced pathway: SHANK3, RGS5, EPAS1, KDR, JAG1, TGFBR2, FLT4, SDPR, DLC1, EDNRB.



FIGS. 4-7 provide a comparison of patient stratification (Low, Intermediate, or High Risk) obtained by applying the Mayo prognostic tool (described in Leibovich et al. “prediction of progression after radical nephrectomy for patients with clear cell renal cell carcinoma” (2003) Cancer 97:1663-1671) CCF expression data. As shown in FIG. 4, the Mayo prognostic tool alone provides for stratification into three populations Low Risk (93% recurrence free at 5 years), Intermediate Risk (79% recurrence free at 5 years), and High Risk (36% recurrence free at 5 years). In contrast, use of expression data from even one gene (as exemplified by EMCN (FIG. 5.), AQP1 (FIG. 6), or PPAP2B (FIG. 7)) allowed for more detailed stratification of patients according to risk.









TABLE 3a







Genes for which increased expression is associated


with lower risk of cancer recurrence (p-value ≦ .05)









Univariate Cox Analyses (No



Covariate Adjustment) with RFI











Official
p-value



Gene
Symbol
for HR
HR













YB-1.2
YBX1
<0.0001
0.75


XIAP.1
XIAP
0.0009
0.81


WWOX.5
WWOX
<0.0001
0.71


VWF.1
VWF
<0.0001
0.61


VEGF.1
VEGFA
<0.0001
0.75


VCAM1.1
VCAM1
<0.0001
0.66


USP34.1
USP34
0.0003
0.79


UMOD.1
UMOD
<0.0001
0.68


UGCG.1
UGCG
<0.0001
0.71


UBB.1
UBB
<0.0001
0.62


UBE1C.1
UBA3
0.0003
0.79


TS.1
TYMS
0.0056
0.83


tusc4.2
TUSC4
<0.0001
0.76


TSPAN7.2
TSPAN7
<0.0001
0.52


TSC2.1
TSC2
0.0043
0.82


TSC1.1
TSC1
<0.0001
0.71


P53.2
TP53
0.0008
0.81


TOP2B.2
TOP2B
0.0001
0.80


TNFSF12.1
TNFSF12
<0.0001
0.68


TRAIL.1
TNFSF10
0.0065
0.83


TNFRSF11B.1
TNFRSF11B
0.0002
0.78


TNFRSF10D.1
TNFRSF10D
<0.0001
0.76


DR5.2
TNFRSF10B
<0.0001
0.75


TNFAIP6.1
TNFAIP6
0.0005
0.79


TMEM47.1
TMEM47
<0.0001
0.57


TMEM27.1
TMEM27
<0.0001
0.58


TLR3.1
TLR3
<0.0001
0.72


TIMP3.3
TIMP3
<0.0001
0.50


TIMP2.1
TIMP2
<0.0001
0.73


THBS1.1
THBS1
0.0002
0.79


TGFBR2.3
TGFBR2
<0.0001
0.54


TGFBR1.1
TGFBR1
<0.0001
0.71


TGFB2.2
TGFB2
<0.0001
0.65


TGFA.2
TGFA
<0.0001
0.70


TEK.1
TEK
<0.0001
0.47


TCF4.1
TCF4
<0.0001
0.62


TAP1.1
TAP1
0.0024
0.82


TAGLN.1
TAGLN
<0.0001
0.70


TACSTD2.1
TACSTD2
<0.0001
0.72


SUCLG1.1
SUCLG1
<0.0001
0.72


STK11.1
STK11
<0.0001
0.76


STAT5B.2
STAT5B
<0.0001
0.71


STAT5A.1
STAT5A
<0.0001
0.72


STAT3.1
STAT3
0.0016
0.80


SPRY1.1
SPRY1
<0.0001
0.68


SPARCL1.1
SPARCL1
<0.0001
0.71


SPARC.1
SPARC
0.0009
0.80


SOD1.1
SOD1
0.0114
0.84


SNRK.1
SNRK
<0.0001
0.54


SNAI1.1
SNAI1
0.0055
0.82


MADH4.1
SMAD4
<0.0001
0.60


MADH2.1
SMAD2
<0.0001
0.64


SLC34A1.1
SLC34A1
0.0004
0.76


SLC22A6.1
SLC22A6
0.0003
0.77


SKIL.1
SKIL
0.0004
0.79


SHANK3.1
SHANK3
<0.0001
0.53


SGK.1
SGK1
<0.0001
0.67


FRP1.3
SFRP1
0.0355
0.86


SEMA3F.3
SEMA3F
<0.0001
0.67


SELENBP1.1
SELENBP1
0.0016
0.81


SDPR.1
SDPR
<0.0001
0.51


SDHA.1
SDHA
0.0003
0.77


SCNN1A.2
SCNN1A
0.0134
0.83


SCN4B.1
SCN4B
<0.0001
0.68


KIAA1303
RPTOR
<0.0001
0.77


raptor.1


RPS6KB1.3
RPS6KB1
<0.0001
0.73


RPS6KAI.1
RPS6KA1
0.0291
0.86


RPS23.1
RPS23
<0.0001
0.73


ROCK2.1
ROCK2
<0.0001
0.66


ROCK1.1
ROCK1
<0.0001
0.58


RIPK1.1
RIPK1
<0.0001
0.64


rhoC.1
RHOC
0.0213
0.86


RhoB.1
RHOB
<0.0001
0.63


ARHA.1
RHOA
<0.0001
0.64


RGS5.1
RGS5
<0.0001
0.52


FLJ22655.1
RERGL
<0.0001
0.51


NFKBp65.3
RELA
0.0027
0.82


RB1.1
RB1
<0.0001
0.73


RASSF1.1
RASSF1
0.0040
0.83


RARB.2
RARB
<0.0001
0.57


RALBP1.1
RALBP1
<0.0001
0.73


RAF1.3
RAF1
0.0008
0.81


PTPRG.1
PTPRG
<0.0001
0.57


PTPRB.1
PTPRB
<0.0001
0.51


PTN.1
PTN
<0.0001
0.71


PTK2.1
PTK2
<0.0001
0.61


PTHR1.1
PTH1R
<0.0001
0.55


PTEN.2
PTEN
<0.0001
0.74


PSMB9.1
PSMB9
0.0025
0.82


PSMB8.1
PSMB8
0.0239
0.85


PRSS8.1
PRSS8
<0.0001
0.71


PRPS2.1
PRPS2
0.0156
0.85


PRKCH.1
PRKCH
<0.0001
0.63


PPP2CA.1
PPP2CA
<0.0001
0.77


PPARG.3
PPARG
<0.0001
0.59


PPAP2B.1
PPAP2B
<0.0001
0.50


PLG.1
PLG
<0.0001
0.70


PLAT.1
PLAT
<0.0001
0.64


PLA2G4C.1
PLA2G4C
<0.0001
0.67


PIK3CA.1
PIK3CA
<0.0001
0.75


PI3K.2
PIK3C2B
<0.0001
0.56


PFKP.1
PFKP
0.0067
0.84


CD31.3
PECAM1
<0.0001
0.60


PDZK3.1
PDZK3
0.0005
0.77


PDZK1.1
PDZK1
<0.0001
0.69


PDGFRb.3
PDGFRB
<0.0001
0.74


PDGFD.2
PDGFD
<0.0001
0.58


PDGFC.3
PDGFC
<0.0001
0.66


PDGFB.3
PDGFB
<0.0001
0.63


PDGFA.3
PDGFA
<0.0001
0.75


PCK1.1
PCK1
<0.0001
0.65


PCCA.1
PCCA
<0.0001
0.66


PARD6A.1
PARD6A
0.0001
0.76


Pak1.2
PAK1
0.0011
0.81


PAH.1
PAH
0.0296
0.86


OGG1.1
OGG1
0.0051
0.84


BFGF.3
NUDT6
<0.0001
0.54


NRG1.3
NRG1
0.0049
0.81


NPR1.1
NPR1
<0.0001
0.73


NPM1.2
NPM1
<0.0001
0.73


NOTCH3.1
NOTCH3
<0.0001
0.70


NOTCH2.1
NOTCH2
0.0040
0.84


NOTCH1.1
NOTCH1
<0.0001
0.64


NOS3.1
NOS3
<0.0001
0.55


NOS2A.3
NOS2
<0.0001
0.66


NOL3.1
NOL3
0.0132
0.85


NFX1.1
NFX1
<0.0001
0.67


NFKBp50.3
NFKB1
0.0001
0.77


NFATC2.1
NFATC2
0.0003
0.78


NFAT5.1
NFAT5
0.0010
0.82


MYRIP.2
MYRIP
0.0002
0.75


MYH11.1
MYH11
<0.0001
0.61


cMYC.3
MYC
0.0002
0.79


MVP.1
MVP
0.0052
0.83


MUC1.2
MUC1
0.0405
0.87


FRAP1.1
MTOR
<0.0001
0.75


MSH3.2
MSH3
<0.0001
0.75


MSH2.3
MSH2
<0.0001
0.71


GBL.1
MLST8
0.0246
0.87


MIF.2
MIF
0.0012
0.80


MICA.1
MICA
<0.0001
0.71


MGMT.1
MGMT
<0.0001
0.68


MCM3.3
MCM3
0.0188
0.85


MCAM.1
MCAM
<0.0001
0.71


MARCKS.1
MARCKS
0.0301
0.87


ERK1.3
MAPK3
<0.0001
0.65


ERK2.3
MAPK1
0.0005
0.79


MAP4.1
MAP4
<0.0001
0.65


MAP2K3.1
MAP2K3
<0.0001
0.69


MAP2K1.1
MAP2K1
0.0046
0.83


MAL2.1
MAL2
0.0001
0.76


MAL.1
MAL
<0.0001
0.66


LYZ.1
LYZ
0.0458
0.88


LTF.1
LTF
0.0005
0.76


LRP2.1
LRP2
<0.0001
0.67


LMO2.1
LMO2
<0.0001
0.74


LDB2.1
LDB2
<0.0001
0.52


LDB1.2
LDB1
<0.0001
0.71


LAMA4.1
LAMA4
0.0279
0.86


KRT7.1
KRT7
<0.0001
0.68


K-ras.10
KRAS
<0.0001
0.72


KL.1
KL
<0.0001
0.55


Kitlng.4
KITLG
<0.0001
0.67


c-kit.2
KIT
<0.0001
0.72


KDR.6
KDR
<0.0001
0.54


KCNJ15.1
KCNJ15
<0.0001
0.63


HTATIP.1
KAT5
<0.0001
0.64


G-Catenin.1
JUP
<0.0001
0.64


AP-1 (JUN
JUN
0.0001
0.76


official).2


JAG1.1
JAG1
<0.0001
0.55


ITGB1.1
ITGB1
0.0085
0.83


ITGA7.1
ITGA7
<0.0001
0.66


ITGA6.2
ITGA6
<0.0001
0.63


ITGA4.2
ITGA4
<0.0001
0.74


ITGA3.2
ITGA3
0.0002
0.79


IQGAP2.1
IQGAP2
<0.0001
0.69


INSR.1
INSR
<0.0001
0.67


IMP3.1
IMP3
<0.0001
0.69


IL6ST.3
IL6ST
<0.0001
0.66


IL15.1
IL15
<0.0001
0.70


IGFBP6.1
IGFBP6
0.0004
0.79


IGFBP3.1
IGFBP3
0.0394
0.87


IGFBP2.1
IGFBP2
0.0134
0.84


IGF1R.3
IGF1R
<0.0001
0.58


IFI27.1
IFI27
0.0205
0.85


ID3.1
ID3
<0.0001
0.69


ID2.4
ID2
<0.0001
0.75


ID1.1
ID1
<0.0001
0.55


ICAM2.1
ICAM2
<0.0001
0.64


HYAL2.1
HYAL2
<0.0001
0.60


HYAL1.1
HYAL1
<0.0001
0.58


HSPG2.1
HSPG2
<0.0001
0.60


HSD11B2.1
HSD11B2
<0.0001
0.63


Hepsin.1
HPN
0.0001
0.76


HPCAL1.1
HPCAL1
0.0031
0.82


HMGB1.1
HMGB1
<0.0001
0.67


HLA-DPB1.1
HLA-DPB1
<0.0001
0.70


HIF1AN.1
HIF1AN
<0.0001
0.77


HDAC1.1
HDAC1
0.0003
0.78


HAVCR1.1
HAVCR1
0.0003
0.79


HADH.1
HADH
<0.0001
0.68


GZMA.1
GZMA
0.0125
0.84


GSTp.3
GSTP1
<0.0001
0.76


GSTM3.2
GSTM3
<0.0001
0.70


GSTM1.1
GSTM1
<0.0001
0.72


GRB7.2
GRB7
<0.0001
0.74


GPX3.1
GPX3
<0.0001
0.75


GJA1.1
GJA1
0.0049
0.84


GFRA1.1
GFRA1
0.0003
0.77


GCLC.3
GCLC
<0.0001
0.68


GBP2.2
GBP2
0.0156
0.85


GATM.1
GATM
<0.0001
0.66


GATA3.3
GATA3
0.0001
0.75


FOS.1
FOS
<0.0001
0.74


FOLR1.1
FOLR1
0.0003
0.79


FLT4.1
FLT4
<0.0001
0.54


FLT3LG.1
FLT3LG
0.0001
0.73


FLT1.1
FLT1
<0.0001
0.59


FILIP1.1
FILIP1
<0.0001
0.72


FIGF.1
FIGF
0.0014
0.76


FHL1.1
FHL1
<0.0001
0.68


FHIT.1
FHIT
<0.0001
0.73


FH.1
FH
<0.0001
0.73


FGFR2 isoform
FGFR2
<0.0001
0.70


1.1


FGFR1.3
FGFR1
0.0001
0.77


FGF2.2
FGF2
<0.0001
0.73


FGF1.1
FGF1
0.0015
0.78


FDPS.1
FDPS
<0.0001
0.69


FBXW7.1
FBXW7
0.0001
0.75


fas.1
FAS
<0.0001
0.73


FABP1.1
FABP1
0.0455
0.86


ESRRG.3
ESRRG
0.0008
0.79


ERG.1
ERG
<0.0001
0.60


ERCC1.2
ERCC1
<0.0001
0.78


ErbB3.1
ERBB3
0.0001
0.77


HER2.3
ERBB2
<0.0001
0.65


EPHB4.1
EPHB4
<0.0001
0.64


EPHA2.1
EPHA2
<0.0001
0.58


EPAS1.1
EPAS1
<0.0001
0.55


ENPP2.1
ENPP2
0.0090
0.84


ENPEP.1
ENPEP
<0.0001
0.74


CD105.1
ENG
<0.0001
0.60


EMP1.1
EMP1
<0.0001
0.71


EMCN.1
EMCN
<0.0001
0.43


ELTD1.1
ELTD1
<0.0001
0.76


EIF2C1.1
EIF2C1
<0.0001
0.67


EGR1.1
EGR1
<0.0001
0.72


EGLN3.1
EGLN3
0.0002
0.80


EGFR.2
EGFR
0.0005
0.80


EFNB2.1
EFNB2
<0.0001
0.64


EFNB1.2
EFNB1
<0.0001
0.68


EEF1A1.1
EEF1A1
<0.0001
0.64


EDNRB.1
EDNRB
<0.0001
0.56


EDN2.1
EDN2
0.0005
0.77


EDN1
EDN1
<0.0001
0.62


endothelin.1


EBAG9.1
EBAG9
0.0041
0.82


DUSP1.1
DUSP1
0.0029
0.82


DPYS.1
DPYS
0.0112
0.84


DPEP1.1
DPEP1
<0.0001
0.64


DLL4.1
DLL4
<0.0001
0.76


DLC1.1
DLC1
<0.0001
0.55


DKFZP564O08
DKFZP564O
<0.0001
0.62


23.1
0823


DICER1.2
DICER1
<0.0001
0.71


DIAPH1.1
DIAPH1
0.0009
0.80


DIABLO.1
DIABLO
0.0134
0.84


DHPS.3
DHPS
<0.0001
0.70


DET1.1
DET1
<0.0001
0.74


DEFB1.1
DEFB1
0.0025
0.81


DDC.1
DDC
<0.0001
0.68


DCXR.1
DCXR
0.0081
0.83


DAPK1.3
DAPK1
<0.0001
0.60


CYR61.1
CYR61
<0.0001
0.70


CYP3A4.2
CYP3A4
0.0380
0.86


CXCL9.1
CXCL9
0.0362
0.87


CXCL12.1
CXCL12
<0.0001
0.69


CX3CR1.1
CX3CR1
<0.0001
0.72


CX3CL1.1
CX3CL1
<0.0001
0.58


CUL1.1
CUL1
0.0003
0.80


CUBN.1
CUBN
<0.0001
0.61


CTSS.1
CTSS
0.0016
0.82


CTSH.2
CTSH
<0.0001
0.78


B-Catenin.3
CTNNB1
<0.0001
0.74


A-Catenin.2
CTNNA1
<0.0001
0.77


CTGF.1
CTGF
0.0004
0.79


CSF1R.2
CSF1R
0.0015
0.82


CSF1.1
CSF1
0.0016
0.81


CRADD.1
CRADD
0.0021
0.81


COL4A2.1
COL4A2
0.0016
0.80


COL18A1.1
COL18A1
0.0007
0.79


CLU.3
CLU
0.0151
0.85


CLDN7.2
CLDN7
0.0023
0.81


CLDN10.1
CLDN10
<0.0001
0.69


CLCNKB.1
CLCNKB
0.0002
0.74


CFLAR.1
CFLAR
<0.0001
0.65


CEACAM1.1
CEACAM1
<0.0001
0.59


p27.3
CDKN1B
0.0018
0.83


p21.3
CDKN1A
0.0027
0.81


CDH6.1
CDH6
<0.0001
0.75


CDH5.1
CDH5
<0.0001
0.59


CDH16.1
CDH16
<0.0001
0.75


CDH13.1
CDH13
<0.0001
0.66


CD4.1
CD4
0.0009
0.81


CD36.1
CD36
<0.0001
0.65


CD34.1
CD34
<0.0001
0.62


CCR7.1
CCR7
0.0271
0.86


CCR4.2
CCR4
0.0106
0.83


CCND1.3
CCND1
<0.0001
0.70


CCL4.2
CCL4
0.0012
0.80


MCP1.1
CCL2
<0.0001
0.75


CAT.1
CAT
<0.0001
0.72


CASP6.1
CASP6
0.0369
0.87


CASP10.1
CASP10
<0.0001
0.69


CALD1.2
CALD1
<0.0001
0.61


CA9.3
CA9
0.0035
0.84


CA2.1
CA2
0.0006
0.79


C7.1
C7
0.0030
0.82


ECRG4.1
C2orf40
<0.0001
0.57


C13orf15.1
C13orf15
<0.0001
0.57


BUB3.1
BUB3
0.0002
0.77


BTRC.1
BTRC
0.0006
0.81


CIAP1.2
BIRC2
0.0030
0.82


BIN1.3
BIN1
0.0005
0.80


BGN.1
BGN
<0.0001
0.76


BCL2L12.1
BCL2L12
0.0322
0.86


Bclx.2
BCL2L1
<0.0001
0.74


Bcl2.2
BCL2
<0.0001
0.57


BBC3.2
BBC3
0.0449
0.87


BAG1.2
BAG1
<0.0001
0.64


BAD.1
BAD
0.0076
0.85


ATP6V1B1.1
ATP6V1B1
0.0001
0.71


ASS1.1
ASS1
<0.0001
0.75


ARRB1.1
ARRB1
<0.0001
0.62


ARHGDIB.1
ARHGDIB
<0.0001
0.66


AQP1.1
AQP1
<0.0001
0.50


APOLD1.1
APOLD1
<0.0001
0.57


APC.4
APC
<0.0001
0.73


ANXA4.1
ANXA4
0.0018
0.81


ANXA1.2
ANXA1
0.0009
0.80


ANTXR1.1
ANTXR1
0.0043
0.82


ANGPTL4.1
ANGPTL4
0.0033
0.84


ANGPTL3.3
ANGPTL3
0.0003
0.75


ANGPT1.1
ANGPT1
<0.0001
0.57


ALDOB.1
ALDOB
<0.0001
0.62


ALDH6A1.1
ALDH6A1
<0.0001
0.63


ALDH4.2
ALDH4A1
0.0172
0.85


AKT3.2
AKT3
<0.0001
0.57


AKT2.3
AKT2
<0.0001
0.75


AKT1.3
AKT1
<0.0001
0.71


AIF1.1
AIF1
0.0349
0.87


AHR.1
AHR
<0.0001
0.74


AGTR1.1
AGTR1
<0.0001
0.57


ADH1B.1
ADH1B
0.0002
0.77


ADFP.1
ADFP
0.0332
0.88


ADD1.1
ADD1
<0.0001
0.58


ADAMTS5.1
ADAMTS5
0.0010
0.78


ADAMTS1.1
ADAMTS1
0.0056
0.83


ACE2.1
ACE2
<0.0001
0.62


ACADSB.1
ACADSB
<0.0001
0.71


BCRP.1
ABCG2
<0.0001
0.58


MRP4.2
ABCC4
<0.0001
0.74


MRP3.1
ABCC3
0.0107
0.85


MRP1.1
ABCC1
<0.0001
0.75


ABCB1.5
ABCB1
0.0093
0.84


NPD009
ABAT
0.0001
0.76


(ABAT


official).3


AAMP.1
AAMP
0.0008
0.80


A2M.1
A2M
<0.0001
0.56
















TABLE 3b







Genes for which increased expression is associated with


higher risk of cancer recurrence (p-value ≦ .05)









Univariate Cox Analyses (No



Covariate Adjustment) with RFI











Official
p-value



Gene
Symbol
for HR
HR













WT1.1
WT1
0.0002
1.25


VTN.1
VTN
0.0097
1.17


VDR.2
VDR
0.0031
1.22


VCAN.1
VCAN
0.0036
1.22


UBE2T.1
UBE2T
<0.0001
1.38


C20 orf1.1
TPX2
<0.0001
1.76


TOP2A.4
TOP2A
<0.0001
1.39


TK1.2
TK1
0.0018
1.22


TIMP1.1
TIMP1
0.0259
1.16


TGFBI.1
TGFBI
0.0004
1.26


SQSTM1.1
SQSTM1
0.0089
1.20


OPN,
SPP1
<0.0001
1.43


osteopontin.3


SPHK1.1
SPHK1
0.0025
1.22


SLC7A5.2
SLC7A5
<0.0001
1.38


SLC2A1.1
SLC2A1
0.0010
1.26


SLC16A3.1
SLC16A3
<0.0001
1.38


SLC13A3.1
SLC13A3
0.0192
1.16


SHC1.1
SHC1
0.0086
1.19


SFN.1
SFN
0.0001
1.26


SERPINA5.1
SERPINA5
0.0462
1.13


SEMA3C.1
SEMA3C
<0.0001
1.45


SAA2.2
SAA2
<0.0001
1.59


S100A1.1
S100A1
0.0348
1.16


RRM2.1
RRM2
0.0002
1.27


RPLP1.1
RPLP1
0.0049
1.22


PTTG1.2
PTTG1
<0.0001
1.45


COX2.1
PTGS2
0.0013
1.22


PLAUR.3
PLAUR
<0.0001
1.33


PF4.1
PF4
0.0034
1.20


PCSK6.1
PCSK6
0.0269
1.17


MYBL2.1
MYBL2
<0.0001
1.33


MT1X.1
MT1X
0.0070
1.20


MMP9.1
MMP9
<0.0001
1.54


MMP7.1
MMP7
0.0312
1.15


MMP14.1
MMP14
<0.0001
1.47


Ki-67.2
MKI67
<0.0001
1.33


mGST1.2
MGST1
<0.0001
1.38


MDK.1
MDK
0.0001
1.31


LOX.1
LOX
<0.0001
1.42


LMNB1.1
LMNB1
<0.0001
1.40


LIMK1.1
LIMK1
<0.0001
1.43


LGALS1.1
LGALS1
0.0017
1.25


LAMB3.1
LAMB3
<0.0001
1.34


LAMB1.1
LAMB1
0.0014
1.25


L1CAM.1
L1CAM
0.0199
1.16


IL-8.1
IL8
<0.0001
1.53


IL6.3
IL6
<0.0001
1.41


ICAM1.1
ICAM1
0.0013
1.23


HIST1H1D.1
HIST1H1D
0.0066
1.21


FN1.1
FN1
0.0105
1.19


F3.1
F3
<0.0001
1.31


F2.1
F2
<0.0001
1.30


ESPL1.3
ESPL1
0.0155
1.17


EPHB2.1
EPHB2
0.0456
1.14


EPHB1.3
EPHB1
0.0007
1.22


ENO2.1
ENO2
<0.0001
1.38


EIF4EBP1.1
EIF4EBP1
0.0098
1.19


CXCR4.3
CXCR4
0.0066
1.21


GRO1.2
CXCL1
<0.0001
1.30


CTSB.1
CTSB
0.0233
1.17


CRP.1
CRP
0.0314
1.13


CP.1
CP
0.0002
1.32


COL7A1.1
COL7A1
0.0003
1.24


COL1A1.1
COL1A1
0.0029
1.23


Chk1.2
CHEK1
0.0002
1.26


CENPF.1
CENPF
<0.0001
1.36


CD82.3
CD82
0.0009
1.25


CD44s.1
CD44_s
0.0065
1.21


CCNE1.1
CCNE1
0.0098
1.17


CCNB1.2
CCNB1
<0.0001
1.42


CCL20.1
CCL20
0.0029
1.22


CA12.1
CA12
<0.0001
1.48


C3.1
C3
0.0176
1.18


BUB1.1
BUB1
<0.0001
1.59


SURV.2
BIRC5
<0.0001
1.37


cIAP2.2
BIRC3
0.0484
1.15


BCL2A1.1
BCL2A1
0.0483
1.11


STK15.2
AURKA
0.0002
1.28


ANXA2.2
ANXA2
0.0315
1.16


ALOX5.1
ALOX5
0.0473
1.14


ADAM8.1
ADAM8
0.0002
1.29


MRP2.3
ABCC2
0.0004
1.28
















TABLE 4a







Proxy genes for which increased expression is associated


with higher tumor stage (p-value ≦ .05)











Official
Stage 3 vs. 1













Gene
Symbol
p-value
OR
















WT1.1
WT1
<0.0001
1.41



VTN.1
VTN
0.0007
1.29



VDR.2
VDR
0.0065
1.25



UBE2T.1
UBE2T
<0.0001
1.61



TSPAN8.1
TSPAN8
0.0072
1.23



C20 orf1.1
TPX2
<0.0001
1.89



TOP2A.4
TOP2A
<0.0001
1.55



TK1.2
TK1
0.0001
1.34



TIMP1.1
TIMP1
0.0021
1.29



TGFBI.1
TGFBI
0.0001
1.39



OPN,
SPP1
0.0001
1.38



osteopontin.3



SLC7A5.2
SLC7A5
<0.0001
1.51



SLC2A1.1
SLC2A1
0.0081
1.24



SLC16A3.1
SLC16A3
<0.0001
1.46



SFN.1
SFN
0.0001
1.36



SEMA3C.1
SEMA3C
<0.0001
1.42



SELL.1
SELL
0.0313
1.19



SAA2.2
SAA2
<0.0001
2.04



RRM2.1
RRM2
<0.0001
1.47



RPLP1.1
RPLP1
0.0007
1.33



RAD51.1
RAD51
0.0010
1.31



PTTG1.2
PTTG1
<0.0001
1.61



COX2.1
PTGS2
0.0011
1.29



PTGIS.1
PTGIS
0.0034
1.27



PLAUR.3
PLAUR
<0.0001
1.51



PF4.1
PF4
0.0027
1.26



PDGFRa.2
PDGFRA
0.0480
1.17



PCSK6.1
PCSK6
0.0041
1.27



NNMT.1
NNMT
0.0003
1.34



NME2.1
NME2
0.0028
1.28



MYBL2.1
MYBL2
<0.0001
1.50



MT1X.1
MT1X
0.0192
1.21



MMP9.1
MMP9
<0.0001
1.79



MMP7.1
MMP7
0.0252
1.20



MMP14.1
MMP14
<0.0001
1.88



Ki-67.2
MKI67
<0.0001
1.48



mGST1.2
MGST1
0.0004
1.37



MDK.1
MDK
<0.0001
1.42



MDH2.1
MDH2
0.0321
1.19



LRRC2.1
LRRC2
0.0259
1.19



LOX.1
LOX
<0.0001
1.78



LMNB1.1
LMNB1
<0.0001
1.82



LIMK1.1
LIMK1
<0.0001
1.46



LAPTM5.1
LAPTM5
0.0102
1.23



LAMB3.1
LAMB3
<0.0001
1.53



LAMB1.1
LAMB1
0.0452
1.18



LAMA3.1
LAMA3
0.0121
1.22



L1CAM.1
L1CAM
0.0091
1.22



ISG20.1
ISG20
0.0006
1.34



IL-8.1
IL8
<0.0001
1.89



IL6.3
IL6
<0.0001
1.68



IGF1.2
IGF1
0.0214
1.20



ICAM1.1
ICAM1
<0.0001
1.42



HIST1H1D.1
HIST1H1D
0.0005
1.33



GPX2.2
GPX2
0.0129
1.22



FN1.1
FN1
0.0002
1.36



FAP.1
FAP
0.0455
1.18



F3.1
F3
<0.0001
1.52



F2.1
F2
<0.0001
1.79



ESPL1.3
ESPL1
0.0001
1.35



EPB41L3.1
EPB41L3
0.0067
1.24



ENO2.1
ENO2
0.0016
1.31



EIF4EBP1.1
EIF4EBP1
0.0036
1.27



E2F1.3
E2F1
0.0017
1.27



DCN.1
DCN
0.0152
1.22



CXCR6.1
CXCR6
0.0013
1.30



BLR1.1
CXCR5
0.0232
1.19



CXCR4.3
CXCR4
0.0003
1.35



GRO1.2
CXCL1
0.0005
1.31



CTSB.1
CTSB
0.0110
1.24



CRP.1
CRP
0.0002
1.31



CP.1
CP
0.0008
1.34



COL7A1.1
COL7A1
0.0010
1.28



COL1A1.1
COL1A1
0.0001
1.40



Chk2.3
CHEK2
0.0050
1.27



Chk1.2
CHEK1
<0.0001
1.43



CENPF.1
CENPF
<0.0001
1.55



CD82.3
CD82
0.0001
1.38



CD44s.1
CD44_s
0.0060
1.25



CCNE2.2
CCNE2_2
0.0229
1.19



CCNB1.2
CCNB1
<0.0001
1.60



CCL20.1
CCL20
0.0010
1.30



CA12.1
CA12
<0.0001
1.66



C3.1
C3
0.0009
1.32



BUB1.1
BUB1
<0.0001
1.82



SURV.2
BIRC5
<0.0001
1.46



BCL2A1.1
BCL2A1
<0.0001
1.44



STK15.2
AURKA
0.0002
1.36



APOL1.1
APOL1
0.0028
1.27



ANXA2.2
ANXA2
0.0174
1.21



ADAM8.1
ADAM8
<0.0001
1.58



MRP2.3
ABCC2
<0.0001
1.45

















TABLE 4b







Proxy genes for which increased expression is associated


with lower tumor stage (p-value ≦ .05)











Official
Stage 3 vs. 1













Gene
Symbol
p-value
OR
















YB-1.2
YBX1
<0.0001
0.63



XIAP.1
XIAP
<0.0001
0.62



WWOX.5
WWOX
0.0042
0.79



WISP1.1
WISP1
0.0096
0.81



VWF.1
VWF
<0.0001
0.46



VEGF.1
VEGFA
<0.0001
0.63



VCAM1.1
VCAM1
<0.0001
0.55



USP34.1
USP34
0.0001
0.72



UMOD.1
UMOD
<0.0001
0.47



UGCG.1
UGCG
<0.0001
0.68



UBB.1
UBB
<0.0001
0.54



UBE1C.1
UBA3
<0.0001
0.62



TS.1
TYMS
0.0010
0.76



tusc4.2
TUSC4
<0.0001
0.57



TUSC2.1
TUSC2
0.0295
0.83



TSPAN7.2
TSPAN7
<0.0001
0.35



TSC2.1
TSC2
<0.0001
0.66



TSC1.1
TSC1
<0.0001
0.56



P53.2
TP53
<0.0001
0.67



TOP2B.2
TOP2B
<0.0001
0.69



TNIP2.1
TNIP2
0.0359
0.85



TNFSF12.1
TNFSF12
<0.0001
0.50



TRAIL.1
TNFSF10
0.0011
0.77



TNFRSF11B.1
TNFRSF11B
<0.0001
0.63



TNFRSF10D.1
TNFRSF10D
<0.0001
0.57



DR5.2
TNFRSF10B
<0.0001
0.64



TNFAIP6.1
TNFAIP6
0.0001
0.74



TNF.1
TNF
0.0138
0.80



TMEM47.1
TMEM47
<0.0001
0.41



TMEM27.1
TMEM27
<0.0001
0.53



TLR3.1
TLR3
<0.0001
0.68



TIMP3.3
TIMP3
<0.0001
0.39



TIMP2.1
TIMP2
<0.0001
0.68



THBS1.1
THBS1
<0.0001
0.65



TGFBR2.3
TGFBR2
<0.0001
0.41



TGFBR1.1
TGFBR1
<0.0001
0.59



TGFB2.2
TGFB2
<0.0001
0.50



TGFb1.1
TGFB1
<0.0001
0.67



TGFA.2
TGFA
<0.0001
0.63



TEK.1
TEK
<0.0001
0.34



TCF4.1
TCF4
<0.0001
0.47



TAP1.1
TAP1
0.0017
0.77



TAGLN.1
TAGLN
0.0001
0.72



TACSTD2.1
TACSTD2
<0.0001
0.58



SUCLG1.1
SUCLG1
<0.0001
0.56



STK11.1
STK11
<0.0001
0.58



STAT5B.2
STAT5B
<0.0001
0.50



STAT5A.1
STAT5A
<0.0001
0.60



STAT3.1
STAT3
0.0001
0.72



STAT1.3
STAT1
0.0344
0.84



SPRY1.1
SPRY1
<0.0001
0.57



SPAST.1
SPAST
0.0142
0.82



SPARCL1.1
SPARCL1
<0.0001
0.59



SPARC.1
SPARC
<0.0001
0.69



SOD1.1
SOD1
0.0245
0.83



SNRK.1
SNRK
<0.0001
0.35



SNAI1.1
SNAI1
<0.0001
0.70



MADH4.1
SMAD4
<0.0001
0.47



MADH2.1
SMAD2
<0.0001
0.50



SLC9A1.1
SLC9A1
0.0207
0.82



SLC34A1.1
SLC34A1
<0.0001
0.63



SLC22A6.1
SLC22A6
0.0010
0.76



SKIL.1
SKIL
<0.0001
0.64



PTPNS1.1
SIRPA
0.0075
0.81



SHANK3.1
SHANK3
<0.0001
0.37



SGK.1
SGK1
<0.0001
0.55



FRP1.3
SFRP1
0.0156
0.82



SEMA3F.3
SEMA3F
<0.0001
0.50



SELPLG.1
SELPLG
0.0022
0.78



SELENBP1.1
SELENBP1
0.0003
0.75



SDPR.1
SDPR
<0.0001
0.42



SDHA.1
SDHA
<0.0001
0.65



SCNN1A.2
SCNN1A
0.0024
0.77



SCN4B.1
SCN4B
<0.0001
0.50



S100A2.1
S100A2
0.0008
0.75



KIAA1303
RPTOR
<0.0001
0.60



raptor.1



RPS6KB1.3
RPS6KB1
<0.0001
0.60



RPS6KAI.1
RPS6KA1
0.0002
0.71



RPS23.1
RPS23
0.0002
0.73



ROCK2.1
ROCK2
<0.0001
0.52



ROCK1.1
ROCK1
<0.0001
0.37



RIPK1.1
RIPK1
<0.0001
0.55



rhoC.1
RHOC
<0.0001
0.66



RhoB.1
RHOB
<0.0001
0.57



ARHA.1
RHOA
<0.0001
0.50



RHEB.2
RHEB
<0.0001
0.61



RGS5.1
RGS5
<0.0001
0.37



FLJ22655.1
RERGL
<0.0001
0.33



RB1.1
RB1
<0.0001
0.61



RASSF1.1
RASSF1
0.0002
0.75



RARB.2
RARB
<0.0001
0.37



RALBP1.1
RALBP1
<0.0001
0.43



RAF1.3
RAF1
<0.0001
0.59



RAC1.3
RAC1
0.0356
0.84



PTPRG.1
PTPRG
<0.0001
0.35



PTPRB.1
PTPRB
<0.0001
0.31



PTN.1
PTN
<0.0001
0.56



PTK2.1
PTK2
<0.0001
0.45



PTHR1.1
PTH1R
<0.0001
0.45



PTEN.2
PTEN
<0.0001
0.51



PSMB9.1
PSMB9
0.0139
0.82



PSMB8.1
PSMB8
0.0243
0.83



PSMA7.1
PSMA7
0.0101
0.81



PRSS8.1
PRSS8
0.0025
0.78



PRPS2.1
PRPS2
0.0190
0.82



PRKCH.1
PRKCH
<0.0001
0.48



PRKCD.2
PRKCD
0.0001
0.72



PPP2CA.1
PPP2CA
<0.0001
0.58



PPARG.3
PPARG
<0.0001
0.40



PPAP2B.1
PPAP2B
<0.0001
0.31



PLG.1
PLG
<0.0001
0.53



PLAT.1
PLAT
<0.0001
0.54



PLA2G4C.1
PLA2G4C
<0.0001
0.65



PIK3CA.1
PIK3CA
<0.0001
0.53



PI3K.2
PIK3C2B
<0.0001
0.40



PFKP.1
PFKP
0.0124
0.82



CD31.3
PECAM1
<0.0001
0.42



PDZK3.1
PDZK3
0.0003
0.72



PDZK1.1
PDZK1
<0.0001
0.58



PDGFRb.3
PDGFRB
<0.0001
0.62



PDGFD.2
PDGFD
<0.0001
0.43



PDGFC.3
PDGFC
<0.0001
0.51



PDGFB.3
PDGFB
<0.0001
0.40



PDGFA.3
PDGFA
<0.0001
0.57



PCK1.1
PCK1
<0.0001
0.60



PCCA.1
PCCA
<0.0001
0.58



PARD6A.1
PARD6A
0.0042
0.79



Pak1.2
PAK1
<0.0001
0.69



PAH.1
PAH
0.0309
0.84



OGG1.1
OGG1
0.0024
0.78



BFGF.3
NUDT6
<0.0001
0.46



NPR1.1
NPR1
<0.0001
0.58



NPM1.2
NPM1
<0.0001
0.65



NOTCH3.1
NOTCH3
<0.0001
0.58



NOTCH2.1
NOTCH2
<0.0001
0.64



NOTCH1.1
NOTCH1
<0.0001
0.44



NOS3.1
NOS3
<0.0001
0.44



NOS2A.3
NOS2
<0.0001
0.49



NOL3.1
NOL3
0.0003
0.76



NFX1.1
NFX1
<0.0001
0.50



NFKBp50.3
NFKB1
<0.0001
0.59



NFATC2.1
NFATC2
<0.0001
0.64



NFAT5.1
NFAT5
<0.0001
0.65



MYRIP.2
MYRIP
0.0004
0.72



MYH11.1
MYH11
<0.0001
0.50



cMYC.3
MYC
<0.0001
0.70



MX1.1
MX1
0.0103
0.81



MVP.1
MVP
0.0002
0.74



MUC1.2
MUC1
0.0005
0.75



FRAP1.1
MTOR
<0.0001
0.61



MSH3.2
MSH3
<0.0001
0.60



MSH2.3
MSH2
<0.0001
0.53



STMY3.3
MMP11
0.0034
0.79



GBL.1
MLST8
0.0011
0.77



MIF.2
MIF
0.0008
0.76



MICA.1
MICA
<0.0001
0.70



MGMT.1
MGMT
<0.0001
0.60



MCM3.3
MCM3
<0.0001
0.68



MCAM.1
MCAM
<0.0001
0.52



MARCKS.1
MARCKS
0.0001
0.73



ERK1.3
MAPK3
<0.0001
0.48



ERK2.3
MAPK1
0.0221
0.83



MAP4.1
MAP4
<0.0001
0.63



MAP2K3.1
MAP2K3
<0.0001
0.59



MAP2K1.1
MAP2K1
0.0002
0.74



MAL2.1
MAL2
<0.0001
0.64



MAL.1
MAL
<0.0001
0.49



LYZ.1
LYZ
0.0318
0.84



LTF.1
LTF
0.0131
0.80



LRP2.1
LRP2
<0.0001
0.63



LMO2.1
LMO2
<0.0001
0.56



LDB2.1
LDB2
<0.0001
0.41



LDB1.2
LDB1
<0.0001
0.54



LAMA4.1
LAMA4
0.0004
0.75



KRT7.1
KRT7
<0.0001
0.60



K-ras.10
KRAS
<0.0001
0.68



KL.1
KL
<0.0001
0.49



Kitlng.4
KITLG
<0.0001
0.43



c-kit.2
KIT
<0.0001
0.60



KDR.6
KDR
<0.0001
0.36



KCNJ15.1
KCNJ15
<0.0001
0.54



HTATIP.1
KAT5
<0.0001
0.40



G-Catenin.1
JUP
<0.0001
0.42



AP-1 (JUN
JUN
0.0001
0.73



official).2



JAG1.1
JAG1
<0.0001
0.42



ITGB5.1
ITGB5
0.0115
0.81



ITGB1.1
ITGB1
<0.0001
0.64



ITGA7.1
ITGA7
<0.0001
0.54



ITGA6.2
ITGA6
<0.0001
0.51



ITGA5.1
ITGA5
0.0325
0.84



ITGA4.2
ITGA4
<0.0001
0.54



ITGA3.2
ITGA3
<0.0001
0.61



IQGAP2.1
IQGAP2
<0.0001
0.63



INSR.1
INSR
<0.0001
0.59



IMP3.1
IMP3
<0.0001
0.54



IL-7.1
IL7
0.0444
0.85



IL6ST.3
IL6ST
<0.0001
0.50



IL15.1
IL15
<0.0001
0.67



IGFBP6.1
IGFBP6
0.0001
0.73



IGFBP3.1
IGFBP3
0.0191
0.83



IGF1R.3
IGF1R
<0.0001
0.48



ID3.1
ID3
<0.0001
0.54



ID2.4
ID2
0.0008
0.77



ID1.1
ID1
<0.0001
0.34



ICAM2.1
ICAM2
<0.0001
0.58



HYAL2.1
HYAL2
<0.0001
0.41



HYAL1.1
HYAL1
<0.0001
0.44



HSPG2.1
HSPG2
<0.0001
0.44



HSD11B2.1
HSD11B2
<0.0001
0.47



Hepsin.1
HPN
0.0031
0.79



HPCAL1.1
HPCAL1
0.0004
0.75



HNRPAB.3
HNRNPAB
0.0039
0.78



HMGB1.1
HMGB1
<0.0001
0.46



HLA-DPB1.1
HLA-DPB1
<0.0001
0.55



HIF1AN.1
HIF1AN
<0.0001
0.57



HIF1A.3
HIF1A
0.0076
0.80



HGF.4
HGF
0.0067
0.80



HDAC1.1
HDAC1
<0.0001
0.61



HAVCR1.1
HAVCR1
0.0001
0.73



HADH.1
HADH
<0.0001
0.62



GSTT1.3
GSTT1
0.0112
0.82



GSTp.3
GSTP1
<0.0001
0.64



GSTM3.2
GSTM3
<0.0001
0.57



GSTM1.1
GSTM1
<0.0001
0.55



GRB7.2
GRB7
<0.0001
0.66



GRB14.1
GRB14
0.0123
0.81



GPX3.1
GPX3
0.0120
0.82



GNAS.1
GNAS
0.0003
0.74



GJA1.1
GJA1
0.0034
0.79



GFRA1.1
GFRA1
0.0164
0.82



GCLM.2
GCLM
0.0056
0.80



GCLC.3
GCLC
<0.0001
0.49



GBP2.2
GBP2
0.0388
0.84



GATM.1
GATM
<0.0001
0.59



GATA3.3
GATA3
0.0002
0.72



FOS.1
FOS
<0.0001
0.65



FOLR1.1
FOLR1
<0.0001
0.65



FLT4.1
FLT4
<0.0001
0.37



FLT3LG.1
FLT3LG
<0.0001
0.61



FLT1.1
FLT1
<0.0001
0.40



FILIP1.1
FILIP1
<0.0001
0.47



FIGF.1
FIGF
<0.0001
0.53



FHL1.1
FHL1
<0.0001
0.52



FHIT.1
FHIT
<0.0001
0.54



FH.1
FH
<0.0001
0.67



FGFR2 isoform
FGFR2
<0.0001
0.62



1.1



FGFR1.3
FGFR1
<0.0001
0.63



FGF2.2
FGF2
<0.0001
0.58



FGF1.1
FGF1
<0.0001
0.66



FDPS.1
FDPS
<0.0001
0.47



FBXW7.1
FBXW7
<0.0001
0.66



fas.1
FAS
<0.0001
0.66



ESRRG.3
ESRRG
0.0001
0.72



ERG.1
ERG
<0.0001
0.44



ERCC1.2
ERCC1
<0.0001
0.60



ERBB4.3
ERBB4
0.0018
0.74



ErbB3.1
ERBB3
0.0031
0.79



HER2.3
ERBB2
<0.0001
0.53



EPHB4.1
EPHB4
<0.0001
0.51



EPHA2.1
EPHA2
<0.0001
0.40



EPAS1.1
EPAS1
<0.0001
0.38



ENPP2.1
ENPP2
0.0001
0.72



ENPEP.1
ENPEP
<0.0001
0.65



CD105.1
ENG
<0.0001
0.38



EMP1.1
EMP1
<0.0001
0.64



EMCN.1
EMCN
<0.0001
0.27



ELTD1.1
ELTD1
<0.0001
0.67



EIF2C1.1
EIF2C1
<0.0001
0.51



EGR1.1
EGR1
<0.0001
0.59



EGLN3.1
EGLN3
0.0002
0.75



EGFR.2
EGFR
0.0072
0.81



EGF.3
EGF
0.0051
0.77



EFNB2.1
EFNB2
<0.0001
0.45



EFNB1.2
EFNB1
<0.0001
0.55



EEF1A1.1
EEF1A1
<0.0001
0.55



EDNRB.1
EDNRB
<0.0001
0.44



EDN2.1
EDN2
0.0012
0.74



EDN1
EDN1
<0.0001
0.53



endothelin.1



EBAG9.1
EBAG9
0.0240
0.83



DUSP1.1
DUSP1
0.0130
0.82



DPYS.1
DPYS
0.0355
0.85



DPEP1.1
DPEP1
<0.0001
0.66



DLL4.1
DLL4
<0.0001
0.66



DLC1.1
DLC1
<0.0001
0.42



DKFZP564O08
DKFZP564O
<0.0001
0.51



23.1
0823



DICER1.2
DICER1
<0.0001
0.50



DIAPH1.1
DIAPH1
0.0219
0.83



DIABLO.1
DIABLO
0.0022
0.78



DHPS.3
DHPS
<0.0001
0.55



DET1.1
DET1
0.0005
0.74



DEFB1.1
DEFB1
0.0002
0.73



DDC.1
DDC
<0.0001
0.72



DAPK1.3
DAPK1
<0.0001
0.42



CYR61.1
CYR61
<0.0001
0.59



CXCL12.1
CXCL12
<0.0001
0.62



CX3CR1.1
CX3CR1
<0.0001
0.46



CX3CL1.1
CX3CL1
<0.0001
0.47



CUL1.1
CUL1
<0.0001
0.64



CUBN.1
CUBN
<0.0001
0.55



CTSS.1
CTSS
0.0007
0.76



CTSH.2
CTSH
<0.0001
0.64



B-Catenin.3
CTNNB1
<0.0001
0.54



A-Catenin.2
CTNNA1
<0.0001
0.65



CTGF.1
CTGF
<0.0001
0.71



CSF2RA.2
CSF2RA
0.0037
0.78



CSF1R.2
CSF1R
<0.0001
0.67



CSF1.1
CSF1
<0.0001
0.65



CRADD.1
CRADD
0.0032
0.79



COL4A2.1
COL4A2
<0.0001
0.65



COL4A1.1
COL4A1
0.0067
0.80



COL18A1.1
COL18A1
0.0001
0.72



CLU.3
CLU
0.0004
0.75



CLDN10.1
CLDN10
<0.0001
0.65



CLCNKB.1
CLCNKB
<0.0001
0.52



CFLAR.1
CFLAR
<0.0001
0.60



CEACAM1.1
CEACAM1
<0.0001
0.55



p21.3
CDKN1A
0.0002
0.73



CDH6.1
CDH6
<0.0001
0.72



CDH5.1
CDH5
<0.0001
0.44



CDH2.1
CDH2
0.0392
0.85



CDH16.1
CDH16
<0.0001
0.70



CDH13.1
CDH13
<0.0001
0.53



CDC25B.1
CDC25B
0.0037
0.79



CD4.1
CD4
<0.0001
0.72



CD36.1
CD36
<0.0001
0.51



CD34.1
CD34
<0.0001
0.48



CD24.1
CD24
0.0206
0.83



CD14.1
CD14
0.0152
0.82



CCND1.3
CCND1
<0.0001
0.51



CCL4.2
CCL4
0.0017
0.77



MCP1.1
CCL2
<0.0001
0.66



CAT.1
CAT
<0.0001
0.53



CASP10.1
CASP10
0.0001
0.72



CALD1.2
CALD1
<0.0001
0.55



CACNA2D1.1
CACNA2D1
0.0352
0.84



CA9.3
CA9
0.0299
0.84



CA2.1
CA2
<0.0001
0.58



C3AR1.1
C3AR1
0.0010
0.77



ECRG4.1
C2orf40
<0.0001
0.47



C1QA.1
C1QA
0.0119
0.82



C13orf15.1
C13orf15
<0.0001
0.37



BUB3.1
BUB3
<0.0001
0.67



BTRC.1
BTRC
<0.0001
0.65



CIAP1.2
BIRC2
<0.0001
0.64



BIN1.3
BIN1
0.0001
0.73



BGN.1
BGN
<0.0001
0.63



Bclx.2
BCL2L1
<0.0001
0.58



Bcl2.2
BCL2
<0.0001
0.37



Bax.1
BAX
0.0035
0.78



Bak.2
BAK1
0.0215
0.83



BAG1.2
BAG1
<0.0001
0.40



ATP6V1B1.1
ATP6V1B1
<0.0001
0.54



ATP1A1.1
ATP1A1
0.0037
0.78



ASS1.1
ASS1
<0.0001
0.60



ARRB1.1
ARRB1
<0.0001
0.45



ARHGDIB.1
ARHGDIB
<0.0001
0.50



AQP1.1
AQP1
<0.0001
0.40



APOLD1.1
APOLD1
<0.0001
0.54



APC.4
APC
<0.0001
0.57



ANXA4.1
ANXA4
0.0003
0.74



ANXA1.2
ANXA1
0.0001
0.73



ANTXR1.1
ANTXR1
0.0051
0.80



ANGPTL4.1
ANGPTL4
0.0041
0.80



ANGPTL3.3
ANGPTL3
0.0258
0.82



ANGPTL2.1
ANGPTL2
0.0015
0.77



ANGPT2.1
ANGPT2
<0.0001
0.72



ANGPT1.1
ANGPT1
<0.0001
0.45



ALDOB.1
ALDOB
<0.0001
0.60



ALDH6A1.1
ALDH6A1
<0.0001
0.55



ALDH4.2
ALDH4A1
0.0124
0.82



AKT3.2
AKT3
<0.0001
0.43



AKT2.3
AKT2
<0.0001
0.64



AKT1.3
AKT1
<0.0001
0.58



AIF1.1
AIF1
0.0002
0.74



AHR.1
AHR
<0.0001
0.59



AGTR1.1
AGTR1
<0.0001
0.36



ADH1B.1
ADH1B
0.0015
0.77



ADD1.1
ADD1
<0.0001
0.40



ADAMTS5.1
ADAMTS5
0.0006
0.73



ADAM17.1
ADAM17
<0.0001
0.72



ACE2.1
ACE2
<0.0001
0.61



ACADSB.1
ACADSB
<0.0001
0.54



BCRP.1
ABCG2
<0.0001
0.41



MRP4.2
ABCC4
<0.0001
0.65



MRP3.1
ABCC3
0.0005
0.76



MRP1.1
ABCC1
0.0017
0.78



ABCB1.5
ABCB1
0.0003
0.75



NPD009 (ABAT
ABAT
<0.0001
0.70



official).3



AAMP.1
AAMP
0.0292
0.84



A2M.1
A2M
<0.0001
0.36

















TABLE 5a







Proxy genes for which increased expression is associated


with higher tumor grade (p-value ≦ .05)











Official
CCF Grade













Gene
Symbol
p-value
OR
















WT1.1
WT1
<0.0001
1.39



VTN.1
VTN
0.0359
1.16



VDR.2
VDR
0.0001
1.29



UBE2T.1
UBE2T
<0.0001
1.81



TP.3
TYMP
<0.0001
1.35



C20 orf1.1
TPX2
<0.0001
2.14



TOP2A.4
TOP2A
<0.0001
2.07



TNFSF13B.1
TNFSF13B
0.0062
1.20



TK1.2
TK1
<0.0001
1.66



TGFBI.1
TGFBI
0.0452
1.14



STAT1.3
STAT1
<0.0001
1.31



SQSTM1.1
SQSTM1
0.0003
1.27



OPN,
SPP1
0.0002
1.29



osteopontin.3



SLC7A5.2
SLC7A5
0.0002
1.28



SLC16A3.1
SLC16A3
0.0052
1.21



SLC13A3.1
SLC13A3
0.0003
1.27



SFN.1
SFN
0.0066
1.20



SEMA3C.1
SEMA3C
<0.0001
1.32



SAA2.2
SAA2
<0.0001
2.13



S100A1.1
S100A1
<0.0001
1.40



RRM2.1
RRM2
<0.0001
1.71



RPLP1.1
RPLP1
0.0007
1.25



RAD51.1
RAD51
<0.0001
1.53



PTTG1.2
PTTG1
<0.0001
1.89



PSMB9.1
PSMB9
0.0010
1.25



PSMB8.1
PSMB8
0.0181
1.17



PRKCB1.1
PRKCB
0.0218
1.16



PDCD1.1
PDCD1
<0.0001
1.43



PCSK6.1
PCSK6
0.0009
1.25



PCNA.2
PCNA
0.0041
1.21



NME2.1
NME2
0.0106
1.19



MYBL2.1
MYBL2
<0.0001
1.70



MMP9.1
MMP9
<0.0001
1.46



MMP14.1
MMP14
0.0003
1.28



Ki-67.2
MKI67
<0.0001
1.70



mGST1.2
MGST1
<0.0001
2.13



cMet.2
MET
<0.0001
1.57



MDK.1
MDK
<0.0001
1.55



MDH2.1
MDH2
<0.0001
1.35



MCM2.2
MCM2
<0.0001
1.33



LOX.1
LOX
<0.0001
1.35



LMNB1.1
LMNB1
<0.0001
1.76



LIMK1.1
LIMK1
<0.0001
1.43



LAPTM5.1
LAPTM5
0.0044
1.21



LAMB3.1
LAMB3
<0.0001
1.49



L1CAM.1
L1CAM
0.0338
1.15



KLRK1.2
KLRK1
0.0412
1.15



CD18.2
ITGB2
0.0069
1.21



IL-8.1
IL8
0.0088
1.19



IL6.3
IL6
0.0091
1.19



ICAM1.1
ICAM1
0.0014
1.24



HSPA8.1
HSPA8
<0.0001
1.39



HPD.1
HPD
0.0054
1.20



HIST1H1D.1
HIST1H1D
0.0248
1.16



HGD.1
HGD
<0.0001
1.41



GZMA.1
GZMA
0.0006
1.26



GPX2.2
GPX2
0.0182
1.18



GPX1.2
GPX1
0.0008
1.25



FCGR3A.1
FCGR3A
0.0003
1.27



fasl.2
FASLG
0.0045
1.21



FABP1.1
FABP1
<0.0001
1.32



F2.1
F2
<0.0001
1.77



ESPL1.3
ESPL1
<0.0001
1.60



E2F1.3
E2F1
<0.0001
1.36



CXCR6.1
CXCR6
<0.0001
1.50



BLR1.1
CXCR5
0.0338
1.15



CXCL9.1
CXCL9
0.0001
1.29



CXCL10.1
CXCL10
0.0078
1.19



GRO1.2
CXCL1
<0.0001
1.39



CTSD.2
CTSD
0.0183
1.17



CTSB.1
CTSB
0.0006
1.26



CRP.1
CRP
0.0342
1.15



CP.1
CP
<0.0001
1.37



Chk2.3
CHEK2
<0.0001
1.37



Chk1.2
CHEK1
<0.0001
1.37



CENPF.1
CENPF
<0.0001
1.78



CD8A.1
CD8A
<0.0001
1.35



CD82.3
CD82
<0.0001
1.50



TNFSF7.1
CD70
<0.0001
1.43



CCNE1.1
CCNE1
0.0002
1.29



CCNB1.2
CCNB1
<0.0001
1.75



CCL5.2
CCL5
<0.0001
1.63



CCL20.1
CCL20
0.0082
1.19



CAV2.1
CAV2
0.0210
1.17



CA12.1
CA12
<0.0001
1.41



C3.1
C3
<0.0001
1.34



C1QB.1
C1QB
0.0201
1.17



BUB1.1
BUB1
<0.0001
2.16



BRCA1.2
BRCA1
0.0004
1.26



SURV.2
BIRC5
<0.0001
1.93



cIAP2.2
BIRC3
<0.0001
1.44



STK15.2
AURKA
<0.0001
1.38



ATP5E.1
ATP5E
<0.0001
1.45



APOL1.1
APOL1
<0.0001
1.47



APOE.1
APOE
<0.0001
1.40



APOC1.3
APOC1
<0.0001
1.42



ANXA2.2
ANXA2
0.0020
1.23



ANGPTL3.3
ANGPTL3
<0.0001
1.32



AMACR1.1
AMACR
0.0382
1.15



ALOX5.1
ALOX5
0.0001
1.29



ALDH4.2
ALDH4A1
0.0002
1.28



ADAM8.1
ADAM8
0.0006
1.26



MRP2.3
ABCC2
<0.0001
1.97

















TABLE 5b







Proxy genes for which increased expression is associated with


lower tumor grade (p-value ≦ .05)











Official
CCF Grade













Gene
Symbol
p-value
OR
















ZHX2.1
ZHX2
0.0061
0.83



YB-1.2
YBX1
<0.0001
0.62



XPNPEP2.2
XPNPEP2
0.0040
0.82



XIAP.1
XIAP
<0.0001
0.64



WISP1.1
WISP1
<0.0001
0.58



VWF.1
VWF
<0.0001
0.34



VHL.1
VHL
0.0088
0.84



VEGF.1
VEGFA
<0.0001
0.48



VCAN.1
VCAN
0.0023
0.82



VCAM1.1
VCAM1
0.0049
0.83



USP34.1
USP34
<0.0001
0.62



UMOD.1
UMOD
<0.0001
0.69



UGCG.1
UGCG
<0.0001
0.58



UBB.1
UBB
<0.0001
0.62



UBE1C.1
UBA3
<0.0001
0.67



tusc4.2
TUSC4
<0.0001
0.61



TUSC2.1
TUSC2
0.0481
0.88



TSPAN7.2
TSPAN7
<0.0001
0.29



TSC2.1
TSC2
<0.0001
0.60



TSC1.1
TSC1
<0.0001
0.52



P53.2
TP53
<0.0001
0.66



TOP2B.2
TOP2B
<0.0001
0.68



TNIP2.1
TNIP2
0.0001
0.76



TNFSF12.1
TNFSF12
<0.0001
0.54



TNFRSF11B.1
TNFRSF11B
<0.0001
0.73



TNFRSF10D.1
TNFRSF10D
<0.0001
0.51



TNFRSF10C.3
TNFRSF10C
0.0003
0.78



DR5.2
TNFRSF10B
<0.0001
0.69



TNFAIP6.1
TNFAIP6
0.0338
0.87



TNFAIP3.1
TNFAIP3
0.0083
0.84



TNF.1
TNF
0.0392
0.87



TMEM47.1
TMEM47
<0.0001
0.33



TMEM27.1
TMEM27
<0.0001
0.73



TIMP3.3
TIMP3
<0.0001
0.29



TIMP2.1
TIMP2
<0.0001
0.54



THBS1.1
THBS1
<0.0001
0.58



THBD.1
THBD
<0.0001
0.66



TGFBR2.3
TGFBR2
<0.0001
0.32



TGFBR1.1
TGFBR1
<0.0001
0.59



TGFB2.2
TGFB2
<0.0001
0.54



TGFb1.1
TGFB1
<0.0001
0.66



TGFA.2
TGFA
<0.0001
0.68



TEK.1
TEK
<0.0001
0.34



cripto (TDGF1
TDGF1
0.0328
0.86



official).1



TCF4.1
TCF4
<0.0001
0.33



TAGLN.1
TAGLN
<0.0001
0.58



TACSTD2.1
TACSTD2
<0.0001
0.61



SUCLG1.1
SUCLG1
<0.0001
0.76



STK11.1
STK11
<0.0001
0.53



STC2.1
STC2
0.0085
0.84



STAT5B.2
STAT5B
<0.0001
0.40



STAT5A.1
STAT5A
<0.0001
0.60



STAT3.1
STAT3
<0.0001
0.48



SPRY1.1
SPRY1
<0.0001
0.40



SPAST.1
SPAST
0.0002
0.78



SPARCL1.1
SPARCL1
<0.0001
0.41



SPARC.1
SPARC
<0.0001
0.50



SNRK.1
SNRK
<0.0001
0.29



SNAI1.1
SNAI1
<0.0001
0.54



MADH4.1
SMAD4
<0.0001
0.39



MADH2.1
SMAD2
<0.0001
0.40



SLC9A1.1
SLC9A1
<0.0001
0.75



SLC34A1.1
SLC34A1
0.0001
0.76



SKIL.1
SKIL
<0.0001
0.52



SHC1.1
SHC1
0.0063
0.83



SHANK3.1
SHANK3
<0.0001
0.27



SGK.1
SGK1
<0.0001
0.60



FRP1.3
SFRP1
0.0003
0.78



PAI1.3
SERPINE1
0.0115
0.85



SEMA3F.3
SEMA3F
<0.0001
0.45



SELENBP1.1
SELENBP1
<0.0001
0.63



SELE.1
SELE
<0.0001
0.74



SDPR.1
SDPR
<0.0001
0.35



SDHA.1
SDHA
<0.0001
0.69



SCNN1A.2
SCNN1A
0.0011
0.80



SCN4B.1
SCN4B
<0.0001
0.47



S100A2.1
S100A2
<0.0001
0.72



RUNX1.1
RUNX1
0.0001
0.77



RRM1.2
RRM1
0.0438
0.87



KIAA1303
RPTOR
<0.0001
0.53



raptor.1



RPS6KB1.3
RPS6KB1
<0.0001
0.49



RPS23.1
RPS23
<0.0001
0.59



ROCK2.1
ROCK2
<0.0001
0.42



ROCK1.1
ROCK1
<0.0001
0.31



RIPK1.1
RIPK1
<0.0001
0.50



rhoC.1
RHOC
<0.0001
0.70



RhoB.1
RHOB
<0.0001
0.36



ARHA.1
RHOA
<0.0001
0.34



RHEB.2
RHEB
<0.0001
0.72



RGS5.1
RGS5
<0.0001
0.30



FLJ22655.1
RERGL
<0.0001
0.42



NFKBp65.3
RELA
<0.0001
0.69



RB1.1
RB1
<0.0001
0.74



RASSF1.1
RASSF1
<0.0001
0.60



RARB.2
RARB
<0.0001
0.41



RALBP1.1
RALBP1
<0.0001
0.47



RAF1.3
RAF1
<0.0001
0.48



RAC1.3
RAC1
<0.0001
0.75



PXDN.1
PXDN
<0.0001
0.74



PTPRG.1
PTPRG
<0.0001
0.29



PTPRB.1
PTPRB
<0.0001
0.27



PTN.1
PTN
<0.0001
0.58



PTK2.1
PTK2
<0.0001
0.36



PTHR1.1
PTH1R
<0.0001
0.50



PTEN.2
PTEN
<0.0001
0.40



PSMA7.1
PSMA7
0.0002
0.78



PRPS2.1
PRPS2
0.0012
0.80



PROM2.1
PROM2
0.0326
0.87



PRKCH.1
PRKCH
<0.0001
0.45



PRKCD.2
PRKCD
<0.0001
0.76



PPP2CA.1
PPP2CA
<0.0001
0.68



PPARG.3
PPARG
<0.0001
0.42



PPAP2B.1
PPAP2B
<0.0001
0.32



PMP22.1
PMP22
<0.0001
0.61



PLG.1
PLG
<0.0001
0.75



PLAT.1
PLAT
<0.0001
0.42



PLA2G4C.1
PLA2G4C
0.0002
0.78



PIK3CA.1
PIK3CA
<0.0001
0.48



PI3K.2
PIK3C2B
<0.0001
0.53



PGF.1
PGF
<0.0001
0.74



PFKP.1
PFKP
0.0008
0.80



CD31.3
PECAM1
<0.0001
0.32



PDZK3.1
PDZK3
<0.0001
0.72



PDZK1.1
PDZK1
<0.0001
0.76



PDGFRb.3
PDGFRB
<0.0001
0.42



PDGFRa.2
PDGFRA
0.0022
0.82



PDGFD.2
PDGFD
<0.0001
0.39



PDGFC.3
PDGFC
<0.0001
0.57



PDGFB.3
PDGFB
<0.0001
0.33



PDGFA.3
PDGFA
<0.0001
0.42



PCK1.1
PCK1
<0.0001
0.71



PCCA.1
PCCA
<0.0001
0.75



PARD6A.1
PARD6A
0.0088
0.84



Pak1.2
PAK1
0.0014
0.81



PAH.1
PAH
0.0160
0.85



OGG1.1
OGG1
0.0139
0.85



BFGF.3
NUDT6
<0.0001
0.63



NPR1.1
NPR1
<0.0001
0.42



NPM1.2
NPM1
<0.0001
0.61



NOTCH3.1
NOTCH3
<0.0001
0.40



NOTCH2.1
NOTCH2
<0.0001
0.58



NOTCH1.1
NOTCH1
<0.0001
0.38



NOS3.1
NOS3
<0.0001
0.42



NOS2A.3
NOS2
<0.0001
0.56



NOL3.1
NOL3
<0.0001
0.61



NFX1.1
NFX1
<0.0001
0.53



NFKBp50.3
NFKB1
<0.0001
0.59



NFATC2.1
NFATC2
<0.0001
0.73



NFAT5.1
NFAT5
<0.0001
0.58



MYRIP.2
MYRIP
<0.0001
0.63



MYH11.1
MYH11
<0.0001
0.48



cMYC.3
MYC
<0.0001
0.68



MX1.1
MX1
0.0087
0.84



MVP.1
MVP
0.0291
0.87



MUC1.2
MUC1
0.0043
0.83



FRAP1.1
MTOR
<0.0001
0.61



MT1X.1
MT1X
0.0276
0.86



MSH3.2
MSH3
0.0001
0.76



MSH2.3
MSH2
<0.0001
0.60



MMP2.2
MMP2
<0.0001
0.74



STMY3.3
MMP11
<0.0001
0.70



MIF.2
MIF
0.0004
0.79



MICA.1
MICA
<0.0001
0.60



MGMT.1
MGMT
<0.0001
0.57



MCM3.3
MCM3
<0.0001
0.73



MCAM.1
MCAM
<0.0001
0.42



MARCKS.1
MARCKS
<0.0001
0.63



ERK1.3
MAPK3
<0.0001
0.35



ERK2.3
MAPK1
<0.0001
0.71



MAP4.1
MAP4
<0.0001
0.58



MAP2K3.1
MAP2K3
<0.0001
0.60



MAP2K1.1
MAP2K1
<0.0001
0.62



MAL.1
MAL
<0.0001
0.63



LRP2.1
LRP2
0.0275
0.86



LMO2.1
LMO2
<0.0001
0.68



LDB2.1
LDB2
<0.0001
0.28



LDB1.2
LDB1
<0.0001
0.52



LAMB1.1
LAMB1
<0.0001
0.73



LAMA4.1
LAMA4
<0.0001
0.55



KRT7.1
KRT7
<0.0001
0.61



K-ras.10
KRAS
<0.0001
0.54



KL.1
KL
<0.0001
0.62



Kitlng.4
KITLG
<0.0001
0.46



c-kit.2
KIT
<0.0001
0.48



KDR.6
KDR
<0.0001
0.33



KCNJ15.1
KCNJ15
<0.0001
0.67



HTATIP.1
KAT5
<0.0001
0.33



G-Catenin.1
JUP
<0.0001
0.39



AP-1 (JUN
JUN
<0.0001
0.54



official).2



JAG1.1
JAG1
<0.0001
0.28



ITGB5.1
ITGB5
<0.0001
0.60



ITGB3.1
ITGB3
<0.0001
0.68



ITGB1.1
ITGB1
<0.0001
0.46



ITGA7.1
ITGA7
<0.0001
0.40



ITGA6.2
ITGA6
<0.0001
0.51



ITGA5.1
ITGA5
<0.0001
0.62



ITGA4.2
ITGA4
<0.0001
0.75



ITGA3.2
ITGA3
0.0128
0.85



IQGAP2.1
IQGAP2
<0.0001
0.68



INSR.1
INSR
<0.0001
0.46



INHBA.1
INHBA
0.0049
0.83



IMP3.1
IMP3
<0.0001
0.67



IL6ST.3
IL6ST
<0.0001
0.43



IL1B.1
IL1B
0.0102
0.84



IL15.1
IL15
0.0001
0.76



IL10.3
IL10
0.0239
0.86



IGFBP6.1
IGFBP6
<0.0001
0.75



IGFBP5.1
IGFBP5
<0.0001
0.74



IGFBP2.1
IGFBP2
<0.0001
0.76



IGF2.2
IGF2
<0.0001
0.69



IGF1R.3
IGF1R
<0.0001
0.43



ID3.1
ID3
<0.0001
0.48



ID2.4
ID2
<0.0001
0.64



ID1.1
ID1
<0.0001
0.37



ICAM2.1
ICAM2
<0.0001
0.42



HYAL2.1
HYAL2
<0.0001
0.32



HYAL1.1
HYAL1
<0.0001
0.52



HSPG2.1
HSPG2
<0.0001
0.33



HSPA1A.1
HSPA1A
0.0022
0.81



HSP90AB1.1
HSP90AB1
<0.0001
0.68



HSD11B2.1
HSD11B2
<0.0001
0.43



HPCAL1.1
HPCAL1
<0.0001
0.69



HNRPAB.3
HNRNPAB
0.0432
0.87



HMGB1.1
HMGB1
<0.0001
0.47



HIF1AN.1
HIF1AN
<0.0001
0.64



HIF1A.3
HIF1A
<0.0001
0.55



HGF.4
HGF
0.0022
0.81



HDAC1.1
HDAC1
<0.0001
0.48



HADH.1
HADH
<0.0001
0.63



GSTp.3
GSTP1
<0.0001
0.66



GSTM3.2
GSTM3
<0.0001
0.53



GSTM1.1
GSTM1
<0.0001
0.61



GRB7.2
GRB7
<0.0001
0.73



GRB14.1
GRB14
0.0001
0.76



GPC3.1
GPC3
0.0012
0.80



GNAS.1
GNAS
<0.0001
0.70



GMNN.1
GMNN
0.0006
0.80



GJA1.1
GJA1
<0.0001
0.66



GCLM.2
GCLM
0.0319
0.87



GCLC.3
GCLC
<0.0001
0.57



GATM.1
GATM
0.0006
0.79



GATA3.3
GATA3
0.0029
0.82



GAS2.1
GAS2
0.0136
0.84



GADD45B.1
GADD45B
<0.0001
0.54



FST.1
FST
0.0197
0.85



FOS.1
FOS
<0.0001
0.44



FOLR1.1
FOLR1
<0.0001
0.75



FLT4.1
FLT4
<0.0001
0.34



FLT3LG.1
FLT3LG
<0.0001
0.73



FLT1.1
FLT1
<0.0001
0.29



FILIP1.1
FILIP1
<0.0001
0.47



FIGF.1
FIGF
<0.0001
0.70



FHL1.1
FHL1
<0.0001
0.54



FHIT.1
FHIT
<0.0001
0.72



FH.1
FH
0.0203
0.86



FGFR2 isoform
FGFR2
<0.0001
0.62



1.1



FGFR1.3
FGFR1
<0.0001
0.48



FGF2.2
FGF2
<0.0001
0.62



FGF1.1
FGF1
<0.0001
0.61



FDPS.1
FDPS
<0.0001
0.52



FBXW7.1
FBXW7
<0.0001
0.57



FAP.1
FAP
0.0440
0.87



ESRRG.3
ESRRG
0.0340
0.87



ERG.1
ERG
<0.0001
0.36



ERCC4.1
ERCC4
0.0337
0.87



ERCC1.2
ERCC1
<0.0001
0.59



ERBB4.3
ERBB4
<0.0001
0.66



HER2.3
ERBB2
<0.0001
0.57



EPHB4.1
EPHB4
<0.0001
0.43



EPHA2.1
EPHA2
<0.0001
0.44



EPAS1.1
EPAS1
<0.0001
0.26



ENPP2.1
ENPP2
<0.0001
0.62



ENPEP.1
ENPEP
<0.0001
0.75



ENO2.1
ENO2
0.0449
0.88



CD105.1
ENG
<0.0001
0.30



EMP1.1
EMP1
<0.0001
0.42



EMCN.1
EMCN
<0.0001
0.31



ELTD1.1
ELTD1
<0.0001
0.59



EIF2C1.1
EIF2C1
<0.0001
0.63



EGR1.1
EGR1
<0.0001
0.50



EGLN3.1
EGLN3
<0.0001
0.69



EGF.3
EGF
0.0200
0.85



EFNB2.1
EFNB2
<0.0001
0.36



EFNB1.2
EFNB1
<0.0001
0.46



EEF1A1.1
EEF1A1
<0.0001
0.39



EDNRB.1
EDNRB
<0.0001
0.33



EDN2.1
EDN2
<0.0001
0.67



EDN1
EDN1
<0.0001
0.41



endothelin.1



EBAG9.1
EBAG9
0.0057
0.83



DUSP1.1
DUSP1
<0.0001
0.54



DPEP1.1
DPEP1
0.0001
0.76



DLL4.1
DLL4
<0.0001
0.49



DLC1.1
DLC1
<0.0001
0.33



DKFZP564O0823.1
DKFZP564O0823
<0.0001
0.46



DICER1.2
DICER1
<0.0001
0.41



DIAPH1.1
DIAPH1
0.0022
0.81



DIABLO.1
DIABLO
<0.0001
0.73



DHPS.3
DHPS
<0.0001
0.41



DET1.1
DET1
<0.0001
0.63



DEFB1.1
DEFB1
0.0001
0.77



DAPK1.3
DAPK1
<0.0001
0.48



DAG1.1
DAG1
0.0150
0.85



CYR61.1
CYR61
<0.0001
0.49



CXCL12.1
CXCL12
<0.0001
0.64



CX3CR1.1
CX3CR1
0.0008
0.80



CX3CL1.1
CX3CL1
<0.0001
0.55



CUL1.1
CUL1
<0.0001
0.62



CUBN.1
CUBN
0.0081
0.84



CTSL.2
CTSL1
0.0328
0.87



B-Catenin.3
CTNNB1
<0.0001
0.36



A-Catenin.2
CTNNA1
<0.0001
0.73



CTGF.1
CTGF
<0.0001
0.61



CSF1.1
CSF1
<0.0001
0.66



CRADD.1
CRADD
0.0151
0.85



COL5A2.2
COL5A2
0.0155
0.85



COL4A2.1
COL4A2
<0.0001
0.51



COL4A1.1
COL4A1
<0.0001
0.59



COL1A2.1
COL1A2
0.0005
0.79



COL18A1.1
COL18A1
<0.0001
0.53



CLDN10.1
CLDN10
0.0351
0.87



CLCNKB.1
CLCNKB
<0.0001
0.73



CFLAR.1
CFLAR
<0.0001
0.45



CEACAM1.1
CEACAM1
<0.0001
0.64



p27.3
CDKN1B
<0.0001
0.65



p21.3
CDKN1A
<0.0001
0.52



CDK4.1
CDK4
0.0200
0.86



CDH5.1
CDH5
<0.0001
0.31



CDH16.1
CDH16
0.0005
0.79



CDH13.1
CDH13
<0.0001
0.40



CD99.1
CD99
0.0001
0.77



CD44.1
CD44_1
0.0216
0.86



CD36.1
CD36
<0.0001
0.42



CD34.1
CD34
<0.0001
0.39



CD14.1
CD14
0.0021
0.81



CCND1.3
CCND1
<0.0001
0.63



MCP1.1
CCL2
<0.0001
0.69



CAT.1
CAT
0.0014
0.81



CASP10.1
CASP10
<0.0001
0.65



CALD1.2
CALD1
<0.0001
0.44



CACNA2D1.1
CACNA2D1
0.0003
0.78



CA9.3
CA9
0.0269
0.86



CA2.1
CA2
0.0001
0.77



C7.1
C7
<0.0001
0.71



C3AR1.1
C3AR1
0.0032
0.82



ECRG4.1
C2orf40
<0.0001
0.50



C13orf15.1
C13orf15
<0.0001
0.37



BUB3.1
BUB3
<0.0001
0.65



BTRC.1
BTRC
<0.0001
0.61



BNIP3.1
BNIP3
0.0018
0.81



CIAP1.2
BIRC2
<0.0001
0.61



BGN.1
BGN
<0.0001
0.43



Bclx.2
BCL2L1
<0.0001
0.76



Bcl2.2
BCL2
<0.0001
0.45



BAG1.2
BAG1
<0.0001
0.47



AXL.1
AXL
<0.0001
0.74



ATP6V1B1.1
ATP6V1B1
<0.0001
0.65



ASS1.1
ASS1
<0.0001
0.67



ARRB1.1
ARRB1
<0.0001
0.49



ARHGDIB.1
ARHGDIB
<0.0001
0.50



ARF1.1
ARF1
<0.0001
0.69



AREG.2
AREG
0.0007
0.80



AQP1.1
AQP1
<0.0001
0.49



APOLD1.1
APOLD1
<0.0001
0.40



APC.4
APC
<0.0001
0.62



APAF1.2
APAF1
<0.0001
0.76



ANXA1.2
ANXA1
<0.0001
0.65



ANTXR1.1
ANTXR1
<0.0001
0.61



ANGPTL4.1
ANGPTL4
<0.0001
0.75



ANGPTL2.1
ANGPTL2
<0.0001
0.60



ANGPT2.1
ANGPT2
<0.0001
0.61



ANGPT1.1
ANGPT1
<0.0001
0.33



ALDOB.1
ALDOB
0.0348
0.87



ALDH6A1.1
ALDH6A1
<0.0001
0.61



AKT3.2
AKT3
<0.0001
0.30



AKT2.3
AKT2
<0.0001
0.65



AKT1.3
AKT1
<0.0001
0.50



AHR.1
AHR
<0.0001
0.55



AGTR1.1
AGTR1
<0.0001
0.44



ADH1B.1
ADH1B
<0.0001
0.70



ADD1.1
ADD1
<0.0001
0.40



ADAMTS9.1
ADAMTS9
<0.0001
0.64



ADAMTS5.1
ADAMTS5
<0.0001
0.56



ADAMTS4.1
ADAMTS4
<0.0001
0.66



ADAMTS2.1
ADAMTS2
<0.0001
0.69



ADAMTS1.1
ADAMTS1
<0.0001
0.51



ADAM17.1
ADAM17
<0.0001
0.67



ACADSB.1
ACADSB
<0.0001
0.63



BCRP.1
ABCG2
<0.0001
0.43



MRP4.2
ABCC4
0.0337
0.87



AAMP.1
AAMP
<0.0001
0.71



A2M.1
A2M
<0.0001
0.29

















TABLE 6a







Proxy genes for which increased expression is associated with the


presence of necrosis (p-value ≦ .05)











Official
CCF Necrosis













Gene
Symbol
p-value
OR
















WT1.1
WT1
<0.0001
1.57



VTN.1
VTN
<0.0001
1.38



VDR.2
VDR
0.0013
1.34



UBE2T.1
UBE2T
<0.0001
2.08



TP.3
TYMP
0.0008
1.37



TSPAN8.1
TSPAN8
0.0016
1.29



C20 orf1.1
TPX2
<0.0001
2.64



TOP2A.4
TOP2A
<0.0001
2.02



TNFSF13B.1
TNFSF13B
0.0002
1.38



TK1.2
TK1
<0.0001
1.71



TIMP1.1
TIMP1
0.0076
1.27



TGFBI.1
TGFBI
<0.0001
1.69



OPN,
SPP1
<0.0001
1.81



osteopontin.3



SPHK1.1
SPHK1
<0.0001
1.44



SLC7A5.2
SLC7A5
<0.0001
2.12



SLC2A1.1
SLC2A1
<0.0001
1.46



SLC16A3.1
SLC16A3
0.0001
1.48



SLC13A3.1
SLC13A3
0.0019
1.29



SHC1.1
SHC1
0.0156
1.24



SFN.1
SFN
<0.0001
1.57



PAI1.3
SERPINE1
0.0164
1.25



SERPINA5.1
SERPINA5
0.0016
1.27



SEMA3C.1
SEMA3C
<0.0001
2.14



SELL.1
SELL
0.0096
1.26



SAA2.2
SAA2
<0.0001
2.50



RRM2.1
RRM2
<0.0001
1.86



RPLP1.1
RPLP1
0.0025
1.32



RND3.1
RND3
0.0002
1.41



RAD51.1
RAD51
<0.0001
1.51



PTTG1.2
PTTG1
<0.0001
2.52



COX2.1
PTGS2
0.0002
1.36



PRKCB1.1
PRKCB
0.0188
1.23



PRKCA.1
PRKCA
0.0339
1.21



PLAUR.3
PLAUR
<0.0001
1.60



upa.3
PLAU
0.0002
1.41



PF4.1
PF4
0.0003
1.34



PDCD1.1
PDCD1
<0.0001
1.40



PCSK6.1
PCSK6
0.0297
1.22



PCNA.2
PCNA
0.0025
1.33



NNMT.1
NNMT
0.0206
1.22



NME2.1
NME2
0.0124
1.25



MYBL2.1
MYBL2
<0.0001
1.90



MT1X.1
MT1X
0.0003
1.39



MMP9.1
MMP9
<0.0001
1.96



MMP7.1
MMP7
<0.0001
1.50



MMP14.1
MMP14
<0.0001
1.50



Ki-67.2
MKI67
<0.0001
1.96



mGST1.2
MGST1
<0.0001
1.63



cMet.2
MET
0.0357
1.22



MDK.1
MDK
<0.0001
1.78



MCM2.2
MCM2
0.0003
1.40



LRRC2.1
LRRC2
0.0114
1.22



LOX.1
LOX
<0.0001
1.99



LMNB1.1
LMNB1
<0.0001
2.04



LIMK1.1
LIMK1
<0.0001
2.51



LGALS9.1
LGALS9
0.0136
1.25



LGALS1.1
LGALS1
<0.0001
1.46



LAPTM5.1
LAPTM5
<0.0001
1.47



LAMB3.1
LAMB5
<0.0001
1.96



L1CAM.1
L1CAM
<0.0001
1.43



KRT19.3
KRT19
0.0001
1.43



ITGB4.2
ITGB4
0.0492
1.19



ISG20.1
ISG20
0.0006
1.38



IL-8.1
IL8
<0.0001
2.40



IL6.3
IL6
<0.0001
2.02



ICAM1.1
ICAM1
<0.0001
1.75



HSPA8.1
HSPA8
0.0004
1.38



HIST1H1D.1
HIST1H1D
0.0017
1.33



GPX1.2
GPX1
<0.0001
1.46



FZD2.2
FZD2
0.0031
1.27



FN1.1
FN1
<0.0001
1.45



FCGR3A.1
FCGR3A
0.0001
1.43



FCER1G.2
FCER1G
<0.0001
1.50



FAP.1
FAP
0.0395
1.20



F3.1
F3
<0.0001
1.62



F2.1
F2
<0.0001
1.76



ESPL1.3
ESPL1
0.0008
1.33



EPHB2.1
EPHB2
0.0037
1.28



EPHB1.3
EPHB1
0.0041
1.25



EPB41L3.1
EPB41L3
0.0410
1.19



ENO2.1
ENO2
0.0001
1.46



EIF4EBP1.1
EIF4EBP1
<0.0001
1.60



E2F1.3
E2F1
<0.0001
1.65



CXCR6.1
CXCR6
<0.0001
1.48



CXCR4.3
CXCR4
0.0118
1.26



GRO1.2
CXCL1
<0.0001
1.83



CTSB.1
CTSB
<0.0001
1.70



CRP.1
CRP
0.0494
1.16



CP.1
CP
<0.0001
1.98



COL7A1.1
COL7A1
<0.0001
1.47



COL1A1.1
COL1A1
0.0059
1.28



Chk2.3
CHEK2
0.0010
1.33



Chk1.2
CHEK1
<0.0001
1.49



CENPF.1
CENPF
<0.0001
2.08



CD82.3
CD82
<0.0001
2.09



CD68.2
CD68
0.0163
1.24



CD44s.1
CD44_s
<0.0001
1.66



CCNE2.2
CCNE2_2
<0.0001
1.50



CCNE1.1
CCNE1
<0.0001
1.44



CCNB1.2
CCNB1
<0.0001
2.28



CCL5.2
CCL5
<0.0001
1.45



CCL20.1
CCL20
0.0121
1.24



CAV2.1
CAV2
0.0003
1.35



CA12.1
CA12
<0.0001
2.11



C3.1
C3
<0.0001
1.58



C1QB.1
C1QB
0.0032
1.31



BUB1.1
BUB1
<0.0001
2.25



BRCA1.2
BRCA1
0.0006
1.35



SURV.2
BIRC5
<0.0001
2.11



cIAP2.2
BIRC3
<0.0001
1.47



BCL2A1.1
BCL2A1
0.0004
1.34



STK15.2
AURKA
<0.0001
1.61



PRO2000.3
ATAD2
0.0166
1.24



APOL1.1
APOL1
<0.0001
1.54



APOC1.3
APOC1
0.0026
1.30



ANXA2.2
ANXA2
<0.0001
1.71



ALOX5.1
ALOX5
0.0004
1.38



ADAM8.1
ADAM8
<0.0001
1.89



MRP2.3
ABCC2
0.0002
1.39

















TABLE 6b







Proxy genes for which increased expression is associated with the


absence of necrosis (p-value ≦ .05)











Official
CCF Necrosis













Gene
Symbol
p-value
OR
















YB-1.2
YBX1
0.0010
0.74



XIAP.1
XIAP
<0.0001
0.68



WWOX.5
WWOX
<0.0001
0.63



WISP1.1
WISP1
0.0002
0.71



VWF.1
VWF
<0.0001
0.35



VHL.1
VHL
0.0086
0.78



VEGF.1
VEGFA
<0.0001
0.50



VCAM1.1
VCAM1
<0.0001
0.55



USP34.1
USP34
<0.0001
0.64



UMOD.1
UMOD
<0.0001
0.36



UGCG.1
UGCG
<0.0001
0.54



UBB.1
UBB
<0.0001
0.48



UBE1C.1
UBA3
<0.0001
0.59



TS.1
TYMS
<0.0001
0.70



tusc4.2
TUSC4
<0.0001
0.68



TUSC2.1
TUSC2
0.0462
0.83



TSPAN7.2
TSPAN7
<0.0001
0.25



TSC2.1
TSC2
<0.0001
0.45



TSC1.1
TSC1
<0.0001
0.45



P53.2
TP53
<0.0001
0.61



TOP2B.2
TOP2B
<0.0001
0.69



TNFSF12.1
TNFSF12
<0.0001
0.51



TRAIL.1
TNFSF10
<0.0001
0.68



TNFRSF11B.1
TNFRSF11B
<0.0001
0.59



TNFRSF10D.1
TNFRSF10D
<0.0001
0.58



DR5.2
TNFRSF10B
0.0001
0.71



TNFAIP6.1
TNFAIP6
<0.0001
0.67



TMEM47.1
TMEM47
<0.0001
0.29



TMEM27.1
TMEM27
<0.0001
0.40



TLR3.1
TLR3
<0.0001
0.64



TIMP3.3
TIMP3
<0.0001
0.23



TIMP2.1
TIMP2
<0.0001
0.52



THBS1.1
THBS1
<0.0001
0.62



TGFBR2.3
TGFBR2
<0.0001
0.34



TGFBR1.1
TGFBR1
<0.0001
0.63



TGFB2.2
TGFB2
<0.0001
0.55



TGFb1.1
TGFB1
0.0036
0.76



TGFA.2
TGFA
<0.0001
0.56



TEK.1
TEK
<0.0001
0.23



TCF4.1
TCF4
<0.0001
0.36



TAGLN.1
TAGLN
<0.0001
0.50



TACSTD2.1
TACSTD2
<0.0001
0.64



SUCLG1.1
SUCLG1
<0.0001
0.50



STK11.1
STK11
<0.0001
0.48



STAT5B.2
STAT5B
<0.0001
0.36



STAT5A.1
STAT5A
<0.0001
0.56



STAT3.1
STAT3
<0.0001
0.63



SPRY1.1
SPRY1
<0.0001
0.42



SPAST.1
SPAST
0.0004
0.74



SPARCL1.1
SPARCL1
<0.0001
0.48



SPARC.1
SPARC
<0.0001
0.54



SOD1.1
SOD1
<0.0001
0.67



SNRK.1
SNRK
<0.0001
0.25



SNAI1.1
SNAI1
0.0004
0.71



MADH4.1
SMAD4
<0.0001
0.33



MADH2.1
SMAD2
<0.0001
0.40



SLC34A1.1
SLC34A1
<0.0001
0.47



SLC22A6.1
SLC22A6
<0.0001
0.52



SKIL.1
SKIL
<0.0001
0.59



SHANK3.1
SHANK3
<0.0001
0.25



SGK.1
SGK1
<0.0001
0.54



FRP1.3
SFRP1
0.0053
0.77



SEMA3F.3
SEMA3F
<0.0001
0.43



SELENBP1.1
SELENBP1
<0.0001
0.62



SDPR.1
SDPR
<0.0001
0.28



SDHA.1
SDHA
<0.0001
0.47



SCNN1A.2
SCNN1A
0.0013
0.73



SCN4B.1
SCN4B
<0.0001
0.35



S100A2.1
S100A2
0.0355
0.82



KIAA1303
RPTOR
<0.0001
0.49



raptor.1



RPS6KB1.3
RPS6KB1
<0.0001
0.55



RPS6KAI.1
RPS6KA1
0.0002
0.68



RPS23.1
RPS23
<0.0001
0.47



ROCK2.1
ROCK2
<0.0001
0.39



ROCK1.1
ROCK1
<0.0001
0.35



RIPK1.1
RIPK1
<0.0001
0.45



rhoC.1
RHOC
0.0001
0.70



RhoB.1
RHOB
<0.0001
0.41



ARHA.1
RHOA
<0.0001
0.45



RHEB.2
RHEB
0.0002
0.69



RGS5.1
RGS5
<0.0001
0.26



FLJ22655.1
RERGL
<0.0001
0.26



NFKBp65.3
RELA
<0.0001
0.71



RB1.1
RB1
<0.0001
0.54



RASSF1.1
RASSF1
<0.0001
0.63



RARB.2
RARB
<0.0001
0.28



RALBP1.1
RALBP1
<0.0001
0.52



RAF1.3
RAF1
<0.0001
0.58



RAC1.3
RAC1
0.0118
0.80



PTPRG.1
PTPRG
<0.0001
0.27



PTPRB.1
PTPRB
<0.0001
0.22



PTN.1
PTN
<0.0001
0.41



PTK2.1
PTK2
<0.0001
0.33



PTHR1.1
PTH1R
<0.0001
0.32



PTEN.2
PTEN
<0.0001
0.44



PSMA7.1
PSMA7
0.0173
0.81



PRSS8.1
PRSS8
<0.0001
0.62



PRKCH.1
PRKCH
<0.0001
0.43



PRKCD.2
PRKCD
<0.0001
0.68



PPP2CA.1
PPP2CA
<0.0001
0.53



PPARG.3
PPARG
<0.0001
0.37



PPAP2B.1
PPAP2B
<0.0001
0.27



PMP22.1
PMP22
0.0155
0.81



PLG.1
PLG
<0.0001
0.38



PLAT.1
PLAT
<0.0001
0.42



PLA2G4C.1
PLA2G4C
<0.0001
0.48



PIK3CA.1
PIK3CA
<0.0001
0.47



PI3K.2
PIK3C2B
<0.0001
0.42



PGF.1
PGF
0.0153
0.80



PFKP.1
PFKP
<0.0001
0.70



CD31.3
PECAM1
<0.0001
0.34



PDZK3.1
PDZK3
<0.0001
0.49



PDZK1.1
PDZK1
<0.0001
0.45



PDGFRb.3
PDGFRB
<0.0001
0.45



PDGFD.2
PDGFD
<0.0001
0.33



PDGFC.3
PDGFC
<0.0001
0.53



PDGFB.3
PDGFB
<0.0001
0.33



PDGFA.3
PDGFA
<0.0001
0.43



PCK1.1
PCK1
<0.0001
0.44



PCCA.1
PCCA
<0.0001
0.47



PARD6A.1
PARD6A
0.0045
0.77



Pak1.2
PAK1
0.0003
0.74



PAH.1
PAH
<0.0001
0.62



OGG1.1
OGG1
<0.0001
0.62



BFGF.3
NUDT6
<0.0001
0.45



NRG1.3
NRG1
0.0004
0.69



NPR1.1
NPR1
<0.0001
0.36



NPM1.2
NPM1
<0.0001
0.55



NOTCH3.1
NOTCH3
<0.0001
0.40



NOTCH2.1
NOTCH2
<0.0001
0.68



NOTCH1.1
NOTCH1
<0.0001
0.38



NOS3.1
NOS3
<0.0001
0.37



NOS2A.3
NOS2
<0.0001
0.42



NOL3.1
NOL3
<0.0001
0.67



NFX1.1
NFX1
<0.0001
0.43



NFKBp50.3
NFKB1
<0.0001
0.56



NFATC2.1
NFATC2
<0.0001
0.67



NFAT5.1
NFAT5
<0.0001
0.55



MYRIP.2
MYRIP
<0.0001
0.36



MYH11.1
MYH11
<0.0001
0.35



cMYC.3
MYC
<0.0001
0.68



MVP.1
MVP
<0.0001
0.66



FRAP1.1
MTOR
<0.0001
0.56



MSH3.2
MSH3
<0.0001
0.47



MSH2.3
MSH2
<0.0001
0.51



MMP2.2
MMP2
0.0229
0.82



STMY3.3
MMP11
<0.0001
0.66



GBL.1
MLST8
0.0193
0.82



MIF.2
MIF
<0.0001
0.69



MICA.1
MICA
<0.0001
0.52



MGMT.1
MGMT
<0.0001
0.50



MCM3.3
MCM3
0.0105
0.78



MCAM.1
MCAM
<0.0001
0.41



MARCKS.1
MARCKS
0.0259
0.82



ERK1.3
MAPK3
<0.0001
0.35



ERK2.3
MAPK1
<0.0001
0.61



MAP4.1
MAP4
<0.0001
0.54



MAP2K3.1
MAP2K3
<0.0001
0.52



MAP2K1.1
MAP2K1
0.0172
0.81



MAL2.1
MAL2
0.0267
0.82



MAL.1
MAL
<0.0001
0.46



LTF.1
LTF
0.0038
0.74



LRP2.1
LRP2
<0.0001
0.52



LMO2.1
LMO2
<0.0001
0.60



LDB2.1
LDB2
<0.0001
0.26



LDB1.2
LDB1
<0.0001
0.52



LAMA4.1
LAMA4
<0.0001
0.67



KRT7.1
KRT7
<0.0001
0.56



K-ras.10
KRAS
<0.0001
0.48



KL.1
KL
<0.0001
0.34



Kitlng.4
KITLG
<0.0001
0.46



c-kit.2
KIT
<0.0001
0.41



KDR.6
KDR
<0.0001
0.28



KCNJ15.1
KCNJ15
<0.0001
0.43



HTATIP.1
KAT5
<0.0001
0.27



G-Catenin.1
JUP
<0.0001
0.32



AP-1 (JUN
JUN
<0.0001
0.64



official).2



JAG1.1
JAG1
<0.0001
0.23



ITGB5.1
ITGB5
<0.0001
0.64



ITGB3.1
ITGB3
0.0468
0.84



ITGB1.1
ITGB1
<0.0001
0.59



ITGA7.1
ITGA7
<0.0001
0.38



ITGA6.2
ITGA6
<0.0001
0.40



ITGA5.1
ITGA5
0.0298
0.83



ITGA4.2
ITGA4
<0.0001
0.61



ITGA3.2
ITGA3
0.0018
0.76



IQGAP2.1
IQGAP2
<0.0001
0.52



INSR.1
INSR
<0.0001
0.38



IMP3.1
IMP3
<0.0001
0.53



IL6ST.3
IL6ST
<0.0001
0.36



IL15.1
IL15
<0.0001
0.67



IGFBP6.1
IGFBP6
<0.0001
0.66



IGF2.2
IGF2
0.0117
0.79



IGF1R.3
IGF1R
<0.0001
0.38



ID3.1
ID3
<0.0001
0.44



ID2.4
ID2
<0.0001
0.68



ID1.1
ID1
<0.0001
0.32



ICAM2.1
ICAM2
<0.0001
0.47



HYAL2.1
HYAL2
<0.0001
0.28



HYAL1.1
HYAL1
<0.0001
0.39



HSPG2.1
HSPG2
<0.0001
0.33



HSP90AB1.1
HSP90AB1
0.0004
0.73



HSD11B2.1
HSD11B2
<0.0001
0.32



Hepsin.1
HPN
<0.0001
0.59



HPCAL1.1
HPCAL1
<0.0001
0.68



HMGB1.1
HMGB1
<0.0001
0.42



HLA-DPB1.1
HLA-DPB1
0.0002
0.72



HIF1AN.1
HIF1AN
<0.0001
0.54



HDAC1.1
HDAC1
<0.0001
0.55



HAVCR1.1
HAVCR1
0.0012
0.76



HADH.1
HADH
<0.0001
0.49



GSTT1.3
GSTT1
0.0067
0.80



GSTp.3
GSTP1
<0.0001
0.55



GSTM3.2
GSTM3
<0.0001
0.48



GSTM1.1
GSTM1
<0.0001
0.54



GRB7.2
GRB7
<0.0001
0.49



GPX3.1
GPX3
<0.0001
0.59



GPC3.1
GPC3
0.0287
0.81



GJA1.1
GJA1
0.0004
0.74



GFRA1.1
GFRA1
0.0011
0.74



GCLC.3
GCLC
<0.0001
0.50



GATM.1
GATM
<0.0001
0.45



GATA3.3
GATA3
0.0159
0.79



GADD45B.1
GADD45B
<0.0001
0.67



FOS.1
FOS
<0.0001
0.56



FOLR1.1
FOLR1
<0.0001
0.59



FLT4.1
FLT4
<0.0001
0.27



FLT3LG.1
FLT3LG
<0.0001
0.62



FLT1.1
FLT1
<0.0001
0.32



FILIP1.1
FILIP1
<0.0001
0.42



FIGF.1
FIGF
0.0001
0.62



FHL1.1
FHL1
<0.0001
0.36



FHIT.1
FHIT
<0.0001
0.63



FH.1
FH
<0.0001
0.65



FGFR2 isoform
FGFR2
<0.0001
0.51



1.1



FGFR1.3
FGFR1
<0.0001
0.55



FGF2.2
FGF2
<0.0001
0.61



FGF1.1
FGF1
<0.0001
0.49



FDPS.1
FDPS
<0.0001
0.43



FBXW7.1
FBXW7
<0.0001
0.60



fas.1
FAS
0.0054
0.79



ESRRG.3
ESRRG
<0.0001
0.68



ERG.1
ERG
<0.0001
0.34



ERCC4.1
ERCC4
0.0197
0.81



ERCC1.2
ERCC1
<0.0001
0.60



ERBB4.3
ERBB4
0.0037
0.72



ErbB3.1
ERBB3
<0.0001
0.59



HER2.3
ERBB2
<0.0001
0.40



EPHB4.1
EPHB4
<0.0001
0.44



EPHA2.1
EPHA2
<0.0001
0.36



EPAS1.1
EPAS1
<0.0001
0.29



ENPP2.1
ENPP2
<0.0001
0.50



ENPEP.1
ENPEP
<0.0001
0.56



CD105.1
ENG
<0.0001
0.31



EMP1.1
EMP1
<0.0001
0.49



EMCN.1
EMCN
<0.0001
0.23



ELTD1.1
ELTD1
<0.0001
0.59



EIF2C1.1
EIF2C1
<0.0001
0.52



EGR1.1
EGR1
<0.0001
0.54



EGLN3.1
EGLN3
<0.0001
0.69



EGFR.2
EGFR
<0.0001
0.70



EFNB2.1
EFNB2
<0.0001
0.34



EFNB1.2
EFNB1
<0.0001
0.41



EEF1A1.1
EEF1A1
<0.0001
0.32



EDNRB.1
EDNRB
<0.0001
0.31



EDN2.1
EDN2
<0.0001
0.51



EDN1
EDN1
<0.0001
0.41



endothelin.1



EBAG9.1
EBAG9
0.0007
0.74



DUSP1.1
DUSP1
<0.0001
0.65



DPYS.1
DPYS
<0.0001
0.66



DPEP1.1
DPEP1
<0.0001
0.34



DLL4.1
DLL4
<0.0001
0.49



DLC1.1
DLC1
<0.0001
0.36



DKFZP564O0823.1
DKFZP564O0823
<0.0001
0.35



DICER1.2
DICER1
<0.0001
0.46



DIAPH1.1
DIAPH1
<0.0001
0.63



DIABLO.1
DIABLO
0.0002
0.72



DHPS.3
DHPS
<0.0001
0.46



DET1.1
DET1
<0.0001
0.61



DEFB1.1
DEFB1
<0.0001
0.69



DDC.1
DDC
<0.0001
0.51



DCXR.1
DCXR
0.0061
0.78



DAPK1.3
DAPK1
<0.0001
0.47



CYR61.1
CYR61
<0.0001
0.52



CYP3A4.2
CYP3A4
0.0398
0.82



CYP2C8v2.1
CYP2C8_21
0.0001
0.67



CXCL12.1
CXCL12
<0.0001
0.53



CX3CR1.1
CX3CR1
<0.0001
0.60



CX3CL1.1
CX3CL1
<0.0001
0.34



CUL1.1
CUL1
<0.0001
0.62



CUBN.1
CUBN
<0.0001
0.39



CTSH.2
CTSH
0.0018
0.77



B-Catenin.3
CTNNB1
<0.0001
0.38



A-Catenin.2
CTNNA1
<0.0001
0.58



CTGF.1
CTGF
<0.0001
0.64



CSF1R.2
CSF1R
0.0308
0.83



CSF1.1
CSF1
0.0002
0.73



CRADD.1
CRADD
<0.0001
0.60



COL4A2.1
COL4A2
<0.0001
0.51



COL4A1.1
COL4A1
<0.0001
0.66



COL18A1.1
COL18A1
<0.0001
0.50



CLU.3
CLU
0.0091
0.80



CLDN7.2
CLDN7
0.0029
0.76



CLDN10.1
CLDN10
<0.0001
0.48



CLCNKB.1
CLCNKB
0.0001
0.61



CFLAR.1
CFLAR
<0.0001
0.47



CEACAM1.1
CEACAM1
<0.0001
0.43



p27.3
CDKN1B
0.0002
0.73



p21.3
CDKN1A
<0.0001
0.65



CDH6.1
CDH6
<0.0001
0.67



CDH5.1
CDH5
<0.0001
0.33



CDH2.1
CDH2
0.0003
0.75



CDH16.1
CDH16
<0.0001
0.51



CDH13.1
CDH13
<0.0001
0.39



CD36.1
CD36
<0.0001
0.41



CD34.1
CD34
<0.0001
0.34



CD24.1
CD24
0.0148
0.81



CCND1.3
CCND1
<0.0001
0.51



MCP1.1
CCL2
<0.0001
0.68



CAT.1
CAT
<0.0001
0.48



CASP10.1
CASP10
<0.0001
0.62



CALD1.2
CALD1
<0.0001
0.42



CACNA2D1.1
CACNA2D1
0.0006
0.74



CA2.1
CA2
<0.0001
0.60



C7.1
C7
<0.0001
0.65



ECRG4.1
C2orf40
<0.0001
0.32



C13orf15.1
C13orf15
<0.0001
0.31



BUB3.1
BUB3
<0.0001
0.65



BTRC.1
BTRC
<0.0001
0.63



BNIP3.1
BNIP3
0.0021
0.77



CIAP1.2
BIRC2
<0.0001
0.56



BIN1.3
BIN1
<0.0001
0.67



BGN.1
BGN
<0.0001
0.47



BCL2L12.1
BCL2L12
0.0374
0.82



Bclx.2
BCL2L1
<0.0001
0.60



Bcl2.2
BCL2
<0.0001
0.31



BAG1.2
BAG1
<0.0001
0.42



BAD.1
BAD
0.0187
0.82



AXL.1
AXL
0.0077
0.79



ATP6V1B1.1
ATP6V1B1
<0.0001
0.52



ASS1.1
ASS1
<0.0001
0.61



ARRB1.1
ARRB1
<0.0001
0.48



ARHGDIB.1
ARHGDIB
<0.0001
0.48



ARF1.1
ARF1
0.0021
0.75



AQP1.1
AQP1
<0.0001
0.28



APOLD1.1
APOLD1
<0.0001
0.35



APC.4
APC
<0.0001
0.55



APAF1.2
APAF1
0.0264
0.82



ANXA4.1
ANXA4
0.0012
0.76



ANXA1.2
ANXA1
0.0201
0.81



ANTXR1.1
ANTXR1
<0.0001
0.58



ANGPTL4.1
ANGPTL4
<0.0001
0.71



ANGPTL3.3
ANGPTL3
0.0104
0.77



ANGPTL2.1
ANGPTL2
<0.0001
0.63



ANGPT2.1
ANGPT2
<0.0001
0.65



ANGPT1.1
ANGPT1
<0.0001
0.30



AMACR1.1
AMACR
0.0080
0.79



ALDOB.1
ALDOB
<0.0001
0.40



ALDH6A1.1
ALDH6A1
<0.0001
0.38



ALDH4.2
ALDH4A1
0.0001
0.71



AKT3.2
AKT3
<0.0001
0.30



AKT2.3
AKT2
<0.0001
0.53



AKT1.3
AKT1
<0.0001
0.47



AHR.1
AHR
<0.0001
0.60



AGTR1.1
AGTR1
<0.0001
0.33



AGT.1
AGT
0.0032
0.77



ADH6.1
ADH6
0.0011
0.71



ADH1B.1
ADH1B
<0.0001
0.69



ADFP.1
ADFP
0.0001
0.73



ADD1.1
ADD1
<0.0001
0.33



ADAMTS9.1
ADAMTS9
<0.0001
0.69



ADAMTS5.1
ADAMTS5
<0.0001
0.55



ADAMTS1.1
ADAMTS1
<0.0001
0.56



ADAM17.1
ADAM17
0.0009
0.76



ACE2.1
ACE2
<0.0001
0.45



ACADSB.1
ACADSB
<0.0001
0.46



BCRP.1
ABCG2
<0.0001
0.27



MRP4.2
ABCC4
<0.0001
0.61



MRP3.1
ABCC3
0.0011
0.76



MRP1.1
ABCC1
0.0008
0.75



ABCB1.5
ABCB1
<0.0001
0.59



NPD009
ABAT
0.0001
0.70



(ABAT



official).3



AAMP.1
AAMP
<0.0001
0.62



A2M.1
A2M
<0.0001
0.28

















TABLE 7a







Proxy genes for which increased expression is associated with


the presence of nodal invasion (p-value ≦ .05)











Official
Nodal Invasion













Gene
Symbol
p-value
OR
















TUBB.1
TUBB2A
0.0242
2.56



C20 orf1.1
TPX2
0.0333
2.61



TK1.2
TK1
0.0361
1.75



SPHK1.1
SPHK1
0.0038
3.43



SLC7A5.2
SLC7A5
0.0053
4.85



SILV.1
SILV
0.0470
1.54



SELE.1
SELE
0.0311
1.93



upa.3
PLAU
0.0450
2.78



MMP9.1
MMP9
0.0110
2.65



MMP7.1
MMP7
0.0491
2.34



MMP14.1
MMP14
0.0155
3.21



LAMB1.1
LAMB1
0.0247
3.04



IL-8.1
IL8
0.0019
3.18



IL6.3
IL6
0.0333
2.31



HSPA1A.1
HSPA1A
0.0498
2.11



GSTp.3
GSTP1
0.0272
3.46



GRB14.1
GRB14
0.0287
2.32



GMNN.1
GMNN
0.0282
3.00



ENO2.1
ENO2
0.0190
3.43



CCNB1.2
CCNB1
0.0387
1.87



BUB1.1
BUB1
0.0429
2.21



BAG2.1
BAG2
0.0346
2.54



ADAMTS1.1
ADAMTS1
0.0193
3.31

















TABLE 7b







Proxy genes for which increased expression is associated with


the absence of nodal invasion (p-value ≦ .05)











Official
Nodal Invasion













Gene
Symbol
p-value
OR
















VWF.1
VWF
0.0221
0.42



VCAM1.1
VCAM1
0.0212
0.42



UBE1C.1
UBA3
0.0082
0.32



tusc4.2
TUSC4
0.0050
0.28



TSPAN7.2
TSPAN7
0.0407
0.43



TSC1.1
TSC1
0.0372
0.38



TMSB10.1
TMSB10
0.0202
0.43



TMEM47.1
TMEM47
0.0077
0.32



TMEM27.1
TMEM27
0.0431
0.41



TLR3.1
TLR3
0.0041
0.32



TIMP3.3
TIMP3
0.0309
0.40



TGFBR2.3
TGFBR2
0.0296
0.35



TGFB2.2
TGFB2
0.0371
0.30



TGFA.2
TGFA
0.0025
0.32



TEK.1
TEK
0.0018
0.09



TCF4.1
TCF4
0.0088
0.38



STAT5A.1
STAT5A
0.0129
0.49



SPRY1.1
SPRY1
0.0188
0.43



SPARCL1.1
SPARCL1
0.0417
0.50



SOD1.1
SOD1
0.0014
0.23



SNRK.1
SNRK
0.0226
0.43



MADH2.1
SMAD2
0.0098
0.37



SLC22A6.1
SLC22A6
0.0051
0.00



PTPNS1.1
SIRPA
0.0206
0.43



SHANK3.1
SHANK3
0.0024
0.30



SGK.1
SGK1
0.0087
0.35



SELENBP1.1
SELENBP1
0.0016
0.29



SCN4B.1
SCN4B
0.0081
0.08



ROCK1.1
ROCK1
0.0058
0.41



RhoB.1
RHOB
0.0333
0.43



RGS5.1
RGS5
0.0021
0.31



FLJ22655.1
RERGL
0.0009
0.01



RB1.1
RB1
0.0281
0.48



RASSF1.1
RASSF1
0.0004
0.23



PTPRB.1
PTPRB
0.0154
0.40



PTK2.1
PTK2
0.0158
0.38



PTHR1.1
PTH1R
<0.0001
0.01



PRSS8.1
PRSS8
0.0023
0.10



PRKCH.1
PRKCH
0.0475
0.48



PPAP2B.1
PPAP2B
0.0110
0.40



PLA2G4C.1
PLA2G4C
0.0002
0.03



PI3K.2
PIK3C2B
0.0138
0.13



PFKP.1
PFKP
0.0040
0.41



CD31.3
PECAM1
0.0077
0.38



PDGFD.2
PDGFD
0.0169
0.35



PDGFC.3
PDGFC
0.0053
0.36



PDGFB.3
PDGFB
0.0359
0.47



PCSK6.1
PCSK6
0.0103
0.34



PCK1.1
PCK1
0.0003
0.02



PCCA.1
PCCA
0.0074
0.12



PARD6A.1
PARD6A
0.0243
0.21



BFGF.3
NUDT6
0.0082
0.15



NRG1.3
NRG1
0.0393
0.19



NOS3.1
NOS3
0.0232
0.34



NOS2A.3
NOS2
0.0086
0.11



NFX1.1
NFX1
0.0065
0.35



MYH11.1
MYH11
0.0149
0.36



cMYC.3
MYC
0.0472
0.46



MUC1.2
MUC1
0.0202
0.26



MIF.2
MIF
0.0145
0.39



MICA.1
MICA
0.0015
0.15



MGMT.1
MGMT
0.0414
0.50



MAP2K1.1
MAP2K1
0.0075
0.40



LMO2.1
LMO2
0.0127
0.07



LDB2.1
LDB2
0.0048
0.33



Kitlng.4
KITLG
0.0146
0.18



KDR.6
KDR
0.0106
0.34



ITGB1.1
ITGB1
0.0469
0.36



ITGA7.1
ITGA7
0.0290
0.38



ITGA6.2
ITGA6
0.0010
0.17



ITGA4.2
ITGA4
0.0089
0.44



INSR.1
INSR
0.0057
0.32



IMP3.1
IMP3
0.0086
0.43



IL6ST.3
IL6ST
0.0484
0.46



IL15.1
IL15
0.0009
0.08



IFI27.1
IFI27
0.0013
0.22



HYAL2.1
HYAL2
0.0099
0.36



HYAL1.1
HYAL1
0.0001
0.08



Hepsin.1
HPN
0.0024
0.14



HPCAL1.1
HPCAL1
0.0024
0.38



HMGB1.1
HMGB1
0.0385
0.45



HLA-DPB1.1
HLA-DPB1
0.0398
0.43



HADH.1
HADH
0.0093
0.33



GSTM1.1
GSTM1
0.0018
0.18



GPX2.2
GPX2
0.0211
0.07



GJA1.1
GJA1
0.0451
0.46



GATM.1
GATM
0.0038
0.25



GATA3.3
GATA3
0.0188
0.06



FOLR1.1
FOLR1
0.0152
0.32



FLT4.1
FLT4
0.0125
0.22



FLT1.1
FLT1
0.0046
0.35



FHL1.1
FHL1
0.0435
0.47



FHIT.1
FHIT
0.0061
0.29



fas.1
FAS
0.0163
0.39



ErbB3.1
ERBB3
0.0145
0.33



EPHA2.1
EPHA2
0.0392
0.37



EPAS1.1
EPAS1
0.0020
0.28



ENPEP.1
ENPEP
0.0002
0.34



CD105.1
ENG
0.0112
0.38



EMCN.1
EMCN
0.0022
0.19



EIF2C1.1
EIF2C1
0.0207
0.33



EGLN3.1
EGLN3
0.0167
0.52



EFNB2.1
EFNB2
0.0192
0.30



EFNB1.2
EFNB1
0.0110
0.37



EDNRB.1
EDNRB
0.0106
0.36



EDN1
EDN1
0.0440
0.42



endothelin.1



DPYS.1
DPYS
0.0454
0.43



DKFZP564O0823.1
DKFZP564O0823
0.0131
0.31



DHPS.3
DHPS
0.0423
0.48



DAPK1.3
DAPK1
0.0048
0.39



CYP2C8v2.1
CYP2C8_21
0.0003
0.01



CYP2C8.2
CYP2C8_2
0.0269
0.07



CX3CR1.1
CX3CR1
0.0224
0.13



CUBN.1
CUBN
0.0010
0.04



CRADD.1
CRADD
0.0193
0.40



CLDN10.1
CLDN10
0.0005
0.21



CFLAR.1
CFLAR
0.0426
0.49



CEACAM1.1
CEACAM1
0.0083
0.23



CDKN2A.2
CDKN2A
0.0026
0.13



p27.3
CDKN1B
0.0393
0.60



CDH5.1
CDH5
0.0038
0.33



CDH13.1
CDH13
0.0203
0.39



CD99.1
CD99
0.0173
0.38



CD36.1
CD36
0.0015
0.29



CD34.1
CD34
0.0250
0.38



CD3z.1
CD247
0.0419
0.33



CCND1.3
CCND1
0.0381
0.50



CAT.1
CAT
0.0044
0.42



CASP6.1
CASP6
0.0136
0.36



CALD1.2
CALD1
0.0042
0.31



CA9.3
CA9
0.0077
0.48



C13orf15.1
C13orf15
0.0152
0.39



BUB3.1
BUB3
0.0157
0.26



BIN1.3
BIN1
0.0224
0.38



Bclx.2
BCL2L1
0.0225
0.52



Bcl2.2
BCL2
0.0442
0.45



AXL.1
AXL
0.0451
0.44



ATP6V1B1.1
ATP6V1B1
0.0257
0.03



ARRB1.1
ARRB1
0.0337
0.43



ARHGDIB.1
ARHGDIB
0.0051
0.32



AQP1.1
AQP1
0.0022
0.31



APOLD1.1
APOLD1
0.0222
0.42



APC.4
APC
0.0165
0.47



ANXA5.1
ANXA5
0.0143
0.37



ANXA4.1
ANXA4
0.0019
0.30



ANXA1.2
ANXA1
0.0497
0.39



ANGPTL7.1
ANGPTL7
0.0444
0.16



ANGPTL4.1
ANGPTL4
0.0197
0.55



ANGPT1.1
ANGPT1
0.0055
0.15



ALDOB.1
ALDOB
0.0128
0.02



ALDH4.2
ALDH4A1
0.0304
0.33



AGTR1.1
AGTR1
0.0142
0.11



ADH6.1
ADH6
0.0042
0.03



ADFP.1
ADFP
0.0223
0.47



ADD1.1
ADD1
0.0135
0.42



BCRP.1
ABCG2
0.0098
0.19



MRP3.1
ABCC3
0.0247
0.44



MRP1.1
ABCC1
0.0022
0.32



NPD009
ABAT
0.0110
0.19



(ABAT



official).3



A2M.1
A2M
0.0012
0.29

















TABLE 8a







Genes for which increased expression is associated with lower risk of


cancer recurrence after clinical/pathologic covariate adjustment (p < 0.05)













Official





Gene
Symbol
p-value
HR
















ACE2.1
ACE2
0.0261
0.85



ADD1.1
ADD1
0.0339
0.85



ALDOB.1
ALDOB
0.0328
0.84



ANGPTL3.3
ANGPTL3
0.0035
0.79



APOLD1.1
APOLD1
0.0015
0.78



AQP1.1
AQP1
0.0014
0.79



BFGF.3
NUDT6
0.0010
0.77



CASP10.1
CASP10
0.0024
0.82



CAV2.1
CAV2
0.0191
0.86



CCL4.2
CCL4
0.0045
0.81



CCL5.2
CCL5
0.0003
0.78



CCR2.1
CCR2
0.0390
0.87



CCR4.2
CCR4
0.0109
0.82



CCR7.1
CCR7
0.0020
0.80



CD4.1
CD4
0.0195
0.86



CD8A.1
CD8A
0.0058
0.83



CEACAM1.1
CEACAM1
0.0022
0.81



CFLAR.1
CFLAR
0.0308
0.87



CTSS.1
CTSS
0.0462
0.87



CX3CL1.1
CX3CL1
0.0021
0.81



CXCL10.1
CXCL10
0.0323
0.86



CXCL9.1
CXCL9
0.0006
0.79



CXCR6.1
CXCR6
0.0469
0.88



DAPK1.3
DAPK1
0.0050
0.83



DDC.1
DDC
0.0307
0.86



DLC1.1
DLC1
0.0249
0.83



ECRG4.1
C2orf40
0.0244
0.84



EDNRB.1
EDNRB
0.0400
0.86



EMCN.1
EMCN
<0.0001
0.68



EPAS1.1
EPAS1
0.0411
0.84



fas.1
FAS
0.0242
0.87



FH.1
FH
0.0407
0.88



GATA3.3
GATA3
0.0172
0.83



GZMA.1
GZMA
0.0108
0.84



HLA-DPB1.1
HLA-DPB1
0.0036
0.82



HSPG2.1
HSPG2
0.0236
0.84



ICAM2.1
ICAM2
0.0091
0.83



ICAM3.1
ICAM3
0.0338
0.87



ID1.1
ID1
0.0154
0.83



IGF1R.3
IGF1R
0.0281
0.85



IL15.1
IL15
0.0059
0.83



IQGAP2.1
IQGAP2
0.0497
0.88



KL.1
KL
0.0231
0.86



KLRK1.2
KLRK1
0.0378
0.87



LDB2.1
LDB2
0.0092
0.82



LRP2.1
LRP2
0.0193
0.86



LTF.1
LTF
0.0077
0.82



MAP4.1
MAP4
0.0219
0.84



MRP1.1
ABCC1
0.0291
0.87



NOS3.1
NOS3
0.0008
0.78



PI3K.2
PIK3C2B
0.0329
0.83



PLA2G4C.1
PLA2G4C
0.0452
0.87



PPAP2B.1
PPAP2B
0.0001
0.74



PRCC.1
PRCC
0.0333
0.88



PRKCB1.1
PRKCB
0.0353
0.87



PRKCH.1
PRKCH
0.0022
0.82



PRSS8.1
PRSS8
0.0332
0.87



PSMB9.1
PSMB9
0.0262
0.87



PTPRB.1
PTPRB
0.0030
0.80



RGS5.1
RGS5
0.0480
0.85



SDPR.1
SDPR
0.0045
0.80



SELE.1
SELE
0.0070
0.81



SGK.1
SGK1
0.0100
0.83



SHANK3.1
SHANK3
0.0311
0.84



SNRK.1
SNRK
0.0026
0.81



TEK.1
TEK
0.0059
0.78



TGFBR2.3
TGFBR2
0.0343
0.85



TIMP3.3
TIMP3
0.0165
0.83



TMEM27.1
TMEM27
0.0249
0.86



TSPAN7.2
TSPAN7
0.0099
0.83



UBB.1
UBB
0.0144
0.85



WWOX.5
WWOX
0.0082
0.83

















TABLE 8b







Genes for which increased expression is associated with higher risk of


cancer recurrence after clinical/pathologic covariate adjustment (p < 0.05)













Official





Gene
Symbol
p-value
HR
















CIAP1.2
BIRC2
0.0425
1.14



BUB1.1
BUB1
0.0335
1.15



CCNB1.2
CCNB1
0.0296
1.14



ENO2.1
ENO2
0.0284
1.17



ITGB1.1
ITGB1
0.0402
1.16



ITGB5.1
ITGB5
0.0016
1.25



LAMB1.1
LAMB1
0.0067
1.20



MMP14.1
MMP14
0.0269
1.16



MMP9.1
MMP9
0.0085
1.19



PSMA7.1
PSMA7
0.0167
1.16



RUNX1.1
RUNX1
0.0491
1.15



SPHK1.1
SPHK1
0.0278
1.16



OPN, osteopontin.3
SPP1
0.0134
1.17



SQSTM1.1
SQSTM1
0.0347
1.13



C20 orf1.1
TPX2
0.0069
1.20



TUBB.1
TUBB2A
0.0046
1.21



VCAN.1
VCAN
0.0152
1.18

















TABLE 9







16 Significant Genes After Adjusting for Clinical/Pathologic


Covariates and Allowing for an FDR of 10%














Official

Gene


LR
LR p-



Symbol
n
Subset (Pathway)
HR
HR (95% CI)
ChiSq
value
q-value

















EMCN
928
Angiogenesis
0.68
(0.57, 0.80)
19.87
<0.0001
0.0042


PPAP2B
928
Angiogenesis
0.74
(0.65, 0.85)
16.15
0.0001
0.0148


CCL5
928
Immune Response
0.78
(0.68, 0.89)
12.98
0.0003
0.0529


CXCL9
928
Immune Response
0.79
(0.70, 0.91)
11.74
0.0006
0.0772


NOS3
928
Angiogenesis
0.78
(0.68, 0.90)
11.32
0.0008
0.0774


NUDT6
926
Angiogenesis
0.77
(0.66, 0.90)
10.77
0.0010
0.0850


AQP1
928
Transport
0.79
(0.69, 0.91)
10.15
0.0014
0.0850


APOLD1
927
Angiogenesis
0.78
(0.68, 0.91)
10.07
0.0015
0.0850


ITGB5
928
Cell Adhesion/
1.25
(1.09, 1.43)
9.92
0.0016
0.0850




Extracellular Matrix


CCR7
928
Immune Response
0.80
(0.69, 0.92)
9.58
0.0020
0.0850


CX3CL1
926
Immune Response
0.81
(0.70, 0.92)
9.44
0.0021
0.0850


CEACAM1
928
Angiogenesis
0.81
(0.70, 0.93)
9.37
0.0022
0.0850


PRKCH
917
Angiogenesis
0.82
(0.72, 0.93)
9.36
0.0022
0.0850


CASP10
927
Apoptosis
0.82
(0.73, 0.93)
9.25
0.0024
0.0850


SNRK
928
Angiogenesis
0.81
(0.71, 0.92)
9.09
0.0026
0.0863


PTPRB
927
Angiogenesis
0.80
(0.69, 0.92)
8.83
0.0030
0.0933


























TABLE A








Official
Gene





SEQ


Gene
Accession Num
Sequence_ID
Symbol
Version ID
F Primer Seq
SEQ ID NO.
R Primer Seq
SEQ ID NO.
Probe Seq
ID NO.

























A-Catenin.2
NM_001903
NM_001903.1
CTNNA1
765
CGTTCCGATCCTCT
1
AGGTCCCTGTTG
733
ATGCCTACAGCACCC
1465







ATACTGCAT

GCCTTATAGG

TGATGTCGCA






A2M.1
NM_000014
NM_000014.4
A2M
6456
CTCTCCCGCCTTCC
2
CCGTTTGCACAG
734
CGCTTGTTCCTTCTC
1466







TAGC

ATGCAG

CACTGGGAC






AAMP.1
NM_001087
NM_001087.3
AAMP
5474
GTGTGGCAGGTGG
3
CTCCATCCACTC
735
CGCTTCAAAGGACCA
1467







ACACTAA

CAGGTCTC

GACCTCCTC






ABCB1.5
NM_000927
NM_000927.2
ABCB1
3099
AAACACCACTGGAG
4
CAAGCCTGGAAC
736
CTCGCCAATGATGCT
1468







CATTGA

CTATAGCC

GCTCAAGTT






ACADSB.1
NM_001609
NM_001609.3
ACADSB
6278
TGGCGGAGAACTA
5
AAGACAGCCCAG
737
CCTCCTGAAGCCTG
1469







GCCAT

TCCTCAAAT

CCATCATTGT






ACE.1
NM_000789
NM_000789.2
ACE
4257
CCGCTGTACGAGG
6
CCGTGTCTGTGA
738
TGCCCTCAGCAATGA
1470







ATTTCA

AGCCGT

AGCCTACAA






ACE2.1
NM_021804
NM_021804.1
ACE2
6108
TACAATGAGAGGCT
7
TAATGGCCTCAG
739
CGACCTCAGATCTCC
1471







CTGGGC

CTGCTTG

AGCTTTCCC






ADAM17.1
NM_003183
NM_003183.3
ADAM17
2617
GAAGTGCCAGGAG
8
CGGGCACTCACT
740
TGCTACTTGCAAAGG
1472







GCGATTA

GCTATTACC

CGTGTCCTACTGC






ADAM8.1
NM_001109
NM_001109.2
ADAM8
3978
GTCACTGTGTCCAG
9
TGATGACCTGCT
741
TTCCCAGTTCCTGTC
1473







CCCA

TTGGTGC

TACACCCGG






ADAMTS1.1
NM_006988
NM_006988.2
ADAMTS1
2639
GGACAGGTGCAAG
10
ATCTACAACCTT
742
CAAGCCAAAGGCATT
1474







CTCATCTG

GGGCTGCAA

GGCTACTTCTTCG






ADAMTS2.1
NM_014244
NM_014244.1
ADAMTS2
3979
GAGAATGTCTGCC
11
ATCGTGGTATTC
743
TACCTCCAGCAGAAG
1475







GCTGG

ATCGTGGC

CCAGACACG






ADAMTS4.1
NM_005099
NM_005099.3
ADAMTS4
2642
TTTGACAAGTGCAT
12
AATTTCCTGAAG
744
CTGCTTGCTGCAACC
1476







GGTGTG

GAGCCTGA

AGAACCGT






ADAMTS5.1
NM_007038
NM_007038.1
ADAMTS5
2641
CACTGTGGCTCAC
13
GGAACCAAAGGT
745
ATTTACTTGGCCTCT
1477







GAAATCG

CTCTTCACAGA

CCCATGACGATTCC






ADAMTS8.1
NM_007037
NM_007037.2
ADAMTS8
2640
GCGAGTTCAAAGT
14
CACAGATGGCCA
746
CACACAGGGTGCCA
1478







GTTCGAG

GTGTTTCT

TCAATCACCT






ADAMTS9.1
NM_182920
NM_182920.1
ADAMTS9
6109
GCACAGGTTACACA
15
CGACATTGGCAG
747
CCGGCTCCCGTTATA
1479







ACCCAA

TCATCG

GGGACATTC






ADD1.1
NM_001119
NM_001119.3
ADD1
3980
GTCTACCCAGCAG
16
TCGTTCACAGGA
748
CATGTTTAAGGCAGC
1480







CTCCG

GTCACCAT

CATCCCTCC






ADFP.1
NM_001122
NM_001122.2
PLIN2
4503
AAGACCATCACCTC
17
CAATTTGCGGCT
749
ATGACCAGTGCTCTG
1481







CGTGG

CTAGCTTC

CCCATCATC






ADH1B.1
NM_000668
NM_000668.4
ADH1B
6325
AAGCCAACAAACCT
18
AAAATGCAAGAA
750
TTTCCTCAATGGCAA
1482







TCCTTC

GTCACAGGAA

AGGTGACACA






ADH6.1
NM_000672
NM_000672.3
ADH6
6111
TGTTGGGGAGTAAA
19
AACGATTCCAGC
751
TCTTGTATCCCACCA
1483







CACTTGG

CCCTTC

TCTTGGGCC






ADM.1
NM_001124
NM_001124.1
ADM
3248
TAAGCCACAAGCAC
20
TGGGCGCCTAAA
752
CGAGTGGAAGTGCT
1484







ACGG

TCCTAA

CCCCACTTTC






AGR2.1
NM_006408
NM_006408.2
AGR2
3245
AGCCAACATGTGAC
21
TCTGATCTCCAT
753
CAACACGTCACCACC
1485







TAATTGGA

CTGCCTCA

CTTTGCTCT






AGT.1
NM_000029
NM_000029.2
AGT
6112
GATCCAGCCTCACT
22
CCAGTTGAGGGA
754
TGAGACCCTCCACCT
1486







ATGCCT

GTTTTGCT

TGTCCAGGT






AGTR1.1
NM_000685
NM_000685.3
AGTR1
4258
AGCATTGATCGATA
23
CTACAAGCATTG
755
ATTGTTCACCCAATG
1487







CCTGGC

TGCGTCG

AAGTCCCGC






AHR.1
NM_001621
NM_001621.2
AHR
3981
GCGGCATAGAGAC
24
ACATCTTGTGGG
756
CAGGCTAGCCAAAC
1488







CGACTT

AAAGGCA

GGTCCAACTC






AIF1.1
NM_032955
NM_032955.1
AIF1
6452
GACGTTCAGCTACC
25
TCAGGATCATTT
757
ATCTCTTGCCCAGCA
1489







CTGACTTT

TTAGGATGGC

TCATCCTGA






AKT1.3
NM_005163
NM_005163.1
AKT1
18
CGCTTCTATGGCG
26
TCCCGGTACACC
758
CAGCCCTGGACTAC
1490







CTGAGAT

ACGTTCTT

CTGCACTCGG






AKT2.3
NM_001626
NM_001626.2
AKT2
358
TCCTGCCACCCTTC
27
GGCGGTAAATTC
759
CAGGTCACGTCCGA
1491







AAACC

ATCATCGAA

GGTCGACACA






AKT3.2
NM_005465
NM_005465.1
AKT3
21
TTGTCTCTGCCTTG
28
CCAGCATTAGAT
760
TCACGGTACACAATC
1492







GACTATCTACA

TCTCCAACTTGA

TTTCCGGA






ALDH4.2
NM_003748
NM_003748.2
ALDH4A1
2092
GGACAGGGTAAGA
29
AACCGGAAGAAG
761
CTGCAGCGTCAATCT
1493







CCGTGAT

TCGATGAG

CCGCTTG






ALDH6A1.1
NM_005589
NM_005589.2
ALDH6A1
6114
GGCTCTTTCAACAG
30
GCATGCTCCACC
762
CAGCCACTTCTTGGC
1494







CAGTCC

AGCTCT

TTCTCCCAC






ALDOA.1
NM_000034
NM_000034.2
ALDOA
3810
GCCTGTACGTGCC
31
TCATCGGAGCTT
763
TGCCAGAGCCTCAA
1495







AGCTC

GATCTCG

CTGTCTCTGC






ALDOB.1
NM_000035
NM_000035.2
ALDOB
6321
CCCTCTACCAGAAG
32
TAACTTGATTCC
764
TCCCCTTTTCCTTGA
1496







GACAGC

CACCACGA

GGATGTTTCTG






ALOX12.1
NM_000697
NM_000697.1
ALOX12
3861
AGTTCCTCAATGGT
33
AGCACTAGCCTG
765
CATGCTGTTGAGAC
1497







GCCAAC

GAGGGC

GCTCGACCTC






ALOX5.1
NM_000698
NM_000698.2
ALOX5
4259
GAGCTGCAGGACT
34
GAAGCCTGAGGA
766
CCGCATGCCGTACA
1498







TCGTGA

CTTGCG

CGTAGACATC






AMACR1.1
NM_014324
NM_014324.4
AMACR
3930
GGACAGTCAGTTTT
35
GACAGCCCAGAG
767
CAGTAACTCGGGGC
1499







AGGGTTGC

ACCCAC

CTGTTTCCC






ANGPT1.1
NM_001146
NM_001146.3
ANGPT1
2654
TCTACTTGGGGTGA
36
CCTTTTTAAAGC
768
TCACGTGGCTCGAC
1500







CAGTGC

CCGACAGT

TATAGAAAACTCCA






ANGPT2.1
NM_001147
NM_001147.1
ANGPT2
2655
CCGTGAAAGCTGC
37
TTGCAGTGGGAA
769
AAGCTGACACAGCC
1501







TCTGTAA

GAACAGTC

CTCCCAAGTG






ANGPTL2.1
NM_012098
NM_012098.2
ANGPTL2
3982
GCCATCTGCGTCAA
38
TAGCTCCTGCTT
770
TCTCCAGAAGCACCT
1502







CTCC

ATGCACTCG

CAGGCTCCT






ANGPTL3.3
NM_014495
NM_014495.2
ANGPTL3
6505
GTTGCGATTACTGG
39
TGCTTTGTGATC
771
CCAATGCAATCCCG
1503







CAATGT

CCAAGTAGA

GAAAACAAAG






ANGPTL4.1
NM_016109
NM_016109.2

3237
ATGACCTCAGATGG
40
CCGGTTGAAGTC
772
CATCGTGGCGCCTC
1504







AGGCTG

CACTGAG

TGAATTACTG






ANGPTL7.1
NM_021146
NM_021146.2
ANGPTL7
6115
CTGCACAGACTCCA
41
GCCATCCAGGTG
773
TCACCCAGGCGGTA
1505







ACCTCA

CTTATTGT

GTACACTCCA






ANTXR1.1
NM_032208
NM_032208.1
ANTXR1
3363
CTCCAGGTGTACCT
42
GAGAAGGCTGG
774
AGCCTTCTCCCACAG
1506







CCAACC

GAGACTCTG

CTGCCTACA






ANXA1.2
NM_000700
NM_000700.1
ANXA1
1907
GCCCCTATCCTACC
43
CCTTTAACCATTA
775
TCCTCGGATGTCGCT
1507







TTCAATCC

TGGCCTTATGC

GCCT






ANXA2.2
NM_004039
NM_004039.1
ANXA2
2269
CAAGACACTAAGG
44
CGTGTCGGGCTT
776
CCACCACACAGGTAC
1508







GCGACTACCA

CAGTCAT

AGCAGCGCT






ANXA4.1
NM_001153
NM_001153.2
ANXA4
3984
TGGGAGGGATGAA
45
CTCATACAGGTC
777
TGTCTCACGAGAGCA
1509







GGAAAT

CTGGGCA

TCGTCCAGA






ANXA5.1
NM_001154
NM_001154.2
ANXA5
3785
GCTCAAGCCTGGA
46
AGAACCACCAAC
778
AGTACCCTGAAGTGT
1510







AGATGAC

ATCCGCT

CCCCCACCA






AP-1 (JUN officia$$
NM_002228
NM_002228.2
JUN
2157
GACTGCAAAGATG
47
TAGCCATAAGGT
779
CTATGACGATGCCCT
1511







GAAACGA

CCGCTCTC

CAACGCCTC






AP1M2.1
NM_005498
NM_005498.3
AP1M2
5104
ACAACGACCGCAC
48
CTGAGGCGGTAT
780
CTTCATCCCGCCTGA
1512







CATCT

GACATGAG

TGGTGACTT






APAF1.2
NM_181861
NM_181861.1
APAF1
4086
CACAAGGAAGAAG
49
CATCCTGGTTCA
781
TGCAATTCAGCAGAA
1513







CTGGTGA

CCTTTCAA

GCTCTCCAAA






APC.4
NM_000038
NM_000038.1
APC
41
GGACAGCAGGAAT
50
ACCCACTCGATT
782
CATTGGCTCCCCGT
1514







GTGTTTC

TGTTTCTG

GACCTGTA






APOC1.3
NM_001645
NM_001645.3
APOC1
6608
CCAGCCTGATAAAG
51
CACTCTGAATCC
783
AGGACAGGACCTCC
1515







GTCCTG

TTGCTGGA

CAACCAAGC






APOE.1
NM_000041
NM_000041.2
APOE
4340
GCCTCAAGAGCTG
52
CCTGCACCTTCT
784
ACTGGCGCTGCATG
1516







GTTCG

CCACCA

TCTTCCAC






APOL1.1
NM_003661
NM_003661.2
APOL1
6117
CGGACCAAGAACT
53
ATTTTGTCCTGG
785
AGGCATATCTCTCCT
1517







GTGACC

CCCCTG

GGTGGCTGC






APOLD1.1
NM_030817
NM_030817.1
APOLD1
6118
GAGCAGCTGGAGT
54
AGAGATCTTGAG
786
CAGCTCTGCACCAA
1518







CTCGG

GTCGTGGC

GTCCAGTCGT






AQP1.1
NM_198098
NM_198098.1
AQP1
5294
GCTTGCTGTATGAC
55
AAGGCTGACCTC
787
ACAGCCTTCCCTCTG
1519







CCCTG

TCCCCTC

CATTGACCT






AREG.2
NM_001657
NM_001657.1
AREG
87
TGTGAGTGAAATGC
56
TTGTGGTTCGTT
788
CCGTCCTCGGGAGC
1520







CTTCTAGTAGTGA

ATCATACTCTTCT

CGACTATGA






ARF1.1
NM_001658
NM_001658.2
ARF1
2776
CAGTAGAGATCCC
57
ACAAGCACATGG
789
CTTGTCCTTGGGTCA
1521







CGCAACT

CTATGGAA

CCCTGCA






ARG99.1
NM_031920
NM_031920.2

3873
GCATGGGCTACTG
58
CCACATCGATTC
790
AGCTTGCTCAGTCC
1522







CATCC

AGCCAAG

GTGCACAAAA






ARGHEF18.1
NM_015318
NM_015318.2
ARHGEF18
3008
ACTCTGCTTCCCAA
59
GAAGCTAGAGGC
791
CTGTTCACACGCTCA
1523







GGGC

CCGCTC

GCCTGTCTG






ARHA.1
NM_001664
NM_001664.1
RHOA
2981
GGTCCTCCGTCGG
60
GTCGCAAACTCG
792
CCACGGTCTGGTCTT
1524







TTCTC

GAGACG

CAGCTACCC






ARHGDIB.1
NM_001175
NM_001175.4
ARHGDIB
3987
TGGTCCCTAGAACA
61
TGATGGAGGATC
793
TAAAACCGGGCTTTC
1525







AGAGGC

AGAGGGAG

ACCCAACCT






ARRB1.1
NM_004041
NM_004041.2
ARRB1
2656
TGCAGGAACGCCT
62
GGTTTGGAGGGA
794
CTGGGCGAGCACGC
1526







CATCAA

TCTCAAAGG

TTACCCTTTC






ASS1.1
NM_054012
NM_054012.3
ASS1
6328
CCCCCAGATAAAG
63
TGCGTACTCCAT
795
TCTACAACCGGTTCA
1527







GTCATTG

CAGGTCAT

AGGGCCG






ATP1A1.1
NM_000701
NM_000701.6
ATP1A1
6119
AGAACGCCTATTTG
64
GGCAGAAAGAGG
796
ACCTAGGACTCGTTC
1528







GAGCTG

TGGCAG

TCCGAGGCC






ATP5E.1
NM_006886
NM_006886.2
ATP5E
3535
CCGCTTTCGCTACA
65
TGGGAGTATCGG
797
TCCAGCCTGTCTCCA
1529







GCAT

ATGTAGCTG

GTAGGCCAC






ATP6V1B1.1
NM_001692
NM_001692.3
ATP6V1B1
6293
AACCATGGGGAAC
66
GGTGATGATCCG
798
CTTCCTGAACTTGGC
1530







GTCTG

CTCGAT

CAATGACCC






AXL.1
NM_001699
NM_001699.3
AXL
3989
TTGCAGCCCTGTCT
67
CTGCACAGAGAA
799
TATCCCACCTCCATC
1531







TCCTAC

GGGGAGG

CCAGACAGG






AZU1.1
NM_001700
NM_001700.3
AZU1
6120
CCGAGGCCCTGAC
68
GTCCCGGGTTGT
800
CCATCGATCCAGTCT
1532







TTCTT

TGAGAA

CGGAAGAGC






B-Catenin.3
NM_001904
NM_001904.1
CTNNB1
769
GGCTCTTGTGCGT
69
TCAGATGACGAA
801
AGGCTCAGTGATGT
1533







ACTGTCCTT

GAGCACAGATG

CTTCCCTGTCACCAG






B2M.4
NM_004048
NM_004048.1
B2M
467
GGGATCGAGACAT
70
TGGAATTCATCC
802
CGGCATCTTCAAACC
1534







GTAAGCA

AATCCAAAT

TCCATGATG






BAD.1
NM_032989
NM_032989.2
BAD
7209
GGGTCAGGGGCCT
71
CTGCTCACTCGG
803
TGGGCCCAGAGCAT
1535







CGAGAT

CTCAAACTC

GTTCCAGATC






BAG1.2
NM_004323
NM_004323.2
BAG1
478
CGTTGTCAGCACTT
72
GTTCAACCTCTT
804
CCCAATTAACATGAC
1536







GGAATACAA

CCTGTGGACTGT

CCGGCAACCAT






BAG2.1
NM_004282
NM_004282.2
BAG2
2808
CTAGGGGCAAAAA
73
CTAAATGCCCAA
805
TTCCATGCCAGACAG
1537







GCATGA

GGTGACTG

GAAAAAGCA






Bak.2
NM_001188
NM_001188.1
BAK1
82
CCATTCCCACCATT
74
GGGAACATAGAC
806
ACACCCCAGACGTC
1538







CTACCT

CCACCAAT

CTGGCCT






Bax.1
NM_004324
NM_004324.1
BAX
10
CCGCCGTGGACAC
75
TTGCCGTCAGAA
807
TGCCACTCGGAAAAA
1539







AGACT

AACATGTCA

GACCTCTCGG






BBC3.2
NM_014417
NM_014417.1
BBC3
574
CCTGGAGGGTCCT
76
CTAATTGGGCTC
808
CATCATGGGACTCCT
1540







GTACAAT

CATCTCG

GCCCTTACC






Bcl2.2
NM_000633
NM_000633.1
BCL2
61
CAGATGGACCTAGT
77
CCTATGATTTAA
809
TTCCACGCCGAAGG
1541







ACCCACTGAGA

GGGCATTTTTCC

ACAGCGAT






BCL2A1.1
NM_004049
NM_004049.2
BCL2A1
6322
CCAGCCTCCATGTA
78
TGAAGCTGTTGA
810
CAGTCAAGCTCAGTG
1542







TCATCA

GGCAATGT

AGCATTCTCAGC






BCL2L12.1
NM_138639
NM_138639.1
BCL2L12
3364
AACCCACCCCTGTC
79
CTCAGCTGACGG
811
TCCGGGTAGCTCTC
1543







TTGG

GAAAGG

AAACTCGAGG






Bclx.2
NM_001191
NM_001191.1
BCL2L1
83
CTTTTGTGGAACTC
80
CAGCGGTTGAAG
812
TTCGGCTCTCGGCT
1544







TATGGGAACA

CGTTCCT

GCTGCA






BCRP.1
NM_004827
NM_004827.1
ABCG2
364
TGTACTGGCGAAG
81
GCCACGTGATTC
813
CAGGGCATCGATCT
1545







AATATTTGGTAAA

TTCCACAA

CTCACCCTGG






BFGF.3
NM_007083
NM_007083.1
NUDT6
345
CCAGGAAGAATGC
82
TGGTGATGGGAG
814
TTCGCCAGGTCATTG
1546







TTAAGATGTGA

TTGTATTTTCAG

AGATCCATCCA






BGN.1
NM_001711
NM_001711.3
BGN
3391
GAGCTCCGCAAGG
83
CTTGTTGTTCAC
815
CAAGGGTCTCCAGC
1547







ATGAC

CAGGACGA

ACCTCTACGC






BHLHB3.1
NM_030762
NM_030762.1
BHLHE41
6121
AGGAAGATCCCTC
84
TTGAACCTCCGT
816
AGGAAGCTCCCTGA
1548







GCAGC

CCTTCG

ATCCTTGCGT






BIK.1
NM_001197
NM_001197.3
BIK
2281
ATTCCTATGGCTCT
85
GGCAGGAGTGAA
817
CCGGTTAACTGTGG
1549







GCAATTGTC

TGGCTCTTC

CCTGTGCCC






BIN1.3
NM_004305
NM_004305.1
BIN1
941
CCTGCAAAAGGGA
86
CGTGGTTGACTC
818
CTTCGCCTCCAGATG
1550







ACAAGAG

TGATCTCG

GCTCCC






BLR1.1
NM_001716
NM_001716.3
CXCR5
6280
GACCAAGCAGGAA
87
AGCGCTGTTTCG
819
CCAGGGGCAGCTAC
1551







GCTCAGA

GTCAGA

CTGAACTCAA






BNIP3.1
NM_004052
NM_004052.2
BNIP3
3937
CTGGACGGAGTAG
88
GGTATCTTGTGG
820
CTCTCACTGTGACAG
1552







CTCCAAG

TGTCTGCG

CCCACCTCG






BRCA1.1
NM_007294
NM_007294.3
BRCA1
7481
TCAGGGGGCTAGA
89
CCATTCCAGTTG
821
CTATGGGCCCTTCAC
1553







AATCTGT

ATCTGTGG

CAACATGC






BTRC.1
NM_033637
NM_033637.2
BTRC
2555
GTTGGGACACAGTT
90
TGAAGCAGTCAG
822
CAGTCGGCCCAGGA
1554







GGTCTG

TTGTGCTG

CGGTCTACT






BUB1.1
NM_004336
NM_004336.1
BUB1
1647
CCGAGGTTAATCCA
91
AAGACATGGCGC
823
TGCTGGGAGCCTAC
1555







GCACGTA

TCTCAGTTC

ACTTGGCCC






BUB3.1
NM_004725
NM_004725.1
BUB3
3016
CTGAAGCAGATGG
92
GCTGATTCCCAA
824
CCTCGCTTTGTTTAA
1556







TTCATCATT

GAGTCTAACC

CAGCCCAGG






c-kit.2
NM_000222
NM_000222.1
KIT
50
GAGGCAACTGCTTA
93
GGCACTCGGCTT
825
TTACAGCGACAGTCA
1557







TGGCTTAATTA

GAGCAT

TGGCCGCAT






C13orf15.1
NM_014059
NM_014059.2
C13orf15
6122
TAGAATCTGCTGCC
94
CAAGGGCTGATT
826
TGCACTCAACCTTCT
1558







AGAGGG

TTAAGGTGA

ACCAGGCCA






C1QA.1
NM_015991
NM_015991.2
C1QA
6123
CGGTCATCACCAAC
95
CGGGTACAGTGC
827
AGAACCGTACCAGAA
1559







CAGG

AGACGA

CCACTCCGG






C1QB.1
NM_000491
NM_000491.3
C1QB
6124
CCAGTGGCCTCAC
96
CCCATGGGATCT
828
TCCCAGGAGGCGTC
1560







AGGAC

TCATCATC

TGACACAGTA






C20orf1.1
NM_012112
NM_012112.2
TPX2
1239
TCAGCTGTGAGCT
97
ACGGTCCTAGGT
829
CAGGTCCCATTGCC
1561







GCGGATA

TTGAGGTTAAGA

GGGCG






C3.1
NM_000064
NM_000064.2
C3
6125
CGTGAAGGAGTGC
98
ACTCGGTGTCCG
830
ACATCCCACCTGCAG
1562







AGAAAGA

GGACTT

ACCTCAGTG






C3AR1.1
NM_004054
NM_004054.2
C3AR1
6126
AAGCCGCATCCCA
99
TGTTAAGTGCCC
831
CAACCCCCAGAGATT
1563







GACTT

TTGCTGG

CCGATTCAG






C7.1
NM_000587
NM_000587.2
C7
6127
ATGTCTGAGTGTGA
100
AGGCCTTATGCT
832
ATGCTCTGCCCTCTG
1564







GGCGG

GGTGACAG

CATCTCAGA






CA12.1
NM_001218
NM_001218.3
CA12
6128
CTCTCTGAAGGTGT
101
ACAGGAACTGAG
833
AGACACCAGTGCTTC
1565







CCTGGC

GGGTGCT

TCCAGGGCT






CA2.1
NM_000067
NM_000067.1
CA2
5189
CAACGTGGAGTTTG
102
CTGTAAGTGCCA
834
CCTCCCTTGAGCACT
1566







ATGACTCT

TCCAGGG

GCTTTGTCC






CA9.3
NM_001216
NM_001216.1
CA9
482
ATCCTAGCCCTGGT
103
CTGCCTTCTCAT
835
TTTGCTGTCACCAGC
1567







TTTTGG

CTGCACAA

GTCGC






CACNA2D1.1
NM_000722
NM_000722.2
CACNA2D1
6129
CAAACATTAGCTGG
104
CAGCCAGTGGGT
836
CCATGGCATAACACT
1568







GCCTGT

GCCTTA

AAGGCGCAG






CALD1.2
NM_004342
NM_004342.4
CALD1
1795
CACTAAGGTTTGAG
105
GCGAATTAGCCC
837
AACCCAAGCTCAAGA
1569







ACAGTTCCAGAA

TCTACAACTGA

CGCAGGACGAG






CASP1.1
NM_033292
NM_033292.2
CASP1
6132
AGAAAGCCCACATA
106
TGTGGGATGTCT
838
CGCTTTCTGCTCTTC
1570







GAGAAGGA

CCAAGAAA

CACACCAGA






CASP10.1
NM_001230
NM_001230.4
CASP10
6133
ACCTTTCTCTTGGC
107
GTGGGGACTGTC
839
TCTACTGCATCTGCC
1571







CGGAT

CACTGC

AGCCCTGAG






CASP6.1
NM_032992
NM_032992.2
CASP6
6134
CCTCACACTGGTGA
108
AATTGCACTTGG
840
AAAGTCCACTCGGC
1572







ACAGGA

GTCTTTGC

GCTGAGAAAC






Caspase 3.1
NM_032991
NM_032991.2
CASP3
5963
TGAGCCTGAGCAG
109
CCTTCCTGCGTG
841
TCAGCCTGTTCCATG
1573







AGACATGA

GTCCAT

AAGGCAGAGC






CAT.1
NM_001752
NM_001752.1
CAT
2745
ATCCATTCGATCTC
110
TCCGGTTTAAGA
842
TGGCCTCACAAGGA
1574







ACCAAGGT

CCAGTTTACCA

CTACCCTCTCATCC






CAV1.1
NM_001753
NM_001753.3
CAV1
2557
GTGGCTCAACATTG
111
CAATGGCCTCCA
843
ATTTCAGCTGATCAG
1575







TGTTCC

TTTTACAG

TGGGCCTCC






CAV2.1
NM_198212
NM_198212.1
CAV2
6460
CTTCCCTGGGACG
112
CTCCTGGTCACC
844
CCCGTACTGTCATGC
1576







ACTTG

CTTCTGG

CTCAGAGCT






CCL18.1
NM_002988
NM_002988.2
CCL18
3994
GCTCCTGTGCACAA
113
TGGAATCTGCCA
845
CAACAAAGAGCTCTG
1577







GTTGG

GGAGGTA

CTGCCTCGT






CCL19.1
NM_006274
NM_006274.2
CCL19
4107
GAACGCATCATCCA
114
CCTCTGCACGGT
846
CGCTTCATCTTGGCT
1578







GAGACTG

CATAGGTT

GAGGTCCTC






CCL20.1
NM_004591
NM_004591.1
CCL20
1998
CCATGTGCTGTACC
115
CGCCGCAGAGG
847
CAGCACTGACATCAA
1579







AAGAGTTTG

TGGAGTA

AGCAGCCAGGA






CCL4.2
NM_002984
NM_002984.1
CCL4
4148
GGGTCCAGGAGTA
116
CCTTCCCTGAAG
848
ACTGAACTGAGCTGC
1580







CGTGTATGAC

ACTTCCTGTCT

TCA






CCL5.2
NM_002985
NM_002985.2
CCL5
4088
AGGTTCTGAGCTCT
117
ATGCTGACTTCC
849
ACAGAGCCCTGGCA
1581







GGCTTT

TTCCTGGT

AAGCCAAG






CCNB1.2
NM_031966
NM_031966.1
CCNB1
619
TTCAGGTTGTTGCA
118
CATCTTCTTGGG
850
TGTCTCCATTATTGA
1582







GGAGAC

CACACAAT

TCGGTTCATGCA






CCND1.3
NM_053056
NM_001758.1
CCND1
88
GCATGTTCGTGGC
119
CGGTGTAGATGC
851
AAGGAGACCATCCC
1583







CTCTAAGA

ACAGCTTCTC

CCTGACGGC






CCNE1.1
NM_001238
NM_001238.1
CCNE1
498
AAAGAAGATGATGA
120
GAGCCTCTGGAT
852
CAAACTCAACGTGCA
1584







CCGGGTTTAC

GGTGCAAT

AGCCTCGGA






CCNE2 variant 1
NM_057749
NM_057749var1
CCNE2
1650
GGTCACCAAGAAAC
121
TTCAATGATAATG
853
CCCAGATAATACAGG
1585







ATCAGTATGAA

CAAGGACTGATC

TGGCCAACAATTCCT






CCNE2.2
NM_057749
NM_057749.1
CCNE2
502
ATGCTGTGGCTCCT
122
ACCCAAATTGTG
854
TACCAAGCAACCTAC
1586







TCCTAACT

ATATACAAAAAG

ATGTCAAGAAAGCCC










GTT








CCR1.1
NM_001295
NM_001295.2
CCR1
6135
TCCAAGACCCAATG
123
TCGTAGGCTTTC
855
ACTCACCACACCTGC
1587







GGAA

GTGAGGA

AGCCTTCAC






CCR2.1
NM_000648
NM_000648.1

4109
CTCGGGAATCCTG
124
GACTCTCACTGC
856
TCTTCTCGTTTCGAC
1588







AAAACC

CCTATGCC

ACCGAAGCA






CCR4.2
NM_005508
NM_005508.4
CCR4
6502
AGACCCTGGTGGA
125
AGAGTTTCTGTG
857
TCCTTCAGGACTGCA
1589







GCTAGAA

GCCTGGAT

CCTTTGAAAGA






CCR5.1
NM_000579
NM_000579.1
CCR5
4119
CAGACTGAATGGG
126
CTGGTTTGTCTG
858
TGGAATAAGTACCTA
1590







GGTGG

GAGAAGGC

AGGCGCCCCC






CCR7.1
NM_001838
NM_001838.2
CCR7
2661
GGATGACATGCACT
127
CCTGACATTTCC
859
CTCCCATCCCAGTG
1591







CAGCTC

CTTGTCCT

GAGCCAA






CD105.1
NM_000118
NM_000118.1
ENG
486
GCAGGTGTCAGCA
128
TTTTTCCGCTGT
860
CGACAGGATATTGAC
1592







AGTATGATCAG

GGTGATGA

CACCGCCTCATT






CD14.1
NM_000591
NM_000591.1
CD14
4341
GTGTGCTAGCGTA
129
GCATGGTGCCG
861
CAAGGAACTGACGC
1593







CTCCCG

GTTATCT

TCGAGGACCT






CD18.2
NM_000211
NM_000211.1
ITGB2
49
CGTCAGGACCCAC
130
GGTTAATTGGTG
862
CGCGGCCGAGACAT
1594







CATGTCT

ACATCCTCAAGA

GGCTTG






CD1A.1
NM_001763
NM_001763.1
CD1A
4166
GGAGTGGAAGGAA
131
TCATGGGCGTAT
863
CGCACCATTCGGTCA
1595







CTGGAAA

CTACGAAT

TTTGAGG






CD24.1
NM_013230
NM_013230.1
CD24
2364
TCCAACTAATGCCA
132
GAGAGAGTGAGA
864
CTGTTGACTGCAGG
1596







CCACCAA

CCACGAAGAGACT

GCACCACCA






CD274.2
NM_014143
NM_014143.2
CD274
4076
GCTGCATGATCAG
133
TGTTGTATGGGG
865
CACAGTAATTCGCTT
1597







CTATGGT

CATTGACT

GTAGTCGGCACC






CD31.3
NM_000442
NM_000442.1
PECAM1
485
TGTATTTCAAGACC
134
TTAGCCTGAGGA
866
TTTATGAACCTGCCC
1598







TCTGTGCACTT

ATTGCTGTGTT

TGCTCCCACA






CD34.1
NM_001773
NM_001773.1
CD34
3814
CCACTGCACACACC
135
CAGGAGTTTACC
867
CTGTTCTTGGGGCC
1599







TCAGA

TGCCCCT

CTACACCTTG






CD36.1
NM_000072
NM_000072.2
CD36
6138
GTAACCCAGGACG
136
AAGGTTCGAAGA
868
CACAGTCTCTTTCCT
1600







CTGAGG

TGGCACC

GCAGCCCAA






CD3z.1
NM_000734
NM_000734.1
CD247
64
AGATGAAGTGGAA
137
TGCCTCTGTAAT
869
CACCGCGGCCATCC
1601







GGCGCTT

CGGCAACTG

TGCA






CD4.1
NM_000616
NM_000616.2
CD4
4168
GTGCTGGAGTCGG
138
TCCCTGCATTCA
870
CAGGTCCCTTGTCC
1602







GACTAAC

AGAGGC

CAAGTTCCAC






CD44.1
NM_000610
NM_000610.3
CD44
4267
GGCACCACTGCTTA
139
GATGCTCATGGT
871
ACTGGAACCCAGAA
1603







TGAAGG

GAATGAGG

GCACACCCTC






CD44s.1
M59040
M59040.1

1090
GACGAAGACAGTC
140
ACTGGGGTGGAA
872
CACCGACAGCACAG
1604







CCTGGAT

TGTGTCTT

ACAGAATCCC






CD44v6.1
AJ251595v6
AJ251595v6

1061
CTCATACCAGCCAT
141
TTGGGTTGAAGA
873
CACCAAGCCCAGAG
1605







CCAATG

AATCAGTCC

GACAGTTCCT






CD53.1
NM_000560
NM_000560.3
CD53
6139
CGACAGCATCCAC
142
TGCAGAAATGAC
874
CACGCTGCCTTGGT
1606







CGTTAC

TGGATGGA

GCTATTGTCT






CD68.2
NM_001251
NM_001251.1
CD68
84
TGGTTCCCAGCCCT
143
CTCCTCCACCCT
875
CTCCAAGCCCAGATT
1607







GTGT

GGGTTGT

CAGATTCGAGTCA






CD82.3
NM_002231
NM_002231.2
CD82
316
GTGCAGGCTCAGG
144
GACCTCAGGGC
876
TCAGCTTCTACAACT
1608







TGAAGTG

GATTCATGA

GGACAGACAACGCTG






CD8A.1
NM_171827
NM_171827.1
CD8A
3804
AGGGTGAGGTGCT
145
GGGCACAGTATC
877
CCAACGGCAAGGGA
1609







TGAGTCT

CCAGGTA

ACAAGTACTTCT






CD99.1
NM_002414
NM_002414.3
CD99
6323
GTTCCTCCGGTAG
146
ACCATCACTGCC
878
TCCACCTGAAACGCC
1610







CTTTTCA

TCCTTTTC

ATCCG






cdc25A.4
NM_001789
NM_001789.1
CDC25A
90
TCTTGCTGGCTACG
147
CTGCATTGTGGC
879
TGTCCCTGTTAGACG
1611







CCTCTT

ACAGTTCTG

TCCTCCGTCCATA






CDC25B.1
NM_021873
NM_021874.1
CDC25B
389
AAACGAGCAGTTTG
148
GTTGGTGATGTT
880
CCTCACCGGCATAG
1612







CCATCAG

CCGAAGCA

ACTGGAAGCG






CDH1.3
NM_004360
NM_004360.2
CDH1
11
TGAGTGTCCCCCG
149
CAGCCGCTTTCA
881
TGCCAATCCCGATGA
1613







GTATCTTC

GATTTTCAT

AATTGGAAATTT






CDH13.1
NM_001257
NM_001257.3
CDH13
6140
GCTACTTCTCCACT
150
CCTCTCTGTGGA
882
AGTCTGAATGCTGCC
1614







GTCCCG

CCTGCCT

ACAACCAGC






CDH16.1
NM_004062
NM_004062.2
CDH16
4529
GACTGTCTGAATGG
151
CCAGGGGACTCA
883
CAGAGGCCAAGCTC
1615







CCCAG

GATGGA

CCAGCTAGAG






CDH2.1
NM_001792
NM_001792.2
CDH2
3965
TGACCGATAAGGAT
152
GATCTCCGCCAC
884
ATACACCAGCCTGGA
1616







CAACCC

TGATTCTG

ACGCAGTGT






CDH5.1
NM_001795
NM_001795.2
CDH5
6142
ACAGGAGACGTGT
153
CAGCAGTGAGGT
885
TATTCTCCCGGTCCA
1617







TCGCC

GGTACTCTGA

GCCTCTCAA






CDH6.1
NM_004932
NM_004932.2
CDH6
3998
ACACAGGCGACATA
154
CTCGAAGGATGT
886
TTTCTTCCCTGTCCA
1618







CAGGC

AAACGGGT

GCCTCTTGG






CDK4.1
NM_000075
NM_000075.2
CDK4
4176
CCTTCCCATCAGCA
155
TTGGGATGCTCA
887
CCAGTCGCCTCAGTA
1619







CAGTTC

AAAGCC

AAGCCACCT






CDK6.1
NM_001259
NM_001259.5
CDK6
6143
AGTGCCCTGTCTCA
156
GCAGGTGGGAAT
888
TCTTTGCACCTTTCC
1620







CCCA

CCAGGT

AGGTCCTGG






CDKN2A.2
NM_000077
NM_000077.3
CDKN2A
4278
AGCACTCACGCCC
157
TCATGAAGTCGA
889
CGCAAGAAATGCCCA
1621







TAAGC

CAGCTTCC

CATGAATGT






CEACAM1.1
NM_001712
NM_001712.2
CEACAM1
2577
ACTTGCCTGTTCAG
158
TGGCAAATCCGA
890
TCCTTCCCACCCCCA
1622







AGCACTCA

ATTAGAGTGA

GTCCTGTC






CEBPA.1
NM_004364
NM_004364.2
CEBPA
2961
TTGGTTTTGCTCGG
159
GTCTCAGACCCT
891
AAAATGAGACTCTCC
1623







ATACTTG

TCCCCC

GTCGGCAGC






CENPF.1
NM_016343
NM_016343.2
CENPF
3251
CTCCCGTCAACAG
160
GGGTGAGTCTGG
892
ACACTGGACCAGGA
1624







CGTTC

CCTTCA

GTGCATCCAG






CFLAR.1
NM_003879
NM_003879.3
CFLAR
6144
GGACTTTTGTCCAG
161
CGGCGCTTCTCT
893
CTCCTCCCGTGGTC
1625







TGACAGC

CCTACA

CTTGTTGTCT






CGA (CHGA offi$$
NM_001275
NM_001275.2
CHGA
1132
CTGAAGGAGCTCC
162
CAAAACCGCTGT
894
TGCTGATGTGCCCTC
1626







AAGACCT

GTTTCTTC

TCCTTGG






Chk1.2
NM_001274
NM_001274.1
CHEK1
490
GATAAATTGGTACA
163
GGGTGCCAAGTA
895
CCAGCCCACATGTC
1627







AGGGATCAGCTT

ACTGACTATTCA

CTGATCATATGC






Chk2.3
NM_007194
NM_007194.1
CHEK2
494
ATGTGGAACCCCC
164
CAGTCCACAGCA
896
AGTCCCAACAGAAAC
1628







ACCTACTT

CGGTTATACC

AAGAACTTCAGGCG






CIAP1.2
NM_001166
NM_001166.2
BIRC2
326
TGCCTGTGGTGGG
165
GGAAAATGCCTC
897
TGACATAGCATCATC
1629







AAGCT

CGGTGTT

CTTTGGTTCCCAGTT






cIAP2.2
NM_001165
NM_001165.2
BIRC3
79
GGATATTTCCGTGG
166
CTTCTCATCAAG
898
TCTCCATCAAATCCT
1630







CTCTTATTCA

GCAGAAAAATCTT

GTAAACTCCAGAGCA






CLCNKB.1
NM_000085
NM_000085.1
CLCNKB
4308
GTGACCCTGAAGC
167
GGTTCAACAGCT
899
AGAGACTTCCCTGCA
1631







TGTCCC

CAAAGAGGTT

TGAGGCACA






CLDN10.1
NM_182848
NM_182848.2
CLDN10
6145
GGTCTGTGGATGA
168
GATAGTAAAATG
900
TGGAAAGAACCCAAC
1632







ACTGCG

CGGTCGGC

GCGTTACCT






CLDN7.2
NM_001307
NM_001307.3
CLDN7
2287
GGTCTGCCCTAGT
169
GTACCCAGCCTT
901
TGCACTGCTCTCCTG
1633







CATCCTG

GCTCTCAT

TTCCTGTCC






CLU.3
NM_001831
NM_001831.1
CLU
2047
CCCCAGGATACCTA
170
TGCGGGACTTGG
902
CCCTTCAGCCTGCC
1634







CCACTACCT

GAAAGA

CCACCG






cMet.2
NM_000245
NM_000245.1
MET
52
GACATTTCCAGTCC
171
CTCCGATCGCAC
903
TGCCTCTCTGCCCCA
1635







TGCAGTCA

ACATTTGT

CCCTTTGT






cMYC.3
NM_002467
NM_002467.1
MYC
45
TCCCTCCACTCGGA
172
CGGTTGTTGCTG
904
TCTGACACTGTCCAA
1636







AGGACTA

ATCTGTCTCA

CTTGACCCTCTT






COL18A1.1
NM_030582
NM_030582.3
COL18A1
6146
AGCTGCCATCACG
173
GTGGCTACTTGG
905
CGTGCTCTGCATTGA
1637







CCTAC

AGGCAGTC

GAACAGCTTC






COL1A1.1
NM_000088
NM_000088.2
COL1A1
1726
GTGGCCATCCAGC
174
CAGTGGTAGGTG
906
TCCTGCGCCTGATGT
1638







TGACC

ATGTTCTGGGA

CCACCG






COL1A2.1
NM_000089
NM_000089.2
COL1A2
1727
CAGCCAAGAACTG
175
AAACTGGCTGCC
907
TCTCCTAGCCAGACG
1639







GTATAGGAGCT

AGCATTG

TGTTTCTTGTCCTTG






COL4A1.1
NM_001845
NM_001845.4
COL4A1
6147
ACAAAGGCCTCCCA
176
GAGTCCCAGGAA
908
CTCCTTTGACACCAG
1640







GGAT

GACCTGCT

GGATGCCAT






COL4A2.1
NM_001846
NM_001846.2
COL4A2
6148
CAACCCTGGTGAT
177
CGCAGTGGTAGA
909
ACTATGCCAGCCGG
1641







GTCTGC

GAGCCAGT

AACGACAAGT






COL5A2.2
NM_000393
NM_000393.3
COL5A2
6653
GGTCGAGGAACCC
178
GCCTGGAGGTCC
910
CCAGGAAATCCTGTA
1642







AAGGT

AACTCTG

GCACCAGGC






COL7A1.1
NM_000094
NM_000094.2
COL7A1
4984
GGTGACAAAGGAC
179
ACCAGGCTCTCC
911
CTTGTCACCAGGGT
1643







CTCGG

CTTGCT

CCCCATTGTC






COX2.1
NM_000963
NM_000963.1
PTGS2
71
TCTGCAGAGTTGGA
180
GCCGAGGCTTTT
912
CAGGATACAGCTCCA
1644







AGCACTCTA

CTACCAGAA

CAGCATCGATGTC






CP.1
NM_000096
NM_000096.1
CP
3244
CGTGAGTACACAG
181
CCAGGATGCCAA
913
TCTTCAGGGCCTCTC
1645







ATGCCTCC

GATGCT

TCCTTTCGA






CPB2.1
NM_001872
NM_001872.3
CPB2
6294
GGCACATACGGATT
182
CAGCGGCAAAAG
914
CGGAGCGTTACATCA
1646







CTTGCT

CTTCTCTA

AACCCACCT






CRADD.1
NM_003805
NM_003805.3
CRADD
6149
GATGGTGCCTCCA
183
GAGTGAAAGTCA
915
CATGACTCAGGGAC
1647







GCAAC

GGATTCAGCC

ACACTCCCCA






cripto (TDGF1 of
NM_003212
NM_003212.1
TDGF1
1096
GGGTCTGTGCCCC
184
TGACCGTGCCAG
916
CCTGGCTGCCCAAG
1648







ATGAC

CATTTACA

AAGTGTTCCCT






CRP.1
NM_000567
NM_000567.2
CRP
4187
GACGTGAACCACA
185
CTCCAGATAGGG
917
CTGTCAGAGGAGCC
1649







GGGTGT

AGCTGGG

CATCTCCCAT






CSF1.1
NM_000757
NM_000757.3
CSF1
510
TGCAGCGGCTGAT
186
CAACTGTTCCTG
918
TCAGATGGAGACCTC
1650







TGACA

GTCTACAAACTCA

GTGCCAAATTACA






CSF1R.2
NM_005211
NM_005211.1
CSF1R
2289
GAGCACAACCAAAC
187
CCTGCAGAGATG
919
AGCCACTCCCCACG
1651







CTACGA

GGTATGAA

CTGTTGT






CSF2.1
NM_000758
NM_000758.2
CSF2
2779
GAACCTGAAGGAC
188
CTCATCTGGCCG
920
ATCCCCTTTGACTGC
1652







TTTCTGCTTGT

GTCTCACT

TGGGAGCCAG






CSF2RA.2
NM_006140
NM_006140.3
CSF2RA
4477
TACCACACCCAGCA
189
CTAGAGGCTGGT
921
CGCAGATCCGATTTC
1653







TTCCTC

GCCACTGT

TCTGGGATC






CSF3.2
NM_000759
NM_000759.1
CSF3
377
CCCAGGCCTCTGT
190
GGAGGACAGGA
922
TGCATTTCTGAGTTT
1654







GTCCTT

GCTTTTTCTCA

CATTCTCCTGCCTG






CTGF.1
NM_001901
NM_001901.1
CTGF
2153
GAGTTCAAGTGCC
191
AGTTGTAATGGC
923
AACATCATGTTCTTC
1655







CTGACG

AGGCACAG

TTCATGACCTCGC






CTSB.1
NM_001908
NM_001908.1
CTSB
382
GGCCGAGATCTAC
192
GCAGGAAGTCCG
924
CCCCGTGGAGGGAG
1656







AAAAACG

AATACACA

CTTTCTC






CTSD.2
NM_001909
NM_001909.1
CTSD
385
GTACATGATCCCCT
193
GGGACAGCTTGT
925
ACCCTGCCCGCGAT
1657







GTGAGAAGGT

AGCCTTTGC

CACACTGA






CTSH.2
NM_004390
NM_004390.1
CTSH
845
GCAAGTTCCAACCT
194
CATCGCTTCCTC
926
TGGCTACATCCTTGA
1658







GGAAAG

GTCATAGA

CAAAGCCGA






CTSL.2
NM_001912
NM_001912.1
CTSL1
446
GGGAGGCTTATCT
195
CCATTGCAGCCT
927
TTGAGGCCCAGAGC
1659







CACTGAGTGA

TCATTGC

AGTCTACCAGATTCT






CTSL2.1
NM_001333
NM_001333.2
CTSL2
1667
TGTCTCACTGAGCG
196
ACCATTGCAGCC
928
CTTGAGGACGCGAA
1660







AGCAGAA

CTGATTG

CAGTCCACCA






CTSS.1
NM_004079
NM_004079.3
CTSS
1799
TGACAACGGCTTTC
197
TCCATGGCTTTG
929
TGATAACAAGGGCAT
1661







CAGTACAT

TAGGGATAGG

CGACTCAGACGCT






CUBN.1
NM_001081
NM_001081.2
CUBN
4110
GAGGCCGTTACTG
198
GAATCTCAGCGT
930
TGCCCCATCCTATCA
1662







TGGCA

CAGGGC

CATCCTTCA






CUL1.1
NM_003592
NM_003592.2
CUL1
1889
ATGCCCTGGTAATG
199
GCGACCACAAGC
931
CAGCCACAAAGCCA
1663







TCTGCAT

CTTATCAAG

GCGTCATTGT






CUL4A.1
NM_003589
NM_003589.1
CUL4A
2780
AAGCATCTTCCTGT
200
AATCCCATATCC
932
TATGTGCTGCAGAAC
1664







TCTTGGA

CAGATGGA

TCCACGCTG






CX3CL1.1
NM_002996
NM_002996.3
CX3CL1
6150
GACCCTTGCCGTCT
201
GGAGTGTTCCTA
933
TAGAACCCAGCCCAT
1665







ACCTG

GCACCTGG

AAGAGGCCC






CX3CR1.1
NM_001337
NM_001337.3
CX3CR1
4507
TTCCCAGTTGTGAC
202
GCTAAATGCAAC
934
ACTGAGGGCCAGCC
1666







ATGAGG

CGTCTCAGT

TCAGATCCT






CXCL10.1
NM_001565
NM_001565.1
CXCL10
2733
GGAGCAAAATCGAT
203
TAGGGAAGTGAT
935
TCTGTGTGGTCCATC
1667







GCAGT

GGGAGAGG

CTTGGAAGC






CXCL12.1
NM_000609
NM_000609.3
CXCL12
2949
GAGCTACAGATGC
204
TTTGAGATGCTT
936
TTCTTCGAAAGCCAT
1668







CCATGC

GACGTTGG

GTTGCCAGA






CXCL14.1
NM_004887
NM_004887.3
CXCL14
3247
TGCGCCCTTTCCTC
205
CAATGCGGCATA
937
TACCCTTAAGAACGC
1669







TGTA

TACTGGG

CCCCTCCAC






CXCL9.1
NM_002416
NM_002416.1
CXCL9
5191
ACCAGACCATTGTC
206
GTTACCAGAGGC
938
TGCTGGCTCTTTCCT
1670







TCAGAGC

TAGCCAACA

GGCTACTCC






CXCR4.3
NM_003467
NM_003467.1
CXCR4
2139
TGACCGCTTCTACC
207
AGGATAAGGCCA
939
CTGAAACTGGAACAC
1671







CCAATG

ACCATGATGT

AACCACCCACAAG






CXCR6.1
NM_006564
NM_006564.1
CXCR6
4002
CAGAGCCTGACGG
208
GCAGAGTGCAGA
940
CTGGTGAACCTACCC
1672







ATGTGT

CAAACACC

CTGGCTGAC






CYP2C8.2
NM_000770
NM_000770.2
CYP2C8
505
CCGTGTTCAAGAG
209
AGTGGGATCACA
941
TTTTCTCAACTCCTC
1673







GAAGCTC

GGGTGAAG

CACAAGGCA






CYP2C8v2.1
NM_030878
NM_030878.1

5423
GCTGTAGTGCACG
210
CAGTGGTCACTG
942
ATACAGTGACCTTGT
1674







AGATCCA

CATGGG

CCCCACCGG






CYP3A4.2
NM_017460
NM_017460.3
CYP3A4
586
AGAACAAGGACAAC
211
GCAAACCTCATG
943
CACACCCTTTGGAAG
1675







ATAGATCCTTACAT

CCAATGC

TGGACCCAGAA








AT










CYR61.1
NM_001554
NM_001554.3
CYR61
2752
TGCTCATTCTTGAG
212
GTGGCTGCATTA
944
CAGCACCCTTGGCA
1676







GAGCAT

GTGTCCAT

GTTTCGAAAT






DAG1.1
NM_004393
NM_004393.2
DAG1
5968
GTGACTGGGCTCA
213
ATCCCACTTGTG
945
CAAGTCAGAGTTTCC
1677







TGCCT

CTCCTGTC

CTGGTGCCC






DAPK1.3
NM_004938
NM_004938.1
DAPK1
636
CGCTGACATCATGA
214
TCTCTTTCAGCA
946
TCATATCCAAACTCG
1678







ATGTTCCT

ACGATGTGTCTT

CCTCCAGCCG






DCBLD2.1
NM_080927
NM_080927.3
DCBLD2
3821
TCACCAGGGCAGG
215
GGTTGCATACTC
947
CATGCCTATGCTGAA
1679







AAGTTTA

AGGCCC

CCACTCCCA






DCC.3
NM_005215
NM_005215.1
DCC
3763
AAATGTCCTCCTCG
216
TGAATGCCATCT
948
ATCACTGGAACTCCT
1680







ACTGCT

TTCTTCCA

CGGTCGGAC






DCN.1
NM_001920
NM_001920.3
DCN
6151
GAAGGCCACTATCA
217
GCCTCTCTGTTG
949
CTGCTTGCACAAGTT
1681







TCCTCCT

AAACGGTC

TCCTGGGCT






DCXR.1
NM_016286
NM_016286.2
DCXR
6311
CCATAGCGTCTACT
218
AGCTCTAGGGCC
950
TCAGCATGTCCAGG
1682







GCTCCA

ATCACCT

GCACCC






DDC.1
NM_000790
NM_000790.3
DDC
5411
CAGAGCCCAGACA
219
CCACGTAATCCA
951
CCTCTCCTTCGGAAT
1683







CCATGA

CCATCTCC

TCACTTGCG






DEFB1.1
NM_005218
NM_005218.3
DEFB1
4124
GATGGCCTCAGGT
220
TGCTGACGCAAT
952
CTCACAGGCCTTGG
1684







GGTAACT

TGTAATGAT

CCACAGATCT






DET1.1
NM_017996
NM_017996.2
DET1
2643
CTTGTGGAGATCAC
221
CCCGCCTGGATC
953
CTATGCCCGGGACT
1685







CCAATCAG

TCAAACT

CGGGCCT






DHPS.3
NM_013407
NM_013407.1
DHPS
1722
GGGAGAACGGGAT
222
GCATCAGCCAGT
954
CTCATTGGGCACCA
1686







CAATAGGAT

CCTCAAACT

GCAGGTTTCC






DIABLO.1
NM_019887
NM_019887.1
DIABLO
348
CACAATGGCGGCT
223
ACACAAACACTG
955
AAGTTACGCTGCGC
1687







CTGAAG

TCTGTACCTGAA

GACAGCCAA










GA








DIAPH1.1
NM_005219
NM_005219.2
DIAPH1
2705
CAAGCAGTCAAGG
224
AGTTTTGCTCGC
956
TTCTTCTGTCTCCCG
1688







AGAACCA

CTCATCTT

CCGCTTC






DICER1.2
NM_177438
NM_177438.1
DICER1
1898
TCCAATTCCAGCAT
225
GGCAGTGAAGG
957
AGAAAAGCTGTTTGT
1689







CACTGT

CGATAAAGT

CTCCCCAGCA






DKFZP564O082$$
NM_015393
NM_015393.2
PARM1
3874
CAGCTACACTGTCG
226
ATGAGGCTGGAG
958
TGCTGAGCCTCCCA
1690







CAGTCC

CTTGAGG

CACTCATCTC






DLC1.1
NM_006094
NM_006094.3
DLC1
3018
GATTCAGACGAGG
227
CACCTCTTGCTG
959
AAAGTCCATTTGCCA
1691







ATGAGCC

TCCCTTTG

CTGATGGCA






DLL4.1
NM_019074
NM_019074.2
DLL4
5273
CACGGAGGTATAA
228
AGAAGGAAGGTC
960
CTACCTGGACATCCC
1692







GGCAGGAG

CAGCCG

TGCTCAGCC






DPEP1.1
NM_004413
NM_004413.2
DPEP1
6295
GGACTCCAGATGC
229
TAAGCCCAGGCG
961
CACATGCAAGGACCA
1693







CAGGA

TCCTCT

GCATCTCCT






DPYS.1
NM_001385
NM_001385.1
DPYS
6152
AAAGAATGGCACCA
230
AGTCGGGTGTTG
962
CACCATGTCATGGGT
1694







TGCAG

AGGGGT

CCACCTTTG






DR4.2
NM_003844
NM_003844.1
TNFRSF10$$
896
TGCACAGAGGGTG
231
TCTTCATCTGATT
963
CAATGCTTCCAACAA
1695







TGGGTTAC

TACAAGCTGTAC

TTTGTTTGCTTGCC










ATG








DR5.2
NM_003842
NM_003842.2
TNFRSF10$$
902
CTCTGAGACAGTG
232
CCATGAGGCCCA
964
CAGACTTGGTGCCC
1696







CTTCGATGACT

ACTTCCT

TTTGACTCC






DUSP1.1
NM_004417
NM_004417.2
DUSP1
2662
AGACATCAGCTCCT
233
GACAAACACCCT
965
CGAGGCCATTGACTT
1697







GGTTCA

TCCTCCAG

CATAGACTCCA






DUSP9.1
NM_001395
NM_001395.1
DUSP9
6324
CGTCCTAATCAACG
234
CCCGCAAAGAAA
966
CGCTCGGAGCCTGC
1698







TGCCTA

AAGTAACAG

CTCTTC






E2F1.3
NM_005225
NM_005225.1
E2F1
1077
ACTCCCTCTACCCT
235
CAGGCCTCAGTT
967
CAGAAGAACAGCTCA
1699







TGAGCA

CCTTCAGT

GGGACCCCT






EBAG9.1
NM_004215
NM_004215.3
EBAG9
4151
CGCTCCTGTTTTTC
236
ACCGAAACTGGG
968
CAGTGGGTTTTGATT
1700







TCATCTGT

TGATGG

CCCACCATG






ECRG4.1
NM_032411
NM_032411.1
C2orf40
3869
GCTCCTGCTCCTGT
237
TTTTGAAGCATC
969
ATTTCCACTTATGCC
1701







GCTG

AGCTTGAGTT

ACCTGGGCC






EDG2.1
NM_001401
NM_001401.3
LPAR1
4673
ACGAGTCCATTGCC
238
GCTTGCTGACTG
970
CGAAGTGGAAAGCA
1702







TTCTTT

TGTTCCAT

TCTTGCCACA






EDN1 endothelin
NM_001955
NM_001955.1
EDN1
331
TGCCACCTGGACAT
239
TGGACCTAGGGC
971
CACTCCCGAGCACG
1703







CATTTG

TTCCAAGTC

TTGTTCCGT






EDN2.1
NM_001956
NM_001956.2
EDN2
2646
CGACAAGGAGTGC
240
CAGGCCGTAAGG
972
CCACTTGGACATCAT
1704







GTCTACTTCT

AGCTGTCT

CTGGGTGAACACTC






EDNRA.2
NM_001957
NM_001957.1
EDNRA
3662
TTTCCTCAAATTTG
241
TTACACATCCAA
973
CCTTTGCCTCAGGG
1705







CCTCAAG

CCAGTGCC

CATCCTTTT






EDNRB.1
NM_000115
NM_000115.1
EDNRB
3185
ACTGTGAACTGCCT
242
ACCACAGCATGG
974
TGCTACCTGCCCCTT
1706







GGTGC

GTGAGAG

TGTCATGTG






EEF1A1.1
NM_001402
NM_001402.5
EEF1A1
5522
CGAGTGGAGACTG
243
CCGTTGTAACGT
975
CAAAGGTGACCACCA
1707







GTGTTCTC

TGACTGGA

TACCGGGTT






EFNB1.2
NM_004429
NM_004429.3
EFNB1
3299
GGAGCCCGTATCC
244
GGATAGATCACC
976
CCCTCAACCCCAAGT
1708







TGGAG

AAGCCCTTC

TCCTGAGTG






EFNB2.1
NM_004093
NM_004093.2
EFNB2
2597
TGACATTATCATCC
245
GTAGTCCCCGCT
977
CGGACAGCGTCTTC
1709







CGCTAAGGA

GACCTTCTC

TGCCCTCACT






EGF.3
NM_001963
NM_001963.2
EGF
158
CTTTGCCTTGCTCT
246
AAATACCTGACA
978
AGAGTTTAACAGCCC
1710







GTCACAGT

CCCTTATGACAA

TGCTCTGGCTGACTT










ATT








EGFR.2
NM_005228
NM_005228.1
EGFR
19
TGTCGATGGACTTC
247
ATTGGGACAGCT
979
CACCTGGGCAGCTG
1711







CAGAAC

TGGATCA

CCAA






EGLN3.1
NM_022073
NM_022073.2
EGLN3
2970
GCTGGTCCTCTACT
248
CCACCATTGCCT
980
CCGGCTGGGCAAAT
1712







GCGG

TAGACCTC

ACTACGTCAA






EGR1.1
NM_001964
NM_001964.2
EGR1
2615
GTCCCCGCTGCAG
249
CTCCAGCTTAGG
981
CGGATCCTTTCCTCA
1713







ATCTCT

GTAGTTGTCCAT

CTCGCCCA






EIF2C1.1
NM_012199
NM_012199.2
EIF2C1
6454
CCCTCACGGACTCT
250
TGGGTGACTTCC
982
CGTTCGCTTCACCAA
1714







CAGC

ACCTTCA

GGAGATCAA






EIF4EBP1.1
NM_004095
NM_004095.2
EIF4EBP1
4275
GGCGGTGAAGAGT
251
TTGGTAGTGCTC
983
TGAGATGGACATTTA
1715







CACAGT

CACACGAT

AAGCACCAGCC






ELTD1.1
NM_022159
NM_022159.3
ELTD1
6154
AGGTCTTGTGCAAG
252
AACCCCAAAGAT
984
CTCGCTCTTCTGTTC
1716







AGGAGC

CCAGGTG

CTTCTCGGC






EMCN.1
NM_016242
NM_016242.2
EMCN
3875
AGGCACTGAGGGT
253
CACCGGCAAAAT
985
AATGCAAGCACTTCA
1717







GGAAA

AATACTGGA

GCAACCAGC






EMP1.1
NM_001423
NM_001423.1
EMP1
986
GCTAGTACTTTGAT
254
GAACAGCTGGAG
986
CCAGAGAGCCTCCC
1718







GCTCCCTTGAT

GCCAAGTC

TGCAGCCA






ENO2.1
NM_001975
NM_001975.2
ENO2
6155
TCCTTGGCTTACCT
255
AACCCCAATGAG
987
CTGTCTCTGCTCGCC
1719







GACCTC

TAGGGCA

CTCCTTTCT






ENPEP.1
NM_001977
NM_001977.3
ENPEP
6156
CACCTACACGGAG
256
CCTGGCATCTGT
988
TCAAGAGCATAGTGG
1720







AACGGAC

TGGTTCA

CCACCGATC






ENPP2.1
NM_006209
NM_006209.3
ENPP2
6174
CTCCTGCGCACTAA
257
TCCCTGGATAAT
989
TAACTTCCTCTGGCA
1721







TACCTTC

TGGGTCTG

TGGTTGGCC






EPAS1.1
NM_001430
NM_001430.3
EPAS1
2754
AAGCCTTGGAGGG
258
TGCTGATGTTTT
990
TGTCGCCATCTTGG
1722







TTTCATTG

CTGACAGAAAGA

GTCACCACG






EPB41L3.1
NM_012307
NM_012307.2
EPB41L3
4554
TCAGTGCCATACGC
259
CTTGGGCTCCAG
991
CTCTCCTTCCCTCTG
1723







TCTCAC

GTAGCA

GCTCTGTGC






EPHA2.1
NM_004431
NM_004431.2
EPHA2
2297
CGCCTGTTCACCAA
260
GTGGCGTGCCTC
992
TGCGCCCGATGAGA
1724







GATTGAC

GAAGTC

TCACCG






EPHB1.3
NM_004441
NM_004441.3
EPHB1
6508
CCTTGGGAGGGAA
261
GAAGTGAACTTG
993
ATGGCCTCTGGAGC
1725







GATCC

CGGTAGGC

TGTCCATCTC






EPHB2.1
NM_004442
NM_004442.4
EPHB2
2967
CAACCAGGCAGCT
262
GTAATGCTGTCC
994
CACCTGATGCATGAT
1726







CCATC

ACGGTGC

GGACACTGC






EPHB4.1
NM_004444
NM_004444.3
EPHB4
2620
TGAACGGGGTATC
263
AGGTACCTCTCG
995
CGTCCCATTTGAGCC
1727







CTCCTTA

GTCAGTGG

TGTCAATGT






EPO.1
NM_000799
NM_000799.2
EPO
5992
CAGTGCCAGCAAT
264
CAAGTTGGCCCT
996
CTCTCTGGACAGTTC
1728







GACATCT

GTGACAT

CTCTGGCCC






ErbB3.1
NM_001982
NM_001982.1
ERBB3
93
CGGTTATGTCATGC
265
GAACTGAGACCC
997
CCTCAAAGGTACTCC
1729







CAGATACAC

ACTGAAGAAAGG

CTCCTCCCGG






ERBB4.3
NM_005235
NM_005235.1
ERBB4
407
TGGCTCTTAATCAG
266
CAAGGCATATCG
998
TGTCCCACGAATAAT
1730







TTTCGTTACCT

ATCCTCATAAAGT

GCGTAAATTCTCCAG






ERCC1.2
NM_001983
NM_001983.1
ERCC1
869
GTCCAGGTGGATG
267
CGGCCAGGATAC
999
CAGCAGGCCCTCAA
1731







TGAAAGA

ACATCTTA

GGAGCTG






ERCC4.1
NM_005236
NM_005236.1
ERCC4
5238
CTGCTGGAGTACG
268
GGGCGCACACTA
1000
CTGGTGCTGGAACT
1732







AGCGAC

CTAGCC

GCTCGACACT






EREG.1
NM_001432
NM_001432.1
EREG
309
ATAACAAAGTGTAG
269
CACACCTGCAGT
1001
TTGTTTGCATGGACA
1733







CTCTGACATGAATG

AGTTTTGACTCA

GTGCATCTATCTGGT






ERG.1
NM_004449
NM_004449.3
ERG
3884
CCAACACTAGGCTC
270
CCTCCGCCAGGT
1002
AGCCATATGCCTTCT
1734







CCCA

CTTTAGT

CATCTGGGC






ERK1.3
NM_002746
Z11696.1
MAPK3
548
ACGGATCACAGTG
271
CTCATCCGTCGG
1003
CGCTGGCTCACCCC
1735







GAGGAAG

GTCATAGT

TACCTG






ERK2.3
NM_002745
NM_002745.1
MAPK1
557
AGTTCTTGACCCCT
272
AAACGGCTCAAA
1004
TCTCCAGCCCGTCTT
1736







GGTCCT

GGAGTCAA

GGCTT






ESPL1.3
NM_012291
NM_012291.1
ESPL1
2053
ACCCCCAGACCGG
273
TGTAGGGCAGAC
1005
CTGGCCCTCATGTC
1737







ATCAG

TTCCTCAAACA

CCCTTCACG






ESRRG.3
NM_001438
NM_001438.1
ESRRG
2225
CCAGCACCATTGTT
274
AGTCTCTTGGGC
1006
CCCCAGACCAAGTG
1738







GAAGAT

ATCGAGTT

TGAATACATGCT






F2.1
NM_000506
NM_000506.2
F2
2877
GCTGCATGTCTGG
275
CCTGACCGGGTG
1007
CCTCGGTAGTTCGTA
1739







AAGGTAACTG

ATGTTCAC

CCCAGACCCTCAG






F3.1
NM_001993
NM_001993.2
F3
12871
GTGAAGGATGTGA
276
AACCGGTGCTCT
1008
TGGCACGGGTCTTC
1740







AGCAGACGTA

CCACATTC

TCCTACC






FABP1.1
NM_001443
NM_001443.1
FABP1
16175
GGGTCCAAAGTGA
277
CCCTGTCATTGT
1009
ACATTCCTCCCCCAC
1741







TCCAAAA

CTCCAGC

CGTGAATTC






FABP7.1
NM_001446
NM_001446.3
FABP7
4048
GGAGACAAAGTGG
278
CTCTTCTCCCAG
1010
TCTCAGCACATTCAA
1742







TCATCAGG

CTGGAAACT

GAACACGGAGA






FAP.1
NM_004460
NM_004460.2
FAP
3403
CTGACCAGAACCAC
279
GGAAGTGGGTCA
1011
CGGCCTGTCCACGA
1743







GGCT

TGTGGG

ACCACTTATA






fas.1
NM_000043
NM_000043.1
FAS
42
GGATTGCTCAACAA
280
GGCATTAACACT
1012
TCTGGACCCTCCTAC
1744







CCATGCT

TTTGGACGATAA

CTCTGGTTCTTACGT






fasl.2
NM_000639
NM_000639.1
FASLG
94
GCACTTTGGGATTC
281
GCATGTAAGAAG
1013
ACAACATTCTCGGTG
1745







TTTCCATTAT

ACCCTCACTGAA

CCTGTAACAAAGAA






FBXW7.1
NM_033632
NM_033632.1
FBXW7
2644
CCCCAGTTTCAACG
282
GTTCCAGGAATG
1014
TCATTGCTCCCTAAA
1746







AGACTT

AAAGCACA

GAGTTGGCACTC






FCER1G.2
NM_004106
NM_004106.1
FCER1G
4073
TGCCATCCTGTTTC
283
TGCCTTTCGCAC
1015
TTGTCCTCACCCTCC
1747







TGTATGGA

TTGGATCT

TCTACTGTCGACTG






FCGR3A.1
NM_000569
NM_000569.4
FCGR3A
3080
GTCTCCAGTGGAA
284
AGGAATGCAGCT
1016
CCCATGATCTTCAAG
1748







GGGAAAA

ACTCACTGG

CAGGGAAGC






FDPS.1
NM_002004
NM_002004.1
FDPS
516
GGATGATTACCTTG
285
TGCATTTGTTGT
1017
CAGTGTGACCGGCA
1749







ACCTCTTTGG

CCTGGATGTC

AAATTGGCAC






FEN1.1
NM_004111
NM_004111.4
FEN1
3938
GTGGAGAAGGGTA
286
CTCATGGCAACC
1018
CGCTGAGAGACTCT
1750







CGCCAG

AGTCCC

GTTCTCCCTGG






FGF1.1
NM_000800
NM_000800.2
FGF1
4561
GACACCGACGGGC
287
CAGCCTTTCCAG
1019
ACGGCTCACAGACA
1751







TTTTA

GAACAAAC

CCAAATGAGG






FGF2.2
NM_002006
NM_002006.2
FGF2
681
AGATGCAGGAGAG
288
GTTTTGCAGCCT
1020
CCTGCAGACTGCTTT
1752







AGGAAGC

TACCCAAT

TTGCCCAAT






FGF9.1
NM_002010
NM_002010.1
FGF9
6177
CACAGCTGCCATAC
289
AAGTAAGACTGC
1021
AGGCCACCAGCCAG
1753







TTCGAC

ACCCTCGC

AATCCTGATA






FGFR1.3
NM_023109
NM_023109.1

353
CACGGGACATTCA
290
GGGTGCCATCCA
1022
ATAAAAAGACAACCA
1754







CCACATC

CTTCACA

ACGGCCGACTGC






FGFR2 isoform
NM_000141
NM_000141.2
FGFR2
2632
GAGGGACTGTTGG
291
GAGTGAGAATTC
1023
TCCCAGAGACCAAC
1755







CATGCA

GATCCAAGTCTTC

GTTCAAGCAGTTG






FH.1
NM_000143
NM_000143.2
FH
4938
ATGGTTGCAGCCC
292
CAAAATGTCCAT
1024
ACAGTGACAGCAACA
1756







AAGTC

TGCTGCC

TGGTTCCCC






FHIT.1
NM_002012
NM_002012.1
FHIT
871
CCAGTGGAGCGCT
293
CTCTCTGGGTCG
1025
TCGGCCACTTCATCA
1757







TCCAT

TCTGAAACAA

GGACGCAG






FHL1.1
NM_001449
NM_001449.3
FHL1
4005
ATCCAGCCTTTGCC
294
CCTTGTAGCTGG
1026
TCCTATCTGCCACAC
1758







GAATA

AGGGACC

ATCCAGCGT






FIGF.1
NM_004469
NM_004469.2
FIGF
3160
GGTTCCAGCTTTCT
295
GCCGCAGGTTCT
1027
ATTGGTGGCCACAC
1759







GTAGCTGT

AGTTGCT

CACCTCCTTA






FILIP1.1
NM_015687
NM_015687.2
FILIP1
4510
ACACCGGTCACAAC
296
CTGGGATGACCC
1028
CCTGACACTGACTG
1760







GTCAT

GTCTTG

GGTTCCTCGA






FKBP1A.1
NM_000801
NM_000801.2
FKBP1A
6330
CTGCCCTGACTGAA
297
TACGAGGAGAAA
1029
TCACTCAGCTTTGCT
1761







TGTGTT

GGGGAAGA

TCCGACACC






FLJ22655.1
NM_024730
NM_024730.2
RERGL
3870
CTCCTTCACACAGA
298
AGGCAAACTGGG
1030
CACACTCACCCTAAC
1762







ACCTTTCA

ATCGCT

CTACTGGCGG






FLT1.1
NM_002019
NM_002019.3
FLT1
6062
GGCTCCTGAATCTA
299
TCCCACAGCAAT
1031
CTACAGCACCAAGAG
1763







TCTTTG

ACTCCGTA

CGACGTGTG






FLT3LG.1
NM_001459
NM_001459.2
FLT3LG
6178
TGGGTCCAAGATG
300
GAAAGGCACATT
1032
AGTGTATCTCCGTGT
1764







CAAGG

TGGTGACA

TCACGCGCT






FLT4.1
NM_002020
NM_002020.1
FLT4
2782
ACCAAGAAGCTGA
301
CCTGGAAGCTGT
1033
AGCCCGCTGACCAT
1765







GGACCTG

AGCAGACA

GGAAGATCT






FN1.1
NM_002026
NM_002026.2
FN1
4528
GGAAGTGACAGAC
302
ACACGGTAGCCG
1034
ACTCTCAGGCGGTG
1766







GTGAAGGT

GTCACT

TCCACATGAT






FOLR1.1
NM_016730
NM_016730.1
FOLR1
859
GAACGCCAAGCAC
303
CCAGGGTCGACA
1035
AAGCCAGGCCCCGA
1767







CACAAG

CTGCTCAT

GGACAAGTT






FOS.1
NM_005252
NM_005252.2
FOS
2418
CGAGCCCTTTGATG
304
GGAGCGGGCTG
1036
TCCCAGCATCATCCA
1768







ACTTCCT

TCTCAGA

GGCCCAG






FRAP1.1
NM_004958
NM_004958.2
MTOR
3095
AGCGCTAGAGACT
305
ATGATCCGGGAG
1037
CCTGACGGAGTCCC
1769







GTGGACC

GCATAGT

TGGATTTCAC






FRP1.3
NM_003012
NM_003012.2
SFRP1
648
TTGGTACCTGTGG
306
CACATCCAAATG
1038
TCCCCAGGGTAGAAT
1770







GTTAGCA

CAAACTGG

TCAATCAGAGC






FST.1
NM_006350
NM_006350.2
FST
2306
GTAAGTCGGATGA
307
CAGCTTCCTTCA
1039
CCAGTGACAATGCCA
1771







GCCTGTCTGT

TGGCACACT

CTTATGCCAGC






FZD2.2
NM_001466
NM_001466.2
FZD2
3760
TGGATCCTCACCTG
308
GCGCTGCATGTC
1040
TGCGCTTCCACCTTC
1772







GTCG

TACCAA

TTCACTGTC






G-Catenin.1
NM_002230
NM_002230.1
JUP
770
TCAGCAGCAAGGG
309
GGTGGTTTTCTT
1041
CGCCCGCAGGCCTC
1773







CATCAT

GAGCGTGTACT

ATCCT






GADD45B.1
NM_015675
NM_015675.1
GADD45B
2481
ACCCTCGACAAGAC
310
TGGGAGTTCATG
1042
AACTTCAGCCCCAGC
1774







CACACT

GGTACAGA

TCCCAAGTC






GAS2.1
NM_005256
NM_005256.2
GAS2
6451
AACATGTCATGGTC
311
GGGGTCGTGTTT
1043
CCTGCAAAAGTTTCC
1775







CGTGTG

CAACAAAT

CAGCCTCCT






GATA3.3
NM_002051
NM_002051.1
GATA3
1
CAAAGGAGCTCACT
312
GAGTCAGAATGG
1044
TGTTCCAACCACTGA
1776







GTGGTGTCT

CTTATTCACAGATG

ATCTGGACC






GATM.1
NM_001482
NM_001482.2
GATM
6296
GATCTCGGCTTGG
313
GTAGCTGCCTGG
1045
AAAGTTCGCTGCACC
1777







ACGAAC

GTGCTCT

CATCCTGTC






GBL.1
NM_022372
NM_022372.3
MLST8
6302
GCTGTCAATAGCAC
314
GGTCACCTCGTC
1046
CCCCCGTCAGATTCC
1778







CGGAA

ACCAATG

AGACATAGC






GBP2.2
NM_004120
NM_004120.2
GBP2
2060
GCATGGGAACCAT
315
TGAGGAGTTTGC
1047
CCATGGACCAACTTC
1779







CAACCA

CTTGATTCG

ACTATGTGACAGAGC






GCLC.3
NM_001498
NM_001498.1
GCLC
330
CTGTTGCAGGAAG
316
GTCAGTGGGTCT
1048
CATCTCCTGGCCCA
1780







GCATTGA

CTAATAAAGAGA

GCATGTT










TGAG








GCLM.2
NM_002061
NM_002061.1
GCLM
704
TGTAGAATCAAACT
317
CACAGAATCCAG
1049
TGCAGTTGACATGG
1781







CTTCATCATCAACT

CTGTGCAACT

CCTGTTCAGTCC








AG










GFRA1.1
NM_005264
NM_005264.3
GFRA1
6179
TCCGGGTTAAGAAC
318
GTGGCAAAACAT
1050
TTTCATTCTCAGACC
1782







AAGCC

GAGTGGG

CTGCTGGCC






GJA1.1
NM_000165
NM_000165.2
GJA1
2600
GTTCACTGGGGGT
319
AAATACCAACAT
1051
ATCCCCTCCCTCTCC
1783







GTATGG

GCACCTCTCTT

ACCCATCTA






GLYAT.1
NM_201648
NM_201648.2
GLYAT
6180
TACCATTGCAAGGT
320
GGATGCTGGGA
1052
AGGATTTCTCCAGCA
1784







GCCC

GGCTCTT

TCTGCAGCA






GMNN.1
NM_015895
NM_015895.3
GMNN
3880
GTTCGCTACGAGG
321
TGCGTACCCACT
1053
CCTCTTGCCCACTTA
1785







ATTGAGC

TCCTGC

CTGGGTGGA






GNAS.1
NM_000516
NM_000516.3
GNAS
2665
GAACGTGCCTGAC
322
ACTCCTTCATCC
1054
CCTCCCGAATTCTAT
1786







TTTGACTT

TCCCACAG

GAGCATGCC






GPC3.1
NM_004484
NM_004484.2
GPC3
659
TGATGCGCCTGGA
323
CGAGGTTGTGAA
1055
AGCAGGCAACTCCG
1787







AACAGT

AGGTGCTTATC

AAGGACAACG






GPX1.2
NM_000581
NM_000581.2
GPX1
2955
GCTTATGACCGACC
324
AAAGTTCCAGGC
1056
CTCATCACCTGGTCT
1788







CCAA

AACATCGT

CCGGTGTGT






GPX2.2
NM_002083
NM_002083.1
GPX2
890
CACACAGATCTCCT
325
GGTCCAGCAGTG
1057
CATGCTGCATCCTAA
1789







ACTCCATCCA

TCTCCTGAA

GGCTCCTCAGG






GPX3.1
NM_002084
NM_002084.3
GPX3
6271
GCTCTAGGTCCAAT
326
TGGAGGCAGTG
1058
ACTGATACCTCAACC
1790







TGTTCTGC

GGAGATG

TTGGGGCCA






GRB14.1
NM_004490
NM_004490.1
GRB14
2784
TCCCACTGAAGCC
327
AGTGCCCAGGC
1059
CCTCCAAGCGAGTC
1791







CTTTCAG

GTAAACATC

CTTCTTCAACCG






GRB7.2
NM_005310
NM_005310.1
GRB7
20
CCATCTGCATCCAT
328
GGCCACCAGGG
1060
CTCCCCACCCTTGAG
1792







CTTGTT

TATTATCTG

AAGTGCCT






GRO1.2
NM_001511
NM_001511.1
CXCL1
86
CGAAAAGATGCTGA
329
TCAGGAACAGCC
1061
CTTCCTCCTCCCTTC
1793







ACAGTGACA

ACCAGTGA

TGGTCAGTTGGAT






GSTM1.1
NM_000561
NM_000561.1
GSTM1
727
AAGCTATGAGGAAA
330
GGCCCAGCTTGA
1062
TCAGCCACTGGCTTC
1794







AGAAGTACACGAT

ATTTTTCA

TGTCATAATCAGGAG






GSTM3.2
NM_000849
NM_000849.3
GSTM3
731
CAATGCCATCTTGC
331
GTCCACTCGAAT
1063
CTCGCAAGCACAACA
1795







GCTACAT

CTTTTCTTCTTCA

TGTGTGGTGAGA






GSTp.3
NM_000852
NM_000852.2
GSTP1
66
GAGACCCTGCTGT
332
GGTTGTAGTCAG
1064
TCCCACAATGAAGGT
1796







CCCAGAA

CGAAGGAGATC

CTTGCCTCCCT






GSTT1.3
NM_000853
NM_000853.1
GSTT1
813
CACCATCCCCACCC
333
GGCCTCAGTGTG
1065
CACAGCCGCCTGAA
1797







TGTCT

CATCATTCT

AGCCACAAT






GZMA.1
NM_006144
NM_006144.2
GZMA
4111
GAAAGAGTTTCCCT
334
TGCTTTTTCCGT
1066
AGCCACACGCGAAG
1798







ATCCATGC

CAGCTGTAA

GTGACCTTAA






HADH.1
NM_005327
NM_005327.2
HADH
6181
CCACCAGACAAGA
335
CCACAAGTTTCA
1067
CTGGCCTCCATTTCT
1799







CCGATTC

TGACAGGC

TCAACCCAG






HAVCR1.1
NM_012206
NM_012206.2
HAVCR1
6284
CCACCCAAGGTCA
336
GAACAGTGGTGC
1068
TCACAACTGTTCCAA
1800







CGACTAC

TCGTTCG

CCGTCACGA






HDAC1.1
NM_004964
NM_004964.2
HDAC1
2602
CAAGTACCACAGC
337
GCTTGCTGTACT
1069
TTCTTGCGCTCCATC
1801







GATGACTACATTAA

CCGACATGTT

CGTCCAGA






Hepsin.1
NM_002151
NM_002151.1
HPN
814
AGGCTGCTGGAGG
338
CTTCCTGCGGCC
1070
CCAGAGGCCGTTTC
1802







TCATCTC

ACAGTCT

TTGGCCG






HER2.3
NM_004448
NM_004448.1
ERBB2
13
CGGTGTGAGAAGT
339
CCTCTCGCAAGT
1071
CCAGACCATAGCACA
1803







GCAGCAA

GCTCCAT

CTCGGGCAC






HGD.1
NM_000187
NM_000187.2
HGD
6303
CTCAGGTCTGCCC
340
TTATTGGTGCTC
1072
CTGAGCAGCTCTCA
1804







CTACAAT

CGTGGAC

GGATCGGCTT






HGF.4
M29145
M29145.1

457
CCGAAATCCAGATG
341
CCCAAGGAATGA
1073
CTCATGGACCCTGG
1805







ATGATG

GTGGATTT

TGCTACACG






HGFAC.1
NM_001528
NM_001528.2
HGFAC
2704
CAGGACACAAGTG
342
GCAGGGAGCTG
1074
CGCTCACGTTCTCAT
1806







CCAGATT

GAGTAGC

CCAAGTGG






HIF1A.3
NM_001530
NM_001530.1
HIF1A
399
TGAACATAAAGTCT
343
TGAGGTTGGTTA
1075
TTGCACTGCACAGG
1807







GCAACATGGA

CTGTTGGTATCA

CCACATTCAC










TATA








HIF1AN.1
NM_017902
NM_017902.2
HIF1AN
7211
TGTTGGCCAGGTC
344
GCATCATAGGGC
1076
CTCTAGCCAGTTAGC
1808







TCACTG

CTGGAG

CTCGGGCAG






HIST1H1D.1
NM_005320
NM_005320.2
HIST1H1D
4013
AAAAAGGCGAAGAA
345
GCTCAGATACTG
1077
AACTGCTGGGAAAC
1809







GGCAG

GGGGTCC

GCAAAGCATC






HLA-B.1
NM_005514
NM_005514.6
HLA-B
6334
CTTGTGAGGGACT
346
TGCAGAAAGAGA
1078
TCTTCACGCCTCCCC
1810







GAGATGC

TGCCAGAG

TTTGTGA






HLA-DPA1.1
NM_033554
NM_033554.2
HLA-DPA1
6314
CGCCCTGAAGACA
347
TCGGAGACTCAG
1079
TGATCTTGAGAGCCC
1811







GAATGT

CAGGAAA

TCTCCTTGGC






HLA-DPB1.1
NM_002121
NM_002121.4
HLA-DPB1
1740
TCCATGATGGTTCT
348
TGAGCAGCACCA
1080
CCCCGGACAGTGGC
1812







GCAGGTT

TCAGTAACG

TCTGACG






HLA-DQB1.1
NM_002123
NM_002123.3
HLA-DQB1
6304
GGTCTGCTCGGTG
349
CTCCTGATCATT
1081
TATCCAGGCCAGATC
1813







ACAGATT

CCGAAACC

AAAGTCCGG






HLADQA1.2
NM_002122
NM_002122.3
HLA-DQA1
4071
CATCTTTCCTCCTG
350
GCTGGTCTCAGA
1082
TGTGACTGACTGCC
1814







TGGTCA

AACACCTTC

CATTGCTCAG






HMGB1.1
NM_002128
NM_002128.3
HMGB1
2162
TGGCCTGTCCATTG
351
GCTTGTCATCTG
1083
TTCCACATCTCTCCC
1815







GTGAT

CAGCAGTGTT

AGTTTCTTCGCAA






HNRPAB.1
NM_004499
NM_004499.3
HNRNPAB
6051
AGCAGGAGCGACC
352
GTTTGCCAAGTT
1084
CTCCATATCCAAACA
1816







AACTGA

AAATTTGGTACAT

AAGCATGTGTGCG










AAT








HPCAL1.1
NM_002149
NM_002149.2
HPCAL1
6182
CAGGCAGATGGAC
353
GTCGCTCTTGGC
1085
TCTTCCAAGGACAGT
1817







ACCAA

ACCTCT

TTGCCGTCA






HPD.1
NM_002150
NM_002150.2
HPD
6183
AGCTGAAGACGGC
354
CGTCGTAGTCCA
1086
AGCTCCTCCAGGGC
1818







CAAGAT

CCAGGATT

ATCAATGTTC






HSD11B2.1
NM_000196
NM_000196.3
HSD11B2
6185
CCAACCTGCCTCAA
355
GGAACTGCCCAT
1087
CTGCAGGCCTACGG
1819







GAGC

GCAAGT

CAAGGACTAC






HSP90AB1.1
NM_007355
NM_007355.2
HSP90AB1
5456
GCATTGTGACCAG
356
GAAGTGCCTGGG
1088
ATCCGCTCCATATTG
1820







CACCTAC

CTTTCAT

GCTGTCCAG






HSPA1A.1
NM_005345
NM_005345.4
HSPA1A
2412
CTGCTGCGACAGT
357
CAGGTTCGCTCT
1089
AGAGTGACTCCCGTT
1821







CCACTA

GGGAAG

GTCCCAAGG






HSPA8.1
NM_006597
NM_006597.3
HSPA8
2563
CCTCCCTCTGGTG
358
GCTACATCTACA
1090
CTCAGGGCCCACCA
1822







GTGCTT

CTTGGTTGGCTT

TTGAAGAGGTTG










AA








HSPB1.1
NM_001540
NM_001540.2
HSPB1
2416
CCGACTGGAGGAG
359
ATGCTGGCTGAC
1091
CGCACTTTTCTGAGC
1823







CATAAA

TCTGCTC

AGACGTCCA






HSPG2.1
NM_005529
NM_005529.2
HSPG2
1783
GAGTACGTGTGCC
360
CTCAATGGTGAC
1092
CAGCTCCGTGCCTC
1824







GAGTGTT

CAGGACA

TAGAGGCCT






HTATIP.1
NM_006388
NM_006388.2
KAT5
3893
TCGAATTGTTTGGG
361
GCGTGGTGCTGA
1093
TGAGGACTCCCAGG
1825







CACTG

CGGTAT

ACAGCTCTGA






HYAL1.1
NM_153281
NM_153281.1
HYAL1
4524
TGGCTGTGGAGTT
362
CCAATCACCACA
1094
CGATGCTACCCTGG
1826







CAAATGT

TGCTCTTC

CTGGCAG






HYAL2.1
NM_033158
NM_033158.2
HYAL2
5192
CAACCATGCACTCC
363
ACTAAGCCCCGT
1095
TCTTCACACGACCCA
1827







CAGTC

GAGCCT

CCTACAGCC






HYAL3.1
NM_003549
NM_003549.2
HYAL3
6298
TATGTCCGCCTCAC
364
CAATGGACTGCA
1096
TGGGACAGGAACCT
1828







ACACC

CAAGGTCA

CCCAGATCTC






ICAM1.1
NM_000201
NM_000201.1
ICAM1
1761
GCAGACAGTGACC
365
CTTCTGAGACCT
1097
CCGGCGCCCAACGT
1829







ATCTACAGCTT

CTGGCTTCGT

GATTCT






ICAM2.1
NM_000873
NM_000873.2
ICAM2
2472
GGTCATCCTGACAC
366
TGCACTCAATGG
1098
TTGCCCACAGCCAC
1830







TGCAAC

TGAAGGAC

CAAAGTG






ICAM3.1
NM_002162
NM_002162.3
ICAM3
7219
GCCTTCAATCTCAG
367
GAGAGCCATTGC
1099
CAGAGGATCCGACT
1831







CAACG

AGTACAC

GTTGCCAGTC






ID1.1
NM_002165
NM_002165.1
ID1
354
AGAACCGCAAGGT
368
TCCAACTGAAGG
1100
TGGAGATTCTCCAGC
1832







GAGCAA

TCCCTGATG

ACGTCATCGAC






ID2.4
NM_002166
NM_002166.1
ID2
37
AACGACTGCTACTC
369
GGATTTCCATCT
1101
TGCCCAGCATCCCC
1833







CAAGCTCAA

TGCTCACCTT

CAGAACAA






ID3.1
NM_002167
NM_002167.3
ID3
6052
CTTCACCAAATCCC
370
CTCTGGCTCTTC
1102
TCACAGTCCTTCGCT
1834







TTCCTG

AGGCCACA

CCTGAGCAC






IFI27.1
NM_005532
NM_005532.2
IFI27
2770
CTCTCCGGATTGAC
371
TAGAACCTCGCA
1103
CAGACCCAATGGAG
1835







CAAGTT

ATGACAGC

CCCAGGAT






IGF1.2
NM_000618
NM_000618.1
IGF1
60
TCCGGAGCTGTGA
372
CGGACAGAGCGA
1104
TGTATTGCGCACCCC
1836







TCTAAGGA

GCTGACTT

TCAAGCCTG






IGF1R.3
NM_000875
NM_000875.2
IGF1R
413
GCATGGTAGCCGA
373
TTTCCGGTAATA
1105
CGCGTCATACCAAAA
1837







AGATTTCA

GTCTGTCTCATA

TCTCCGATTTTGA










GATATC








IGF2.2
NM_000612
NM_000612.2
IGF2
166
CCGTGCTTCCGGA
374
TGGACTGCTTCC
1106
TACCCCGTGGGCAA
1838







CAACTT

AGGTGTCA

GTTCTTCCAA






IGFBP2.1
NM_000597
NM_000597.1
IGFBP2
373
GTGGACAGCACCA
375
CCTTCATACCCG
1107
CTTCCGGCCAGCAC
1839







TGAACA

ACTTGAGG

TGCCTC






IGFBP3.1
NM_000598
NM_000598.4
IGFBP3
6657
ACATCCCAACGCAT
376
CCACGCCCTTGT
1108
ACACCACAGAAGGCT
1840







GCTC

TTCAGA

GTGAGCTCC






IGFBP5.1
NM_000599
NM_000599.1
IGFBP5
594
TGGACAAGTACGG
377
CGAAGGTGTGGC
1109
CCCGTCAACGTACTC
1841







GATGAAGCT

ACTGAAAGT

CATGCCTGG






IGFBP6.1
NM_002178
NM_002178.1
IGFBP6
836
TGAACCGCAGAGA
378
GTCTTGGACACC
1110
ATCCAGGCACCTCTA
1842







CCAACAG

CGCAGAAT

CCACGCCCTC






IL-7.1
NM_000880
NM_000880.2
IL7
2084
GCGGTGATTCGGA
379
CTCTCCTGGGCA
1111
CTCTGGTCCTCATCC
1843







AATTCG

CCTGCTT

AGGTGCGC






IL-8.1
NM_000584
NM_000584.2
IL8
2087
AAGGAACCATCTCA
380
ATCAGGAAGGCT
1112
TGACTTCCAAGCTGG
1844







CTGTGTGTAAAC

GCCAAGAG

CCGTGGC






IL10.3
NM_000572
NM_000572.1
IL10
909
GGCGCTGTCATCG
381
TGGAGCTTATTA
1113
CTGCTCCACGGCCT
1845







ATTTCTT

AAGGCATTCTTCA

TGCTCTTG






IL11.2
NM_000641
NM_000641.2
IL11
2166
TGGAAGGTTCCACA
382
TCTTGACCTTGC
1114
CCTGTGATCAACAGT
1846







AGTCAC

AGCTTTGT

ACCCGTATGGG






IL15.1
NM_000585
NM_000585.2
IL15
6187
GGCTGGGTACCAA
383
TGAGAGCCAGTA
1115
CAGCTATGCTGGTA
1847







TGCTG

GTCAGTGGTT

GGCTCCTGCC






IL1B.1
NM_000576
NM_000576.2
IL1B
2755
AGCTGAGGAAGAT
384
GGAAAGAAGGTG
1116
TGCCCACAGACCTTC
1848







GCTGGTT

CTCAGGTC

CAGGAGAAT






IL6.3
NM_000600
NM_000600.1
IL6
324
CCTGAACCTTCCAA
385
ACCAGGCAAGTC
1117
CCAGATTGGAAGCAT
1849







AGATGG

TCCTCATT

CCATCTTTTTCA






IL6ST.3
NM_002184
NM_002184.2
IL6ST
2317
GGCCTAATGTTCCA
386
AAAATTGTGCCT
1118
CATATTGCCCAGTGG
1850







GATCCT

TGGAGGAG

TCACCTCACA






ILT-2.2
NM_006669
NM_006669.1
LILRB1
583
AGCCATCACTCTCA
387
ACTGCAGAGTCA
1119
CAGGTCCTATCGTG
1851







GTGCAG

GGGTCTCC

GCCCCTGA






IMP3.1
NM_018285
NM_018285.2
IMP3
4751
GTGGACTCGTCCA
388
GGCTTCCAGATC
1120
CTCATTGTACTCTAG
1852







AGATCAA

GAAGTCAT

CACGTGCCGC






INDO.1
NM_002164
NM_002164.3
IDO1
5124
CGCCTTGCACGTCT
389
ATCTCCATGACC
1121
ACATATGCCATGGTG
1853







AGTTC

TTTGCCC

ATGCATCCC






INHBA.1
NM_002192
NM_002192.1
INHBA
2635
GTGCCCGAGCCAT
390
CGGTAGTGGTTG
1122
ACGTCCGGGTCCTC
1854







ATAGCA

ATGACTGTTGA

ACTGTCCTTCC






INHBB.1
NM_002193
NM_002193.1
INHBB
2636
AGCCTCCAGGATA
391
TCTCCGACTGAC
1123
AGCTAAGCTGCCATT
1855







CCAGCAA

AGGCATTTG

TGTCACCG






INSR.1
NM_001079817
NM_001079817
INSR
6455
CAGTCTCCGAGAG
392
GTGATGGCAGGT
1124
AGTTCCTCAATGAGG
1856







CGGATT

GAAGCC

CCTCGGTCA






IQGAP2.1
NM_006633
NM_006633.2
IQGAP2
6453
AGAGACACCAGCA
393
ATCATTGCACGG
1125
CCGTGGCATGGTCT
1857







ACTGCG

CTCACC

ACCTCCTGTT






ISG20.1
NM_002201
NM_002201.4
ISG20
6189
GTGTCAGACTGAA
394
GTTGCTGTCCCA
1126
AAAGCCTCTAGTCCC
1858







GCCCCAT

AAAAGCC

TGCGGAACG






ITGA3.2
NM_002204
NM_002204.1
ITGA3
840
CCATGATCCTCACT
395
GAAGCTTTGTAG
1127
CACTCCAGACCTCG
1859







CTGCTG

CCGGTGAT

CTTAGCATGG






ITGA4.2
NM_000885
NM_000885.2
ITGA4
2867
CAACGCTTCAGTGA
396
GTCTGGCCGGG
1128
CGATCCTGCATCTGT
1860







TCAATCC

ATTCTTT

AAATCGCCC






ITGA5.1
NM_002205
NM_002205.1
ITGA5
2668
AGGCCAGCCCTAC
397
GTCTTCTCCACA
1129
TCTGAGCCTTGTCCT
1861







ATTATCA

GTCCAGCA

CTATCCGGC






ITGA6.2
NM_000210
NM_000210.1
ITGA6
2791
CAGTGACAAACAGC
398
GTTTAGCCTCAT
1130
TCGCCATCTTTTGTG
1862







CCTTCC

GGGCGTC

GGATTCCTT






ITGA7.1
NM_002206
NM_002206.1
ITGA7
259
GATATGATTGGTCG
399
AGAACTTCCATT
1131
CAGCCAGGACCTGG
1863







CTGCTTTG

CCCCACCAT

CCATCCG






ITGAV.1
NM_002210
NM_002210.2
ITGAV
2671
ACTCGGACTGCAC
400
TGCCATCACCAT
1132
CCGACAGCCACAGA
1864







AAGCTATT

TGAAATCT

ATAACCCAAA






ITGB1.1
NM_002211
NM_002211.2
ITGB1
2669
TCAGAATTGGATTT
401
CCTGAGCTTAGC
1133
TGCTAATGTAAGGCA
1865







GGCTCA

TGGTGTTG

TCACAGTCTTTCCA






ITGB3.1
NM_000212
NM_000212.2
ITGB3
6056
ACCGGGGAGCCCT
402
CCTTAAGCTCTT
1134
AAATACCTGCAACCG
1866







ACATGA

TCACTGACTCAA

TTACTGCCGTGAC










TCT








ITGB4.2
NM_000213
NM_000213.2
ITGB4
2793
CAAGGTGCCCTCA
403
GCGCACACCTTC
1135
CACCAACCTGTACCC
1867







GTGGA

ATCTCAT

GTATTGCGA






ITGB5.1
NM_002213
NM_002213.3
ITGB5
2670
TCGTGAAAGATGAC
404
GGTGAACATCAT
1136
TGCTATGTTTCTACA
1868







CAGGAG

GACGCAGT

AAACCGCCAAGG






JAG1.1
NM_000214
NM_000214.1
JAG1
4190
TGGCTTACACTGGC
405
GCATAGCTGTGA
1137
ACTCGATTTCCCAGC
1869







AATGG

GATGCGG

CAACCACAG






K-ras.10
NM_033360
NM_033360.2
KRAS
3090
GTCAAAATGGGGA
406
CAGGACCACCAC
1138
TGTATCTTGTTGAGC
1870







GGGACTA

AGAGTGAG

TATCCAAACTGCCC






KCNJ15.1
NM_002243
NM_002243.3
KCNJ15
6299
GGACGTTCTACCTG
407
AGGCTCTGGAAA
1139
TCACTCCGCAGGTCA
1871







CCTTGA

CACTGGTC

GGTGTCTTC






KDR.6
NM_002253
NM_002253.1
KDR
463
GAGGACGAAGGCC
408
AAAAATGCCTCC
1140
CAGGCATGCAGTGT
1872







TCTACAC

ACTTTTGC

TCTTGGCTGT






Ki-67.2
NM_002417
NM_002417.1
MKI67
145
CGGACTTTGGGTG
409
TTACAACTCTTCC
1141
CCACTTGTCGAACCA
1873







CGACTT

ACTGGGACGAT

CCGCTCGT






KIAA1303 raptor.
NM_020761
NM_020761.2
RPTOR
6300
ACTACAGCGGGAG
410
GGCATCTGAGCA
1142
TGGAGGTAGCTGCA
1874







CAGGAG

AGAGGGT

ATCAACCCAA






KIF1A.1
NM_004321
NM_004321.4
KIF1A
4015
CTCCTACTGGTCGC
411
TCCCGGTACACC
1143
CCTGAGGACATCAAC
1875







ACACC

TGCTTC

TACGCGTCG






Kitlng.4
NM_000899
NM_000899.1
KITLG
68
GTCCCCGGGATGG
412
GATCAGTCAAGC
1144
CATCTCGCTTATCCA
1876







ATGTT

TGTCTGACAATTG

ACAATGACTTGGCA






KL.1
NM_004795
NM_004795.2
KL
6191
GAGGTCCTGTCTAA
413
CTATGTGCAAGG
1145
CCTGAGGGATCTGT
1877







ACCCTGTG

CCCTCAA

CTCACTGGCA






KLK3.1
NM_001648
NM_001648.2
KLK3
4172
CCAAGCTTACCACC
414
AGGGTGAGGAA
1146
ACCCACATGGTGACA
1878







TGCAC

GACAACCG

CAGCTCTCC






KLRK1.2
NM_007360
NM_007360.1
KLRK1
3805
TGAGAGCCAGGCT
415
ATCCTGGTCCTC
1147
TGTCTCAAAATGCCA
1879







TCTTGTA

TTTGCTGT

GCCTTCTGAA






KRT19.3
NM_002276
NM_002276.1
KRT19
521
TGAGCGGCAGAAT
416
TGCGGTAGGTGG
1148
CTCATGGACATCAAG
1880







CAGGAGTA

CAATCTC

TCGCGGCTG






KRT5.3
NM_000424
NM_000424.2
KRT5
58
TCAGTGGAGAAGG
417
TGCCATATCCAG
1149
CCAGTCAACATCTCT
1881







AGTTGGA

AGGAAACA

GTTGTCACAAGCA






KRT7.1
NM_005556
NM_005556.3
KRT7
4016
TTCAGAGATGAACC
418
ACTTGGCACGCT
1150
ATGTTGTCGATCTCA
1882







GGGC

GGTTCT

GCCTGCAGC






L1CAM.1
NM_000425
NM_000425.2
L1CAM
4096
CTTGCTGGCCAATG
419
TGATTGTCCGCA
1151
ATCTACGTTGTCCAG
1883







CCTA

GTCAGG

CTGCCAGCC






LAMA3.1
NM_000227
NM_000227.2
LAMA3
2529
CAGATGAGGCACA
420
TTGAAATGGCAG
1152
CTGATTCCTCAGGTC
1884







TGGAGAC

AACGGTAG

CTTGGCCTG






LAMA4.1
NM_002290
NM_002290.3
LAMA4
5990
GATGCACTGCGGT
421
CAGAGGATACGC
1153
CTCTCCATCGAGGAA
1885







TAGCAG

TCAGCACC

GGCAAATCC






LAMB1.1
NM_002291
NM_002291.1
LAMB1
3894
CAAGGAGACTGGG
422
CGGCAGAACTGA
1154
CAAGTGCCTGTACCA
1886







AGGTGTC

CAGTGTTC

CACGGAAGG






LAMB3.1
NM_000228
NM_000228.1
LAMB3
2530
ACTGACCAAGCCT
423
GTCACACTTGCA
1155
CCACTCGCCATACTG
1887







GAGACCT

GCATTTCA

GGTGCAGT






LAMC2.2
NM_005562
NM_005562.1
LAMC2
997
ACTCAAGCGGAAAT
424
ACTCCCTGAAGC
1156
AGGTCTTATCAGCAC
1888







TGAAGCA

CGAGACACT

AGTCTCCGCCTCC






LAPTM5.1
NM_006762
NM_006762.1
LAPTM5
4017
TGCTGGACTTCTGC
425
TGAGATAGGTGG
1157
TCCTGACCCTCTGCA
1889







CTGAG

GCACTTCC

GCTCCTACA






LDB1.2
NM_003893
NM_003893.4
LDB1
6720
AACACCCAGTTTGA
426
CCAGTGCAGGG
1158
AAAGCTGTCCTCGTC
1890







CGCAG

GAGTTGT

GTCAATGCC






LDB2.1
NM_001290
NM_001290.2
LDB2
3871
ATCACGGTGGACT
427
TACCTTGGTAAA
1159
AGTGTACCATGGTCA
1891







GCGAC

CATGGGCTTC

CCCAGCACG






LDHA.2
NM_005566
NM_005566.1
LDHA
3935
AGGCTACACATCCT
428
CCCGCCTAAGAT
1160
TCTGCCAAATCTGCT
1892







GGGCTA

TCTTCATT

ACAGAGAGTCCA






LGALS1.1
NM_002305
NM_002305.3
LGALS1
6305
GGGTGGAGTCTTC
429
AGACCACAAGCC
1161
CCCGGGAACATCCT
1893







TGACAGC

ATGATTGA

CCTGGAC






LGALS3.1
NM_002306
NM_002306.1
LGALS3
2371
AGCGGAAAATGGC
430
CTTGAGGGTTTG
1162
ACCCAGATAACGCAT
1894







AGACAAT

GGTTTCCA

CATGGAGCGA






LGALS9.1
NM_009587
NM_009587.2
LGALS9
5458
AGTACTTCCACCGC
431
GACAGCTGCACA
1163
CTTCCACCGTGTGG
1895







GTGC

GAGCCAT

ACACCATCTC






LIMK1.1
NM_016735
NM_016735.1

3888
GCTTCAGGTGTTGT
432
AAGAGCTGCCCA
1164
TGCCTCCCTGTCGC
1896







GACTGC

TCCTTCTC

ACCAGTACTA






LMNB1.1
NM_005573
NM_005573.1
LMNB1
1708
TGCAAACGCTGGT
433
CCCCACGAGTTC
1165
CAGCCCCCCAACTG
1897







GTCACA

TGGTTCTTC

ACCTCATC






LMO2.1
NM_005574
NM_005574.2
LMO2
5346
GGCTGCCAGCAGA
434
CTCAGGCAGTCC
1166
CGCTACTTCCTGAAG
1898







ACATC

TCGTGC

GCCATCGAC






LOX.1
NM_002317
NM_002317.3
LOX
3394
CCAATGGGAGAAC
435
CGCTGAGGCTG
1167
CAGGCTCAGCAAGC
1899







AACGG

GTACTGTG

TGAACACCTG






LRP2.1
NM_004525
NM_004525.1
LRP2
4112
GGCTGTAGACTGG
436
GAGACAAAGAGG
1168
CGGGCATCCAACCA
1900







GTTTCCA

CCATCCAG

GTAGAGCTTT






LRRC2.1
NM_024512
NM_024512.2
LRRC2
6315
CCAGTGTCCCAATC
437
GGTCAGGTTATT
1169
CCACTGCAAATTCGA
1901







TGTGTC

GCTGCTGA

CATCCGC






LTF.1
NM_002343
NM_002343.2
LTF
6269
AACGGAAGCCTGT
438
AGACACCACGGC
1170
CTAGAAGCTGCCATC
1902







GACTGA

ATGATTC

TTGCCATGG






LYZ.1
NM_000239
NM_000239.1
LYZ
6268
TTGCTGCAAGATAA
439
ACCCATGCTCTA
1171
CACGGACAACCCTCT
1903







CATCGC

ATGCCTTG

TTGCACAAG






MADH2.1
NM_005901
NM_005901.2
SMAD2
2672
GCTGCCTTTGGTAA
440
ATCCCAGCAGTC
1172
TCCATCTTGCCATTC
1904







GAACATGTC

TCTTCACAACT

ACGCCGC






MADH4.1
NM_005359
NM_005359.3
SMAD4
2565
GGACATTACTGGC
441
ACCAATACTCAG
1173
TGCATTCCAGCCTCC
1905







CTGTTCACA

GAGCAGGATGA

CATTTCCA






MAL.1
NM_002371
NM_002371.2
MAL
6194
GTTGGGAGCTTGC
442
CACAAACAGGAG
1174
ACCTCCAACTGCTGT
1906







TGTGTC

GTGACCCT

GCTGTCTGC






MAL2.1
NM_052886
NM_052886.1
MAL2
5113
CCTTCGTCTGCCTG
443
GGAACATTGGAG
1175
CAAAATCCAGACAAG
1907







GAGAT

GAGGCAA

ACCCCCGAA






MAP2K1.1
NM_002755
NM_002755.2
MAP2K1
2674
GCCTTTCTTACCCA
444
CAGCCCCCAGCT
1176
TCTCAAAGTCGTCAT
1908







GAAGCAGAA

CACTGAT

CCTTCAGTTCTCCCA






MAP2K3.1
NM_002756
NM_002756.2
MAP2K3
4372
GCCCTCCAATGTCC
445
GTAGCCACTGAT
1177
CACATCTTCACATGG
1909







TTATCA

GCCAAAGTC

CCCTCCTTG






MAP4.1
NM_002375
NM_002375.2
MAP4
2066
GCCGGTCAGGCAC
446
GCAGCATACACA
1178
ACCAACCAGTCCACG
1910







ACAAG

CAACAAAATGG

CTCCAAGGG






MARCKS.1
NM_002356
NM_002356.4
MARCKS
4021
CCCCTCTTGGATCT
447
CGGTCTTGGAGA
1179
CCCATGCTGGCTTCT
1911







GTTGAG

ACTGGG

TCAACAAAG






Maspin.2
NM_002639
NM_002639.1
SERPINB5
362
CAGATGGCCACTTT
448
GGCAGCATTAAC
1180
AGCTGACAACAGTGT
1912







GAGAACATT

CACAAGGATT

GAACGACCAGACC






MCAM.1
NM_006500
NM_006500.2
MCAM
3972
CGAGTTCCAGTGG
449
TGCAACTGAAGC
1181
CTTTCCAGCACCTGG
1913







CTGAGA

ACAGGC

CCTGTCTCT






MCM2.2
NM_004526
NM_004526.1
MCM2
580
GACTTTTGCCCGCT
450
GCCACTAACTGC
1182
ACAGCTCATTGTTGT
1914







ACCTTTC

TTCAGTATGAAG

CACGCCGGA










AG








MCM3.3
NM_002388
NM_002388.2
MCM3
524
GGAGAACAATCCC
451
ATCTCCTGGATG
1183
TGGCCTTTCTGTCTA
1915







CTTGAGA

GTGATGGT

CAAGGATCACCA






MCM6.3
NM_005915
NM_005915.2
MCM6
614
TGATGGTCCTATGT
452
TGGGACAGGAAA
1184
CAGGTTTCATACCAA
1916







GTCACATTCA

CACACCAA

CACAGGCTTCAGCAC






MCP1.1
NM_002982
NM_002982.1
CCL2
700
CGCTCAGCCAGAT
453
GCACTGAGATCT
1185
TGCCCCAGTCACCT
1917







GCAATC

TCCTATTGGTGAA

GCTGTTA






MDH2.1
NM_005918
NM_005918.2
MDH2
2849
CCAACACCTTTGTT
454
CAATGACAGGGA
1186
CGAGCTGGATCCAA
1918







GCAGAG

CGTTGACT

ACCCTTCAG






MDK.1
NM_002391
NM_002391.2
MDK
3231
GGAGCCGACTGCA
455
GACTTTGGTGCC
1187
ATCACACGCACCCCA
1919







AGTACA

TGTGCC

GTTCTCAAA






MDM2.1
NM_002392
NM_002392.1
MDM2
359
CTACAGGGACGCC
456
ATCCAACCAATC
1188
CTTACACCAGCATCA
1920







ATCGAA

ACCTGAATGTT

AGATCCGG






MGMT.1
NM_002412
NM_002412.1
MGMT
689
GTGAAATGAAACGC
457
GACCCTGCTCAC
1189
CAGCCCTTTGGGGA
1921







ACCACA

AACCAGAC

AGCTGG






mGST1.2
NM_020300
NM_020300.2
MGST1
806
ACGGATCTACCACA
458
TCCATATCCAAC
1190
TTTGACACCCCTTCC
1922







CCATTGC

AAAAAAACTCAAAG

CCAGCCA






MICA.1
NM_000247
NM_000247.1
MICA
5449
ATGGTGAATGTCAC
459
AAGCCAGAAGCC
1191
CGAGGCCTCAGAGG
1923







CCGC

CTGCAT

GCAACATTAC






MIF.2
NM_002415
NM_002415.1
MIF
3907
CCGGACAGGGTCT
460
GGTGGAGTTGTT
1192
CTATTACGACATGAA
1924







ACATCA

CCAGCC

CGCGGCCAA






MMP1.1
NM_002421
NM_002421.2
MMP1
2167
GGGAGATCATCGG
461
GGGCCTGGTTGA
1193
AGCAAGATTTCCTCC
1925







GACAACTC

AAAGCAT

AGGTCCATCAAAAGG






MMP10.1
NM_002425
NM_002425.1
MMP10
4920
TGTACCCACTCTAC
462
TGAATGCCATTC
1194
AGCTCGCCCAGTTC
1926







AACTCATTCACA

ACATCATCTTG

CGCCTTTC






MMP14.1
NM_004995
NM_004995.2
MMP14
4022
GCTGTGGAGCTCT
463
AGCAAGGACAGG
1195
CCTGAGGAAGGCAC
1927







CAGGAA

GACCAA

ACTTGCTCCT






MMP2.2
NM_004530
NM_004530.1
MMP2
672
CCATGATGGAGAG
464
GGAGTCCGTCCT
1196
CTGGGAGCATGGCG
1928







GCAGACA

TACCGTCAA

ATGGATACCC






MMP7.1
NM_002423
NM_002423.2
MMP7
2647
GGATGGTAGCAGT
465
GGAATGTCCCAT
1197
CCTGTATGCTGCAAC
1929







CTAGGGATTAACT

ACCCAAAGAA

TCATGAACTTGGC






MMP9.1
NM_004994
NM_004994.1
MMP9
304
GAGAACCAATCTCA
466
CACCCGAGTGTA
1198
ACAGGTATTCCTCTG
1930







CCGACA

ACCATAGC

CCAGCTGCC






MRP1.1
NM_004996
NM_004996.2
ABCC1
15
TCATGGTGCCCGT
467
CGATTGTCTTTG
1199
ACCTGATACGTCTTG
1931







CAATG

CTCTTCATGTG

GTCTTCATCGCCAT






MRP2.3
NM_000392
NM_000392.1
ABCC2
55
AGGGGATGACTTG
468
AAAACTGCATGG
1200
CTGCCATTCGACATG
1932







GACACAT

CTTTGTCA

ACTGCAATTT






MRP3.1
NM_003786
NM_003786.2
ABCC3
8
TCATCCTGGCGATC
469
CCGTTGAGTGGA
1201
TCTGTCCTGGCTGG
1933







TACTTCCT

ATCAGCAA

AGTCGCTTTCAT






MRP4.2
NM_005845
NM_005845.3
ABCC4
6057
AGCGCCTGGAATC
470
AGAGCCCCTGGA
1202
CGGAGTCCAGTGTTT
1934







TACAACT

GAGAAGAT

TCCCACTTA






MSH2.3
NM_000251
NM_000251.1
MSH2
2127
GATGCAGAATTGAG
471
TCTTGGCAAGTC
1203
CAAGAAGATTTACTT
1935







GCAGAC

GGTTAAGA

CGTCGATTCCCAGA






MSH3.2
NM_002439
NM_002439.1
MSH3
2132
TGATTACCATCATG
472
CTTGTGAAAATG
1204
TCCCAATTGTCGCTT
1936







GCTCAGA

CCATCCAC

CTTCTGCAG






MSH6.3
NM_000179
NM_000179.1
MSH6
2136
TCTATTGGGGGATT
473
CAAATTGCGAGT
1205
CCGTTACCAGCTGG
1937







GGTAGG

GGTGAAAT

AAATTCCTGAGA






MT1B.1
NM_005947
NM_005947.1
MT1B
5355
GTGGGCTGTGCCA
474
ACAGCAGCGGCA
1206
ATGAGCCTTTGCAGA
1938







AGTGT

CTTCTC

CACAGCCCT






MT1G.1
NM_005950
NM_005950.1
MT1G
6333
GTGCACCCACTGC
475
AGCAGTTGGGGT
1207
CCCGAGGCGAGACT
1939







CTCTT

CCATTG

AGAGTTCCC






MT1H.1
NM_005951
NM_005951.2
MT1H
6332
CGTGTTCCACTGCC
476
AGCAGTTGGGGT
1208
CCGAGGTGAGACTG
1940







TCTTC

CCATTG

GAGTTCCCA






MT1X.1
NM_005952
NM_005952.2
MT1X
3897
CTCCTGCAAATGCA
477
ACTTGGCACAGC
1209
CACCTCCTGCAAGAA
1941







AAGAGTG

CCACAG

GAGCTGCTG






MUC1.2
NM_002456
NM_002456.1
MUC1
335
GGCCAGGATCTGT
478
CTCCACGTCGTG
1210
CTCTGGCCTTCCGA
1942







GGTGGTA

GACATTGA

GAAGGTACC






MVP.1
NM_017458
NM_017458.1
MVP
30
ACGAGAACGAGGG
479
GCATGTAGGTGC
1211
CGCACCTTTCCGGT
1943







CATCTATGT

TTCCAATCAC

CTTGACATCCT






MX1.1
NM_002462
NM_002462.2
MX1
2706
GAAGGAATGGGAA
480
GTCTATTAGAGT
1212
TCACCCTGGAGATCA
1944







TCAGTCATGA

CAGATCCGGGAC

GCTCCCGA










AT








MYBL2.1
NM_002466
NM_002466.1
MYBL2
1137
GCCGAGATCGCCA
481
CTTTTGATGGTA
1213
CAGCATTGTCTGTCC
1945







AGATG

GAGTTCCAGTGA

TCCCTGGCA










TTC








MYH11.1
NM_002474
NM_002474.1
MYH11
1734
CGGTACTTCTCAGG
482
CCGAGTAGATGG
1214
CTCTTCTGCGTGGTG
1946







GCTAATATATACG

GCAGGTGTT

GTCAACCCCTA






MYRIP.2
NM_015460
NM_015460.1
MYRIP
1704
CCTTCACCTTCCTC
483
AGCAGCTCTTGC
1215
ATTTGCAATCTCCAC
1947







GTCAAC

AGACATTG

ACTGGCGCT






NBN.1
NM_002485
NM_002485.4
NBN
4121
GCATCTACTTGCCA
484
TCCCTTGCAGCT
1216
CTTCCAAGTTCTGGC
1948







GAACCAA

GGAGTT

TGCTTGCAG






NCF1.1
NM_000265
NM_000265.2
NCF1
4676
GACACCTTCATCCG
485
ATAGTGCTGGCT
1217
AAGCGCTTCTCAAAG
1949







TCACAT

GGGTACG

CCCAGCAG






NFAT5.1
NM_006599
NM_006599.2
NFAT5
3071
CTGAACCCCTCTCC
486
AGGAAACGATGG
1218
CGAGAATCAGTCCC
1950







TGGTC

CGAGGT

CGTGGAGTTC






NFATC2.1
NM_173091
NM_173091.2
NFATC2
5123
CAGTCAAGGTCAG
487
CTTTGGCTCGTG
1219
CGGGTTCCTACCCC
1951







AGGCTGAG

GCATTC

ACAGTCATTC






NFKBp50.3
NM_003998
NM_003998.1
NFKB1
3439
CAGACCAAGGAGA
488
AGCTGCCAGTGC
1220
AAGCTGTAAACATGA
1952







TGGACCT

TATCCG

GCCGCACCA






NFKBp65.3
NM_021975
NM_021975.1
RELA
39
CTGCCGGGATGGC
489
CCAGGTTCTGGA
1221
CTGAGCTCTGCCCG
1953







TTCTAT

AACTGTGGAT

GACCGCT






NFX1.1
NM_002504
NM_002504.3
NFX1
4025
CCCTGCCATACCA
490
CGTCCACATTCA
1222
CCTGCCCTGTGACT
1954







GCTCA

CACTGTAGC

GCTTGTAAAGC






NME2.1
NM_002512
NM_002512.2
NME2
3899
ATGCTTGGGGAGA
491
CTGAATGCAGAA
1223
AGCAGATTCAAAGCC
1955







CCAATC

GTCCCCAC

AGGCACCAT






NNMT.1
NM_006169
NM_006169.2
NNMT
5101
CCTAGGGCAGGGA
492
CTAGTCCAGCCA
1224
CCCTCTCCTCATGCC
1956







TGGAG

AACATCCC

CAGACTCTC






NOL3.1
NM_003946
NM_003946.3
NOL3
6307
CAGCCTTGGGAAG
493
ATGATGTGTGTG
1225
CTCAAGGTCCCTTTC
1957







TGAGACT

GCCTTTGT

TGCTCCCCT






NOS2A.3
NM_000625
NM_000625.3
NOS2
6509
GGGTCCATTATGAC
494
GCTCATCTGGAG
1226
TGTCCCTGGGTCCT
1958







TCCCAA

GGGTAGG

CTGGTCAAAC






NOS3.1
NM_000603
NM_000603.2
NOS3
2624
ATCTCCGCCTCGCT
495
TCGGAGCCATAC
1227
TTCACTCGCTTCGCC
1959







CATG

AGGATTGTC

ATCACCG






NOTCH1.1
NM_017617
NM_017617.2
NOTCH1
2403
CGGGTCCACCAGT
496
GTTGTATTGGTT
1228
CCGCTCTGCAGCCG
1960







TTGAATG

CGGCACCAT

GGACA






NOTCH2.1
NM_024408
NM_024408.2
NOTCH2
2406
CACTTCCCTGCTGG
497
AGTTGTCAAACA
1229
CCGTGTTGCACAGC
1961







GATTAT

GGCACTCG

TCATCACACT






NOTCH3.1
NM_000435
NM_000435.2
NOTCH3
6464
TGTGGACGAGTGT
498
ACTCCCTGCCAG
1230
ACCCTGTGGCCCTC
1962







GCTGG

GTTGGT

ATGGTATCTG






NPD009 (ABAT $$
NM_020686
NM_020686.2
ABAT
1707
GGCTGTGGCTGAG
499
GGAGCATTCGAG
1231
TTCCCAGAGTGTCTC
1963







GCTGTAG

GTCAAATCA

ACCTCCAGCAGAG






NPM1.2
NM_002520
NM_002520.2
NPM1
2328
AATGTTGTCCAGGT
500
CAAGCAAAGGGT
1232
AACAGGCATTTTGGA
1964







TCTATTGC

GGAGTTC

CAACACATTCTTG






NPPB.1
NM_002521
NM_002521.2
NPPB
6196
GACACCTGCTTCTG
501
TGAGTCACTTCA
1233
AGGGGCTTTTTCCTC
1965







ATTCCAC

AAGGCGG

AACCCTGTG






NPR1.1
NM_000906
NM_000906.2
NPR1
6197
ACATCTGCAGCTCC
502
CACACAAGCCAG
1234
CCTTCAGAACCCTCA
1966







CCTG

CTTCCA

TGCTCCTGG






NPY1R.1
NM_000909
NM_000909.4
NPY1R
4513
GGATCTTCCCCACT
503
TTGTCTTTTTCGC
1235
CCTTCCATTCCCACC
1967







CTGCT

TCCTGC

CTTCCTTCT






NRG1.3
NM_013957
NM_013957.1
NRG1
410
CGAGACTCTCCTCA
504
CTTGGCGTGTGG
1236
ATGACCACCCCGGC
1968







TAGTGAAAGGTAT

AAATCTACAG

TCGTATGTCA






NUDT1.1
NM_002452
NM_002452.3
NUDT1
4564
ACTGGTTTCCACTC
505
GTCCAGGATGGT
1237
CCACGGGTACTTCAA
1969







CTGCTT

GTCCTGA

GTTCCAGGG






OGG1.1
NM_002542
NM_002542.4
OGG1
6198
ACCAAGGTGGCTG
506
ATATGGACATCC
1238
TCTGCCTGATGGCC
1970







ACTGC

ACGGGC

CTAGACAAGC






OPN, osteoponti$$
NM_000582
NM_000582.1
SPP1
764
CAACCGAAGTTTTC
507
CCTCAGTCCATA
1239
TCCCCACAGTAGACA
1971







ACTCCAGTT

AACCACACTATCA

CATATGATGGCCG






p21.3
NM_000389
NM_000389.1
CDKN1A
33
TGGAGACTCTCAG
508
GGCGTTTGGAGT
1240
CGGCGGCAGACCAG
1972







GGTCGAAA

GGTAGAAATC

CATGAC






p27.3
NM_004064
NM_004064.1
CDKN1B
38
CGGTGGACCACGA
509
GGCTCGCCTCTT
1241
CCGGGACTTGGAGA
1973







AGAGTTAA

CCATGTC

AGCACTGCA






P53.2
NM_000546
NM_000546.2
TP53
59
CTTTGAACCCTTGC
510
CCCGGGACAAAG
1242
AAGTCCTGGGTGCTT
1974







TTGCAA

CAAATG

CTGACGCACA






PAH.1
NM_000277
NM_000277.1
PAH
6199
TGGCTGATTCCATT
511
CACATTCTGTCC
1243
ATCCTTTGCAGTGCC
1975







AACAGTGA

ATGGCTTTAC

CTCCAGAAA






PAI1.3
NM_000602
NM_000602.1
SERPINE1
36
CCGCAACGTGGTTT
512
TGCTGGGTTTCT
1244
CTCGGTGTTGGCCA
1976







TCTCA

CCTCCTGTT

TGCTCCAG






Pak1.2
NM_002576
NM_002576.3
PAK1
3421
GAGCTGTGGGTTG
513
CCATGCAAGTTT
1245
ACATCTGTCAAGGAG
1977







TTATGGA

CTGTCACC

CCTCCAGCC






PARD6A.1
NM_016948
NM_016948.2
PARD6A
4514
GATCCTCGAGGTC
514
ACCATCATGTCC
1246
TCCAAGGTCTTCCCG
1978







AATGGC

GTCACTTG

GCTACTTCA






PBOV1.1
NM_021635
NM_021635.1
PBOV1
3936
GCAAAGCCTTTCCA
515
GGCTGGGCTTAA
1247
TGGTAGCAGAATTGC
1979







GAAAAA

ACAGTCAT

CTTTTCAACCA






PCCA.1
NM_000282
NM_000282.2
PCCA
6250
GGTGAAATCTGTGC
516
ATTCCAGCTCCA
1248
TCCCCTTCTCCAACT
1980







ACTGTCA

CGAGCA

GTGTCTCCA






PCK1.1
NM_002591
NM_002591.2
PCK1
6251
CTTAGCATGGCCCA
517
CTTCCGGAACCA
1249
CAGCCAAACTGCCCA
1981







GCAC

GTTGACA

AGATCTTCC






PCNA.2
NM_002592
NM_002592.1
PCNA
148
GAAGGTGTTGGAG
518
GGTTTACACCGC
1250
ATCCCAGCAGGCCT
1982







GCACTCAAG

TGGAGCTAA

CGTTGATGAG






PCSK6.1
NM_002570
NM_002570.3
PCSK6
6282
ACCTTGAGTAGCAG
519
GTTGCTGGAGCC
1251
CACACCTTCCTCAGA
1983







AGGCCC

ATTTCAC

ATGGACCCC






PDCD1.1
NM_005018
NM_005018.2
PDCD1
6286
GACAACGCCACCTT
520
GGCTCATGCGGT
1252
TCTCCAACACATCGG
1984







CACC

ACCAGT

AGAGCTTCG






PDE4DIP.1
NM_014644
NM_014644.4
PDE4DIP
6417
GCTTCGTCTTGCTG
521
AGCTTCATTGGA
1253
TCGCGCAGTCTCTCT
1985







TGAGAG

GGAGAGGA

AAGTCATGATCTC






PDGFA.3
NM_002607
NM_002607.2
PDGFA
56
TTGTTGGTGTGCCC
522
TGGGTTCTGTCC
1254
TGGTGGCGGTCACT
1986







TGGTG

AAACACTGG

CCCTCTGC






PDGFB.3
NM_002608
NM_002608.1
PDGFB
67
ACTGAAGGAGACC
523
TAAATAACCCTG
1255
TCTCCTGCCGATGC
1987







CTTGGAG

CCCACACA

CCCTAGG






PDGFC.3
NM_016205
NM_016205.1
PDGFC
29
AGTTACTAAAAAAT
524
GTCGGTGAGTGA
1256
CCCTGACACCGGTC
1988







ACCACGAGGTCCTT

TTTGTGCAA

TTTGGTCTCAACT






PDGFD.2
NM_025208
NM_025208.2
PDGFD
31
TATCGAGGCAGGT
525
TAACGCTTGGCA
1257
TCCAGGTCAACTTTT
1989







CATACCA

TCATCATT

GACTTCCGGT






PDGFRa.2
NM_006206
NM_006206.2
PDGFRA
24
GGGAGTTTCCAAG
526
CTTCAACCACCT
1258
CCCAAGACCCGACC
1990







AGATGGA

TCCCAAAC

AAGCACTAG






PDGFRb.3
NM_002609
NM_002609.2
PDGFRB
464
CCAGCTCTCCTTCC
527
GGGTGGCTCTCA
1259
ATCAATGTCCCTGTC
1991







AGCTAC

CTTAGCTC

CGAGTGCTG






PDZK1.1
NM_002614
NM_002614.3
PDZK1
6319
AATGACCTCCACCT
528
CGCAGGAAGAAG
1260
TGCCCTTCTTGCTTG
1992







TCAACC

CCATAGTT

GACAGTTTACA






PDZK3.1
NM_015022
NM_015022.2

3885
GAGCTGAGAGCCT
529
CTCGGCCCTGCT
1261
CTCGCTGCAGAGCT
1993







TGAGCAT

GAGTAA

TGTCAAGGTC






PF4.1
NM_002619
NM_002619.1
PF4
6326
GCAGTGCCTGTGT
530
GGCCTTGATCAC
1262
TCCGTCCCAGGCAC
1994







GTGAAG

CTCCAG

ATCACC






PFKP.1
NM_002627
NM_002627.3
PFKP
6252
AGCTGATGCCGCA
531
GGTGCTCCACGT
1263
CAGATCCCTGATGTC
1995







TACATT

TGGACT

GAAGGGCTC






PFN2.1
NM_053024
NM_053024.1
PFN2
3426
TCTATACGTCGATG
532
GCCGACAGCCAC
1264
CTCCCCACCTTGACT
1996







GTGACTGC

ATTGTAT

CTTTGTCCG






PGF.1
NM_002632
NM_002632.4
PGF
4026
GTGGTTTTCCCTCG
533
AGCAAGGGAACA
1265
ATCTTCTCAGACGTC
1997







GAGC

GCCTCAT

CCGAGCCAG






PI3K.2
NM_002646
NM_002646.2
PIK3C2B
368
TGCTACCTGGACA
534
AGGCCGTCCTTC
1266
TCCTCCTGAAACGAG
1998







GCCCG

AGTAACCA

CTGTGTCTGACTT






PI3KC2A.1
NM_002645
NM_002645.2
PIK3C2A
6064
ATACCAATCACCGC
535
CACACTAGCATT
1267
TGTGCTGTGACTGG
1999







ACAAACC

TTCTCCGCATA

ACTTAACAAATAGCCT






PIK3CA.1
NM_006218
NM_006218.1
PIK3CA
2962
GTGATTGAAGAGCA
536
GTCCTGCGTGGG
1268
TCCTGCTTCTCGGGA
2000







TGCCAA

AATAGC

TACAGACCA






PLA2G4C.1
NM_003706
NM_003706.1
PLA2G4C
6249
CCCTTTCCCCAAGT
537
AGGATGTAGCAG
1269
CCTTGGACCACAAAT
2001







AGAAGAG

CTGGCG

CCAGCTCAG






PLAT.1
NM_033011
NM_033011.2
PLAT
6459
GATTTGCTGGGAA
538
TAGCTGATGCCC
1270
TAGATACCAGGGCC
2002







GTGCTGT

TGGTCC

ACGTGCTACG






PLAUR.3
NM_002659
NM_002659.1
PLAUR
708
CCCATGGATGCTC
539
CCGGTGGCTACC
1271
CATTGACTGCCGAG
2003







CTCTGAA

AGACATTG

GCCCCATG






PLG.1
NM_000301
NM_000301.1
PLG
6310
GGCAAAATTTCCAA
540
ATGTATCCATGA
1272
TGCCAGGCCTGGGA
2004







GACCAT

GCGTGTGG

CTCTCA






PLN.1
NM_002667
NM_002667.2
PLN
3886
TGATGCTTCTCTGA
541
CCTGTCTGCATG
1273
AGATCTGCAGCTTGC
2005







AGTTCTGC

GGATGAC

CACATCAGC






PLOD2.1
NM_000935
NM_000935.2
PLOD2
3820
CAGGGAGGTGGTT
542
TCTCCCAGGATG
1274
TCCAGCCTTTTCGTG
2006







GCAAAT

CATGAAG

GTGACTCAA






PLP1.1
NM_000533
NM_000533.3
PLP1
4027
AGAACAGACTGGC
543
CAGAGGGCCATC
1275
CACCATTAGCCACCA
2007







CTGAGGA

TCAGGTT

GCAACTGCT






PMP22.1
NM_000304
NM_000304.2
PMP22
6254
CCATCTACACGGTG
544
TGTAGGCGAAAC
1276
AATCCGAGTTGAGAT
2008







AGGCA

CGTAGGA

GCCACTCCG






PPAP2B.1
NM_003713
NM_003713.3
PPAP2B
6457
ACAAGCACCATCCC
545
CACGAAGAAAAC
1277
ACCAGGGCTCCTTG
2009







AGTGA

TATGCAGCAG

AGCAAATCCT






PPARG.3
NM_005037
NM_005037.3
PPARG
1086
TGACTTTATGGAGC
546
GCCAAGTCGCTG
1278
TTCCAGTGCATTGAA
2010







CCAAGTT

TCATCTAA

CTTCACAGCA






PPP1R3C.1
NM_005398
NM_005398.4
PPP1R3C
6320
TTCCTTCCCTCTCA
547
CACAGCTTTCCA
1279
CCTTCCTCAACTTTT
2011







ATCCAC

TCACCATC

CCTTGCCCA






PPP2CA.1
NM_002715
NM_002715.2
PPP2CA
3879
GCAATCATGGAACT
548
ATGTGGCTCGCC
1280
TTTCTTGCAGTTTGA
2012







TGACGA

TCTACG

CCCAGCACC






PRCC.1
NM_005973
NM_005973.4
PRCC
6002
GAGGAAGAGGAGG
549
CAGGGAGAGAAG
1281
CTACATCTGGGCCC
2013







CGGTG

CGAACAA

GCTTTAGGG






PRKCA.1
NM_002737
NM_002737.1
PRKCA
2626
CAAGCAATGCGTCA
550
GTAAATCCGCCC
1282
CAGCCTCTGCGGAA
2014







TCAATGT

CCTCTTCT

TGGATCACACT






PRKCB1.1
NM_002738
NM_002738.5
PRKCB
3739
GACCCAGCTCCAC
551
CCCATTCACGTA
1283
CCAGACCATGGACC
2015







TCCTG

CTCCATCA

GCCTGTACTT






PRKCD.2
NM_006254
NM_006254.1
PRKCD
626
CTGACACTTGCCG
552
AGGTGGTCCTTG
1284
CCCTTTCTCACCCAC
2016







CAGAGAA

GTCTGGAA

CTCATCTGCAC






PRKCH.1
NM_006255
NM_006255.3
PRKCH
4370
CTCCACCTATGAGC
553
CACACTTTCCCT
1285
TCCTGTTAACATCCC
2017







GTCTGTC

CCTTTTGG

AAGCCCACA






PRO2000.3
NM_014109
NM_014109.2
ATAD2
1666
ATTGGAAAAACCTC
554
TCGGTATCTTGG
1286
CCCAACATATTTTAT
2018







GTCACC

TCTTGCAG

AGTGGCCCAGC






PROM1.1
NM_006017
NM_006017.1
PROM1
4516
CTATGACAGGCATG
555
CTCCAACCATGA
1287
ACCCGAGGCTGTGT
2019







CCACC

GGAAGACG

CTCCAACAC






PROM2.1
NM_144707
NM_144707.1
PROM2
5108
CTTCAGCGCATCCA
556
CCATGCTGGTCT
1288
CTTCCTCGTTCAGAT
2020







CTACC

TCACCAC

CCAGAGGCC






PRPS2.1
NM_001039091
NM_001039091$$
PRPS2
4694
CACTGCACCAAGAT
557
ATTGTGTGTCCT
1289
TTGACATTTCCATGA
2021







TCAGGT

TCGGATTG

TCTTGGCCG






PRSS8.1
NM_002773
NM_002773.2
PRSS8
4742
GTACACTCTGGCCT
558
CCACACGAGGCT
1290
TCCTGGATCCAAAGC
2022







CCAGCTA

GGAGTT

AAGGTGACA






PSMA7.1
NM_002792
NM_002792.2
PSMA7
6255
GCCAAACTGCAGG
559
AGGCCATGCAGA
1291
CCAAAGCACAGATCT
2023







ATGAAAG

CGTTGT

TCCGCACTG






PSMB8.1
NM_148919
NM_148919.3
PSMB8
6461
CAGTGGCTATCGG
560
TAAGCAATAGCC
1292
CAAGGTCATAGGCCT
2024







CCTAATC

CTGCGG

CTTCAGGGC






PSMB9.1
NM_148954
NM_148954.2
PSMB9
6462
GGGGTGTCATCTA
561
CATTGCCCAAGA
1293
TGGTCCACACCGGC
2025







CCTGGTC

TGACTCG

AGCTGTAATA






PTEN.2
NM_000314
NM_000314.1
PTEN
54
TGGCTAAGTGAAGA
562
TGCACATATCATT
1294
CCTTTCCAGCTTTAC
2026







TGACAATCATG

ACACCAGTTCGT

AGTGAATTGCTGCA






PTGIS.1
NM_000961
NM_000961.3
PTGIS
5429
CCACACTGGCATCT
563
GCCCATGGGATG
1295
CCTTCTCCAGGGACA
2027







CCCT

AGAAACT

GAAGCAGGA






PTHR1.1
NM_000316
NM_000316.1
PTH1R
2375
CGAGGTACAAGCT
564
GCGTGCCTTTCG
1296
CCAGTGCCAGTGTC
2028







GAGATCAAGAA

CTTGAA

CAGCGGCT






PTK2.1
NM_005607
NM_005607.3
PTK2
2678
GACCGGTCGAATG
565
CTGGACATCTCG
1297
ACCAGGCCCGTCAC
2029







ATAAGGT

ATGACAGC

ATTCTCGTAC






PTK2B.1
NM_004103
NM_004103.3
PTK2B
2883
CAAGCCCAGCCGA
566
GAACCTGGAACT
1298
CTCCGCAAACCAACC
2030







CCTAAG

GCAGCTTTG

TCCTGGCT






PTN.1
NM_002825
NM_002825.5
PTN
3964
CCTTCCAGTCCAAA
567
CCCCTCTCTCCA
1299
TTCCTCTGCTCTGGG
2031







AATCCC

CTTTGGAT

GCTCTCTTG






PTPNS1.1
NM_080792
NM_080792.1
SIRPA
2896
CTCCAGCTAGCACT
568
TTTCAAGATTGC
1300
TCTCAGTAATTTACA
2032







AAGCAACATC

ACGTTTCACAT

GGCGTCCACAG






PTPRB.1
NM_002837
NM_002837.2
PTPRB
3881
GATATGCGGTGAG
569
CTGGCCACACCG
1301
ATGCACACAGACTCA
2033







GAACAGC

TATAGTGA

TCCGCCACT






PTPRC.1
NM_080921
NM_080921.2
PTPRC
6450
TGGCCGTCAATGG
570
GGACATCTTTTG
1302
CAACATCTCCAAAAG
2034







AAGAG

TGCTGGTTG

CCCGAGTGC






PTPRG.1
NM_002841
NM_002841.2
PTPRG
2682
GGACAGCGACAAA
571
GGACTCGGAACA
1303
CACCATTAGCCATGT
2035







GACTTGA

GGTAAAGG

CTCACCCGA






PTTG1.2
NM_004219
NM_004219.2
PTTG1
1724
GGCTACTCTGATCT
572
GCTTCAGCCCAT
1304
CACACGGGTGCCTG
2036







ATGTTGATAAGGAA

CCTTAGCA

GTTCTCCA






PVALB.1
NM_002854
NM_002854.2
PVALB
4316
AAACCAAGATGCTG
573
CAGCCACCAGAG
1305
TTTTGCCGTCCCCAT
2037







ATGGCT

TGGAGAA

CTTTGTCTC






PXDN.1
NM_012293
NM_012293.1
PXDN
6257
GCTGCTCAAGCTG
574
ACCCACGATCTT
1306
ACTGGGACGGCGAC
2038







AACCC

CCTGGTC

ACCATCTACT






RAC1.3
NM_006908
NM_006908.3
RAC1
2698
TGTTGTAAATGTCT
575
TTGAGCAAAGCG
1307
CGTTCTTGGTCCTGT
2039







CAGCCCC

TACAAAGG

CCCTTGGA






RAD51.1
NM_002875
NM_002875.2
RAD51
3976
AGACTACTCGGGT
576
AGCATCCGCAGA
1308
CTTTCAGCCAGGCA
2040







CGAGGTG

AACCTG

GATGCACTTG






RAF1.3
NM_002880
NM_002880.1
RAF1
2130
CGTCGTATGCGAG
577
TGAAGGCGTGAG
1309
TCCAGGATGCCTGTT
2041







AGTCTGT

GTGTAGAA

AGTTCTCAGCA






RALBP1.1
NM_006788
NM_006788.2
RALBP1
2105
GGTGTCAGATATAA
578
TTCGATATTGCC
1310
TGCTGTCCTGTCGGT
2042







ATGTGCAAATGC

AGCAGCTATAAA

CTCAGTACGTTCA






RARB.2
NM_016152
NM_016152.2
RARB
687
TGCCTGGACATCCT
579
AAGGCCGTCTGA
1311
TGCACCAGGTATACC
2043







GATTCT

GAAAGTCA

CCAGAACAAGA






RASSF1.1
NM_007182
NM_007182.4
RASSF1
6658
AGGGCACGTGAAG
580
AAAGAGTGCAAA
1312
CACCACCAAGAACTT
2044







TCATTG

CTTGCGG

TCGCAGCAG






RB1.1
NM_000321
NM_000321.1
RB1
956
CGAAGCCCTTACAA
581
GGACTCTTCAGG
1313
CCCTTACGGATTCCT
2045







GTTTCC

GGTGAAAT

GGAGGGAAC






RBM35A.1
NM_017697
NM_017697.2
ESRP1
5109
TGGTTTTGAATCAC
582
CTCTGTCCGCAG
1314
CGCCCATCAGGAGA
2046







CAGGG

ACTTCATCT

TGCCTTTATC






REG4.1
NM_032044
NM_032044.2
REG4
3226
TGCTAACTCCTGCA
583
TGCTAGGTTTCC
1315
TCCTCTTCCTTTCTG
2047







CAGCC

CCTCTGAA

CTAGCCTGGC






RET.1
NM_020630
NM_020630.3
RET
5001
GCCTGTGCAGTTCT
584
GGAAGGGCAGA
1316
AACATCAGCGTGGC
2048







TGTGC

CCCTCAC

CTACAGGCTC






RGS1.1
NM_002922
NM_002922.3
RGS1
6258
TGCCCTGTAAAGCA
585
CTCGAGTGCGGA
1317
AGCAGCATCTGAATG
2049







GAAGAGAT

AGTCAATA

CACAAATGCT






RGS5.1
NM_003617
NM_003617.1
RGS5
2004
TTCAAACGGAGGCT
586
GAAGGTTCCACC
1318
AATATTGACCACTTC
2050







CCTAAAGAG

AGGTTCTTCA

ACTAAGGACATCACA






RHEB.2
NM_005614
NM_005614.3
RHEB
6609
GATGATTGAGAACA
587
GCTCCCAAGACT
1319
TGTCACTGTCCTAGA
2051







GCCTTGC

CTGACACA

ACACCCTGGAGTT






RhoB.1
NM_004040
NM_004040.2
RHOB
2951
AAGCATGAACAGGA
588
CCTCCCCAAGTC
1320
CTTTCCAACCCCTGG
2052







CTTGACC

AGTTGC

GGAAGACAT






rhoC.1
NM_175744
NM_175744.1
RHOC
773
CCCGTTCGGTCTG
589
GAGCACTCAAGG
1321
TCCGGTTCGCCATGT
2053







AGGAA

TAGCCAAAGG

CCCG






RIPK1.1
NM_003804
NM_003804.3
RIPK1
6259
AGTACCTTCAAGCC
590
AAGTCCCTGGGA
1322
CAGCCACAGAACAG
2054







GGTCAA

ACTGTGC

CCTGGTTCAC






RND3.1
NM_005168
NM_005168.3
RND3
5381
TCGGAATTGGACTT
591
CTGGTTACTCCC
1323
TTTTAAGCCTGACTC
2055







GGGAG

CTCCAACA

CTCACCGCG






ROCK1.1
NM_005406
NM_005406.1
ROCK1
2959
TGTGCACATAGGAA
592
GTTTAGCACGCA
1324
TCACTCTCTTTGCTG
2056







TGAGCTTC

ATTGCTCA

GCCAACTGC






ROCK2.1
NM_004850
NM_004850.3
ROCK2
2992
GATCCGAGACCCT
593
AGGACCAAGGAA
1325
CCCATCAACGTGGA
2057







CGCTC

TTTAAGCCA

GAGCTTGCT






RPLP1.1
NM_213725
NM_213725.1
RPLP1
5478
CAAGGTGCTCGGT
594
GTCGCCGGATGA
1326
CCTCACCCCAACGCA
2058







CCTTC

AGTGAG

GCCTTAGCT






RPS23.1
NM_001025
NM_001025.1
RPS23
3320
GTTCTGGTTGCTG
595
CCTTAAAGCGGA
1327
ATCACCAACAGCATG
2059







GATTTGG

CTCCAGG

ACCTTTGCG






RPS27A.1
NM_002954
NM_002954.3
RPS27A
6329
CTTACGGGGAAGA
596
TCCTGGATCTTG
1328
TCGTATCCGAGGGTT
2060







CCATCAC

GCCTTTAC

CAACCTCG






RPS6KAI.1
NM_002953
NM_002953.3
RPS6KA1
3865
GCTCATGGAGCTA
597
CGGCTGAAGTCC
1329
ACCCGGAGAATGGA
2061







GTGCCTC

AGCTTCT

CAGACCTCAG






RPS6KB1.3
NM_003161
NM_003161.1
RPS6KB1
928
GCTCATTATGAAAA
598
AAGAAACAGAAG
1330
CACACCAACCAATAA
2062







ACATCCCAAAC

TTGTCTGGCTTT

TTTCGCATT










CT








RRM1.2
NM_001033
NM_001033.1
RRM1
1000
GGGCTACTGGCAG
599
CTCTCAGCATCG
1331
CATTGGAATTGCCAT
2063







CTACATT

GTACAAGG

TAGTCCCAGC






RRM2.1
NM_001034
NM_001034.1
RRM2
2546
CAGCGGGATTAAA
600
ATCTGCGTTGAA
1332
CCAGCACAGCCAGT
2064







CAGTCCT

GCAGTGAG

TAAAAGATGCA






RUNX1.1
NM_001754
NM_001754.3
RUNX1
6067
AACAGAGACATTGC
601
GTGATTTGCCCA
1333
TTGGATCTGCTTGCT
2065







CAACCA

GGAAAGTTT

GTCCAAACC






S100A1.1
NM_006271
NM_006271.1
S100A1
2851
TGGACAAGGTGAT
602
AGCACCACATAC
1334
CCTCCCCGTCTCCAT
2066







GAAGGAG

TCCTGGAA

TCTCGTCTA






S100A10.1
NM_002966
NM_002966.1
S100A10
3579
ACACCAAAATGCCA
603
TTTATCCCCAGC
1335
CACGCCATGGAAAC
2067







TCTCAA

GAATTTGT

CATGATGTTT






S100A2.1
NM_005978
NM_005978.2
S100A2
2369
TGGCTGTGCTGGT
604
TCCCCCTTACTC
1336
CACAAGTACTCCTGC
2068







CACTACCT

AGCTTGAACT

CAAGAGGGCGAC






SAA2.2
NM_030754
NM_030754.2
SAA2
6655
CTACAGCACAGATC
605
TGCTGACACTCA
1337
AGCTTCTCACGGGC
2069







AGCACCA

GGACCAAG

CTGGTTTTCT






SCN4B.1
NM_174934
NM_174934.3
SCN4B
7223
GCCTTCCTGGAGTA
606
GTGGCCCAATTC
1338
TGCTCCCTATGCCTT
2070







CCCG

CCCAAGT

TCCAAGCAT






SCNN1A.2
NM_001038
NM_001038.4
SCNN1A
3263
ATCAACATCCTGTC
607
GAAGTTGCCCAG
1339
AGAGACTCTGCCATC
2071







GAGGCT

CGTGTC

CCTGGAGGA






SDHA.1
NM_004168
NM_004168.1
SDHA
5443
GCAGAACTGAAGAT
608
CCCTTTCCAAAC
1340
CTGTCCACCAAATGC
2072







GGGAAGAT

TTGAGGC

ACGCTGATA






SDPR.1
NM_004657
NM_004657.4
SDPR
3877
ACCAGCACAAGATG
609
GGTCATTCTGGA
1341
CGGAGCCCTCCAAA
2073







GAGCA

TGCCCTT

CTGATCTGTC






SELE.1
NM_000450
NM_000450.1
SELE
5383
ACACTGGTCTGGC
610
AAAGTCCAGCTA
1342
CCTGTGAAGCTCCCA
2074







CTGCTAC

CCAAGGGAA

CTGAGTCCA






SELENBP1.1
NM_003944
NM_003944.2
SELENBP1
6200
GGTACCAGCCTCG
611
CCATCTCGTAAG
1343
TGCCCACTCAGTGCT
2075







ACACAA

ACATTGGGA

GATCATGAC






SELL.1
NM_000655
NM_000655.3
SELL
5483
TGCAACTGTGATGT
612
CCTCCAAAGGCT
1344
CACAAACTGACACTG
2076







GGGG

CACACTG

GGGCCCATA






SELPLG.1
NM_003006
NM_003006.3
SELPLG
6316
TGGCCACTATCTTC
613
GTAATTACGCAC
1345
CACTGTGGTGCTGG
2077







TTCGTG

GGGGTACA

CGGTCC






SEMA3B.1
NM_004636
NM_004636.1
SEMA3B
1013
GCTCCAGGATGTG
614
ACGTGGAGAAGA
1346
TCGCGGGACCACCG
2078







TTTCTGTTG

CGGCATAGA

GACC






SEMA3C.1
NM_006379
NM_006379.2
SEMA3C
5409
ATGGCCATTCCTGT
615
GTCTCACATCTT
1347
CCTCCGTTTCCCAGT
2079







TCCAG

GTCTTCGGC

TGGGTAGAA






SEMA3F.3
NM_004186
NM_004186.1
SEMA3F
1008
CGCGAGCCCCTCA
616
CACTCGCCGTTG
1348
CTCCCCACAGCGCA
2080







TTATACA

ACATCCT

TCGAGGAA






SEMA5B.1
NM_001031702
NM_001031702.
SEMA5B
5003
CTCGAGGACAGCT
617
TCACATTCCGCA
1349
AGCCTCTGGACCCA
2081







CCAACAT

CAGGAC

GAACATCACC






SERPINA5.1
NM_000624
NM_000624.3
SERPINA5
6201
CAGCATGGTAGTG
618
CTTTGTGGCACT
1350
AGGTCCAGAGTCCT
2082







GCAAAGA

GAGCTGG

GGCCCTTGAT






SFN.1
NM_006142
NM_006142.3
SFN
3580
GAGAGAGCCAGTC
619
AGGCTGCCATGT
1351
CTGCTCTGCCAGCTT
2083







TGATCCA

CCTCATA

GGCCTTC






SGK.1
NM_005627
NM_005627.2
SGK1
2960
TCCGCAAGACACCT
620
TGAAGTCATCCT
1352
TGTCCTGTCCTTCTG
2084







CCTG

TGGCCC

CAGGAGGC






SHANK3.1
XM_037493
XM_037493.5

3887
CTGTGCCCTCTACA
621
GGACATCCCTGT
1353
AGCTGTGCTCGTGT
2085







ACCAGG

TAGCTCCA

CCTGCTCTTC






SHC1.1
NM_003029
NM_003029.3
SHC1
2342
CCAACACCTTCTTG
622
CTGTTATCCCAA
1354
CCTGTGTTCTTGCTG
2086







GCTTCT

CCCAAACC

AGCACCCTC






SILV.1
NM_006928
NM_006928.3
SILV
4113
CCGCATCTTCTGCT
623
ACTCAGACCTGC
1355
TTGGTGAGAATAGCC
2087







CTTGT

TGCCCA

CCCTCCTCA






SKIL.1
NM_005414
NM_005414.2
SKIL
5272
AGAGGCTGAATATG
624
CTATCGGCCTCA
1356
CCAATCTCTGCCTCA
2088







CAGGACA

GCATGG

GTTCTGCCA






SLC13A3.1
NM_022829
NM_022829.4
SLC13A3
6202
CTTGCCCTCCAACA
625
AGCCCACTGAGG
1357
CCCCCAGTACTTCCT
2089







AGGTC

AAGAGGA

CGACACCAA






SLC16A3.1
NM_004207
NM_004207.1
SLC16A3
4569
ATGCGACCCACGT
626
AATCAGGGAGGA
1358
CCCCGCCAGGATGA
2090







CTACAT

GGTGAGC

ACACGTAC






SLC22A3.1
NM_021977
NM_021977.2
SLC22A3
6506
ATCGTCAGCGAGTT
627
CAGGATGGCTTG
1359
CAGCATCCACGCATT
2091







TGACCT

GGTGAG

GACACAGAC






SLC22A6.1
NM_153277
NM_153277.1
SLC22A6
6463
TCCGCCACCTCTTC
628
GACCAGCCCATA
1360
CTCTCCATGCTGTGG
2092







CTCT

GTATGCAAAG

TTTGCCACT






SLC2A1.1
NM_006516
NM_006516.1
SLC2A1
2966
GCCTGAGTCTCCT
629
AGTCTCCACCCT
1361
ACATCCCAGGCTTCA
2093







GTGCC

CAGGCAT

CCCTGAATG






SLC34A1.1
NM_003052
NM_003052.3
SLC34A1
6203
GCTGAGACCCACT
630
AGCCTCTCTCCG
1362
TCCTGGGCACCCAC
2094







GACCTG

TAGGACAA

TATGAGGTCT






SLC7A5.2
NM_003486
NM_003486.4
SLC7A5
3268
GCGCAGAGGCCAG
631
AGCTGAGCTGTG
1363
AGATCACCTCCTCGA
2095







TTAAA

GGTTGC

ACCCACTCC






SLC9A1.1
NM_003047
NM_003047.2
SLC9A1
5385
CTTCGAGATCTCCC
632
AGTGGGGATCAC
1364
CCTTCTGGCCTGCCT
2096







TCTGGA

ATGGAAAC

CATGAAGAT






SLIT2.2
NM_004787
NM_004787.1
SLIT2
3708
TTTACCGATGCACC
633
ATGCAGGCATGA
1365
CACAGTCCTGCCCCT
2097







TGTCC

ATTGGG

TGAAACCAT






SNAI1.1
NM_005985
NM_005985.2
SNAI1
2205
CCCAATCGGAAGC
634
GTAGGGCTGCTG
1366
TCTGGATTAGAGTCC
2098







CTAACTA

GAAGGTAA

TGCAGCTCGC






SNRK.1
NM_017719
NM_017719.4
SNRK
6710
GAGGAAAAGTCAG
635
GCCGGCTTTCAG
1367
CCAGCTGCAGTAGTT
2099







GGCCG

AATCATC

CGGAGACCA






SOD1.1
NM_000454
NM_000454.3
SOD1
2742
TGAAGAGAGGCAT
636
AATAGACACATC
1368
TTTGTCAGCAGTCAC
2100







GTTGGAG

GGCCACAC

ATTGCCCAA






SP3.1
NM_001017371
NM_001017371.
SP3
5430
TCAAGAGTCTCAGC
637
CCATGGATTGTC
1369
CAGTCAAGCCCAAAT
2101







AGCCAA

TGTGGTGT

TGTGCAAGG






SPARC.1
NM_003118
NM_003118.1
SPARC
2378
TCTTCCCTGTACAC
638
AGCTCGGTGTGG
1370
TGGACCAGCACCCC
2102







TGGCAGTTC

GAGAGGTA

ATTGACGG






SPARCL1.1
NM_004684
NM_004684.2
SPARCL1
3904
GGCACAGTGCAAG
639
GATTGAGCTCTC
1371
ACTTCATCCCAAGCC
2103







TGATGA

TCGGCCT

AGGCCTTTC






SPAST.1
NM_014946
NM_014946.3
SPAST
4033
CCTGAGTTGTTCAC
640
ATTCCCAGGTGG
1372
TAACAGCCCTCTGGC
2104







AGGGC

ACCAAAG

AGGAGCTCT






SPHK1.1
NM_021972
NM_021972.2
SPHK1
4178
GGCAGCTTCCTTGA
641
GCAGTTGGTCAG
1373
TGGTGACCTGCTCAT
2105







ACCAT

GAGGTCTT

AGCCAGCAT






SPRY1.1
AK026960
AK026960.1

1051
CAGACCAGTCCCT
642
CCTTCAAGTCAT
1374
CTGGGTCCGGATTG
2106







GGTCATAGG

CCACAATCAGTT

CCCTTTCAG






SQSTM1.1
NM_003900
NM_003900.3
SQSTM1
4662
GGACCCGTCTACA
643
GCTTGGC
1375
CAGTCCCTACAGATG
2107







GGTGAAC

GGGTCCAGAGA

CCAGAATCCG






STAT1.3
NM_007315
NM_007315.1
STAT1
530
GGGCTCAGCTTTCA
644
ACATGTTCAGCT
1376
TGGCAGTTTTCTTCT
2108







GAAGTG

GGTCCACA

GTCACCAAAA






STAT3.1
NM_003150
NM_003150.1
STAT3
537
TCACATGCCACTTT
645
CTTGCAGGAAGC
1377
TCCTGGGAGAGATT
2109







GGTGTT

GGCTATAC

GACCAGCA






STAT5A.1
NM_003152
NM_003152.1
STAT5A
403
GAGGCGCTCAACA
646
GCCAGGAACACG
1378
CGGTTGCTCTGCACT
2110







TGAAATTC

AGGTTCTC

TCGGCCT






STAT5B.2
NM_012448
NM_012448.1
STAT5B
857
CCAGTGGTGGTGA
647
GCAAAAGCATTG
1379
CAGCCAGGACAACA
2111







TCGTTCA

TCCCAGAGA

ATGCGACGG






STC2.1
NM_003714
NM_003714.2
STC2
6507
AAGGAGGCCATCA
648
AGATGGAGCACA
1380
TTCTGCTCACACTGA
2112







CCCAC

GGCTTCC

ACCTGCACG






STK11.1
NM_000455
NM_000455.3
STK11
3383
GGACTCGGAGACG
649
GGGATCCTTCGC
1381
TTCTTGAGGATCTTG
2113







CTGTG

AACTTCTT

ACGGCCCTC






STK15.2
NM_003600
NM_003600.1
AURKA
341
CATCTTCCAGGAG
650
TCCGACCTTCAA
1382
CTCTGTGGCACCCT
2114







GACCACT

TCATTTCA

GGACTACCTG






STK4.1
NM_006282
NM_006282.2
STK4
5424
GAGCCATCTTCCTG
651
CTGAGGTGCAAC
1383
ACCTCTTTCCCTCAG
2115







CAACTT

CCAGTCA

ATGGGGAGC






STMY3.3
NM_005940
NM_005940.2
MMP11
741
CCTGGAGGCTGCA
652
TACAATGGCTTT
1384
ATCCTCCTGAAGCCC
2116







ACATACC

GGAGGATAGCA

TTTTCGCAGC






SUCLG1.1
NM_003849
NM_003849.2
SUCLG1
6205
CAAGCCTGTAGT
653
CGGCATGACCCA
1385
CCCAGGAGGAGCAG
2117







GTCCTTCA

TTCTTC

TTAAACCAGC






SULT1C2.1
NM_001056
NM_001056.3
SULT1C2
6206
GGGACCCAAAGCA
654
AGCACTGTTTCA
1386
TTCCCATGAACTGCA
2118







TGAAAT

TCCACCTTC

TCACCTTCC






SURV.2
NM_001168
NM_001168.1
BIRC5
81
TGTTTTGATTCCCG
655
CAAAGCTGTCAG
1387
TGCCTTCTTCCTCCC
2119







GGCTTA

CTCTAGCAAAAG

TCACTTCTCACCT






TACSTD2.1
NM_002353
NM_002353.2
TACSTD2
6335
ATCACCAACCGGA
656
AAGCTCGGTTCC
1388
CCCCCAGTTCCTTGA
2120







GAAAGTC

TTTCTCAA

TCTCCACC






TAGLN.1
NM_003186
NM_003186.3
TAGLN
6073
GATGGAGCAGGTG
657
AGTCTGGAACAT
1389
CCCATAGTCCTCAGC
2121







GCTCAGT

GTCAGTCTTGATG

CGCCTTCAG






TAP1.1
NM_000593
NM_000593.5
TAP1
3966
GTATGCTGCTGAAA
658
TCCCACTGCTTA
1390
CACCAGCTGCCCAC
2122







GTGGGAA

CAGCCC

CAATGTAGAG






TCF4.1
NM_003199
NM_003199.1
TCF4
4097
CACACCCTGGAAT
659
ATGTGGCAACTT
1391
CGCATCGAATCACAT
2123







GGGAG

GGACCCT

GGGACAGAT






TCOF1.2
NM_001008656
NM_001008656.
TCOF1
6719
AGCGAGGATGAGG
660
CACCACATTGGT
1392
TCCCCGCTACACAGT
2124







ACGTG

TCTGATGC

GCTTGACTC






TEK.1
NM_000459
NM_000459.1
TEK
2345
ACTTCGGTGCTACT
661
CCTGGGCCTTGG
1393
AGCTCGGACCACGT
2125







TAACAACTTACATC

TGTTGAC

ACTGCTCCCTG






TERT.1
NM_003219
NM_003219.1

992
GACATGGAGAACAA
662
GAGGTGTCACCA
1394
ACCAAACGCAGGAG
2126







GCTGTTTGC

ACAAGAAATCAT

CAGCCCG






TFAP2B.1
NM_003221
NM_003221.3
TFAP2B
6207
CGTGTGACGTGCG
663
CCACACGCTCTC
1395
ATGGACGCGCCTTG
2127







AGAGA

AGGACC

CTCTTACTGT






TFAP2C.1
NM_003222
NM_003222.3
TFAP2C
4663
CATGCCTCACCAGA
664
CTGTCTGATCGT
1396
CTGGTCGTCGACATT
2128







TGGA

GCAGCAAC

CTGCACCTC






TFPI.1
NM_006287
NM_006287.4
TFPI
6270
CCGAATGGTTTCCA
665
TTGCGGAGTCAG
1397
ATGGAACCCAGCTCA
2129







GGTG

GGAGTTA

ATGCTGTGA






TGFA.2
NM_003236
NM_003236.1
TGFA
161
GGTGTGCCACAGA
666
ACGGAGTTCTTG
1398
TTGGCCTGTAATCAC
2130







CCTTCCT

ACAGAGTTTTGA

CTGTGCAGCCTT






TGFb1.1
NM_000660
NM_000660.3
TGFB1
4041
CTGTATTTAAGGAC
667
TGACACAGAGAT
1399
TCTCTCCATCTTTAA
2131







ACCCGTGC

CCGCAGTC

TGGGGCCCC






TGFB2.2
NM_003238
NM_003238.1
TGFB2
2017
ACCAGTCCCCCAG
668
CCTGGTGCTGTT
1400
TCCTGAGCCCGAGG
2132







AAGACTA

GTAGATGG

AAGTCCC






TGFBI.1
NM_000358
NM_000358.1
TGFBI
3768
GCTACGAGTGCTG
669
AGTGGTAGGGCT
1401
CCTTCTCCCCAGGG
2133







TCCTGG

GCTGGAC

ACCTTTTCAT






TGFBR1.1
NM_004612
NM_004612.1
TGFBR1
3385
GTCATCACCTGGC
670
GCAGACGAAGCA
1402
AGCAATGACAGCTG
2134







CTTGG

CACTGGT

CCAGTTCCAC






TGFBR2.3
NM_003242
NM_003242.2
TGFBR2
864
AACACCAATGGGTT
671
CCTCTTCATCAG
1403
TTCTGGGCTCCTGAT
2135







CCATCT

GCCAAACT

TGCTCAAGC






THBD.1
NM_000361
NM_000361.2
THBD
4050
AGATCTGCGACGG
672
GGAAATGACATC
1404
CACCTAATGACAGTG
2136







ACTGC

GGCAGC

CGCTCCTCG






THBS1.1
NM_003246
NM_003246.1
THBS1
2348
CATCCGCAAAGTGA
673
GTACTGAACTCC
1405
CCAATGAGCTGAGG
2137







CTGAAGAG

GTTGTGATAGCA

CGGCCTCC










TAG








TIMP1.1
NM_003254
NM_003254.2
TIMP1
6075
TCCCTGCGGTCCC
674
GTGGGAACAGG
1406
ATCCTGCCCGGAGT
2138







AGATAG

GTGGACACT

GGAAGCTGAAGC






TIMP2.1
NM_003255
NM_003255.2
TIMP2
606
TCACCCTCTGTGAC
675
TGTGGTTCAGGC
1407
CCCTGGGACACCCT
2139







TTCATCGT

TCTTCTTCTG

GAGCACCA






TIMP3.3
NM_000362
NM_000362.2
TIMP3
593
CTACCTGCCTTGCT
676
ACCGAAATTGGA
1408
CCAAGAACGAGTGT
2140







TTGTGA

GAGCATGT

CTCTGGACCG






TK1.2
NM_003258
NM_003258.1
TK1
264
GCCGGGAAGACCG
677
CAGCGGCACCAG
1409
CAAATGGCTTCCTCT
2141







TAATTGT

GTTCAG

GGAAGGTCCCA






TLR3.1
NM_003265
NM_003265.2
TLR3
6289
GGTTGGGCCACCT
678
CCATTCCTGGCC
1410
CTTGCCCAATTTCAT
2142







AGAAGT

TGTGAG

TAAGGCCCA






TMEM27.1
NM_020665
NM_020665.2
TMEM27
3878
CCCTGAAAGAATGT
679
TCTGCACCTGGT
1411
TCTGGTGACTGCCAT
2143







TGTGGC

TGACAGAG

TCATGCTGA






TMEM47.1
NM_031442
NM_031442.3
TMEM47
6713
GGATTCCACTGTTA
680
GCAAATAACCAA
1412
CCGCCTGCTTATCCT
2144







GAGCCCTT

CAGCCAATG

ACCCAATGA






TMSB10.1
NM_021103
NM_021103.3
TMSB10
6076
GAAATCGCCAGCTT
681
GTCGGCAGGGT
1413
CGTCTCCGTTTTCTT
2145







CGATAA

GTTCTTCT

CAGCTTGGC






TNF.1
NM_000594
NM_000594.1
TNF
2852
GGAGAAGGGTGAC
682
TGCCCAGACTCG
1414
CGCTGAGATCAATCG
2146







CGACTCA

GCAAAG

GCCCGACTA






TNFAIP3.1
NM_006290
NM_006290.2
TNFAIP3
6290
ATCGTCTTGGCTGA
683
GTGGAATGGCTC
1415
CAACCCACGCGACTT
2147







GAAAGG

TGGCTTC

GTGTGTCTT






TNFAIP6.1
NM_007115
NM_007115.2
TNFAIP6
6291
AGGAGTGAAAGAT
684
CTGTAAAGACGC
1416
ATTGCTACAACCCAC
2148







GGGATGC

CACCACAC

ACGCAAAGG






TNFRSF10C.3
NM_003841
NM_003841.2
TNFRSF10$$
6652
GGAGTTTGACCAG
685
CTCTGTCCCCAG
1417
AACGGTAGGAAGCG
2149







AGATGCAA

AGTTCCC

CTCCTTCACC






TNFRSF10D.1
NM_003840
NM_003840.3
TNFRSF10$$
4406
CCTCTCGCTTCTGG
686
GCTCAGGAATCT
1418
AGGCATCCCAGGGA
2150







TGGTC

CTGCCCTA

CTCAGTTCAC






TNFRSF11B.1
NM_002546
NM_002546.2
TNFRSF11$$
4675
TGGCGACCAAGAC
687
GGGAAAGTGGTA
1419
AGGGCCTAATGCAC
2151







ACCTT

CGTCTTTGAG

GCACTAAAGC






TNFRSF1A.1
NM_001065
NM_001065.2
TNFRSF1A
4943
ACTGCCCTGAGCC
688
GTCAGGCACGGT
1420
TGCCAGACAGCTATG
2152







CAAAT

GGAGAG

GCCTCTCAC






TNFSF12.1
NM_003809
NM_003809.2
TNFSF12
2987
TAGGCCAGGAGTT
689
CACAGGGAATTC
1421
TTGTCTTGTTTCTCG
2153







CCCAA

TCAAGGGA

CCCCTCACA






TNFSF13B.1
NM_006573
NM_006573.3
TNFSF13B
4944
CCTACGCCATGGG
690
TCGAAACAAAGT
1422
TCCCCAAAGACATGG
2154







ACATC

CACCAGACTC

ACCTTCTTCC






TNFSF7.1
NM_001252
NM_001252.2
CD70
4101
CCAACCTCACTGG
691
ACCCACTGCACT
1423
TGCCTTCCCGAAACA
2155







GACACTT

CCAAAGAA

CTGATGAGA






TNIP2.1
NM_024309
NM_024309.2
TNIP2
3872
CATGTCAGAAAGG
692
GCGACCTTTTCC
1424
AATCCTACTTTGAGC
2156







GCCGA

TCCAGTT

CCGTTCCCG






TOP2A.4
NM_001067
NM_001067.1
TOP2A
74
AATCCAAGGGGGA
693
GTACAGATTTTG
1425
CATATGGACTTTGAC
2157







GAGTGAT

CCCGAGGA

TCAGCTGTGGC






TOP2B.2
NM_001068
NM_001068.1
TOP2B
75
TGTGGACATCTTCC
694
CTAGCCCGACCG
1426
TTCCCTACTGAGCCA
2158







CCTCAGA

GTTCGT

CCTTCTCTG






TP.3
NM_001953
NM_001953.2
TYMP
91
CTATATGCAGCCAG
695
CCACGAGTTTCT
1427
ACAGCCTGCCACTCA
2159







AGATGTGACA

TACTGAGAATGG

TCACAGCC






TRAIL.1
NM_003810
NM_003810.1
TNFSF10
898
CTTCACAGTGCTCC
696
CATCTGCTTCAG
1428
AAGTACACGTAAGTT
2160







TGCAGTCT

CTCGTTGGT

ACAGCCACACA






TS.1
NM_001071
NM_001071.1
TYMS
76
GCCTCGGTGTGCC
697
CGTGATGTGCGC
1429
CATCGCCAGCTACG
2161







TTTCA

AATCATG

CCCTGCTC






TSC1.1
NM_000368
NM_000368.3
TSC1
6292
TCACCAAATCTCAG
698
GTGTCAGCATAA
1430
TTTCCTCATCGTTCA
2162







CCCG

GGGCTGGT

GCCGATGTC






TSC2.1
NM_000548
NM_000548
TSC2
5132
CACAGTGGCCTCTT
699
CAGGAAACGCTC
1431
TACCAGTCCAGCTGC
2163







TCTCCT

CTGTGC

CAAGGACAG






TSPAN7.2
NM_004615
NM_004615.3
TSPAN7
6721
ATCACTGGGGTGAT
700
GGGAGATATAGG
1432
AAGTTTGCCCCAGAC
2164







CCTGC

TGCCCAGAG

TCCAACAGC






TSPAN8.1
NM_004616
NM_004616.2
TSPAN8
6317
CAGAAATCTCTGCA
701
AATCCAGATGCC
1433
TGCTCCAGAGCATAT
2165







GGCAAGT

GTGAATTT

TGCAGGACA






TUBB.1
NM_001069
NM_001069.1
TUBB2A
2094
CGAGGACGAGGCT
702
ACCATGCTTGAG
1434
TCTCAGATCAATCGT
2166







TAAAAAC

GACAACAG

GCATCCTTAGTGAA






TUSC2.1
NM_007275
NM_007275.1
TUSC2
6208
CACCAAGAACGGG
703
CGATGCCCTGAG
1435
TCTTATGCACTCGCC
2167







CAGAA

GAATCA

TCAGCTTGG






tusc4.2
NM_006545
NM_006545.4
TUSC4
3764
GGAGGAGCTAAAT
704
CCTTCAAGTGGA
1436
ACTCATCAATGGGCA
2168







GCCTCAG

TGGTGTTG

GAGTGCACC






TXLNA.1
NM_175852
NM_175852.3
TXLNA
6209
GCCAGAACGGCTC
705
ATGTCTTCCAGT
1437
TCCTCAGAGACATCA
2169







AGTCT

TGGCGG

CGAAGGGCC






UBB.1
NM_018955
NM_018955.1
UBB
3303
GAGTCGACCCTGC
706
GCGAATGCCATG
1438
AATTAACAGCCACCC
2170







ACCTG

ACTGAA

CTCAGGCG






UBE1C.1
NM_003968
NM_003968.3
UBA3
2575
GAATGCACGCTGG
707
CTGGTAGCCTGG
1439
AATTTTCCCATGTGC
2171







AACTTTA

GCATAGA

ACCATTGCA






UBE2C.1
NM_007019
NM_007019.2
UBE2C
2550
TGTCTGGCGATAAA
708
ATGGTCCCTACC
1440
TCTGCCTTCCCTGAA
2172







GGGATT

CATTTGAA

TCAGACAACC






UBE2T.1
NM_014176
NM_014176.1
UBE2T
3882
TGTTCTCAAATTGC
709
AGAGGTCAACAC
1441
AGGTGCTTGGAGAC
2173







CACCAA

AGTTGCGA

CATCCCTCAA






UGCG.1
NM_003358
NM_003358.1
UGCG
6210
GGCAACTGACAAAC
710
AGGATCTACCCC
1442
CAAGCTCCCAGGTG
2174







AGCCTT

TTTCAGTGG

TCTCTCTTCTGA






UMOD.1
NM_003361
NM_003361.2
UMOD
6211
GCGTGGACCTGGA
711
TTACGCAGCTGC
1443
CCATTCCTGGAGCTC
2175







TGAGT

TGTTGG

ACAACTGCT






upa.3
NM_002658
NM_002658.1
PLAU
89
GTGGATGTGCCCT
712
CTGCGGATCCAG
1444
AAGCCAGGCGTCTA
2176







GAAGGA

GGTAAGAA

CACGAGAGTCTCAC






USP34.1
NM_014709
NM_014709.2
USP34
4040
AAGCTGTGATGGC
713
GGAATGGCCACA
1445
TCCCAGGACCCTGA
2177







CAAGC

ACTGAGA

GGTTGCTTTA






VCAM1.1
NM_001078
NM_001078.2
VCAM1
1220
TGGCTTCAGGAGC
714
TGCTGTCGTGAT
1446
CAGGCACACACAGG
2178







TGAATACC

GAGAAAATAGTG

TGGGACACAAAT






VCAN.1
NM_004385
NM_004385.2
VCAN
5979
CCTGCTACACAGC
715
AGAAAGCGCCTG
1447
CCCACTGTGGAAGA
2179







CAACAAG

AGGTCC

CAAAGAGGCC






VDR.2
NM_000376
NM_000376.1
VDR
971
GCCCTGGATTTCAG
716
AGTTACAAGCCA
1448
CAAGTCTGGATCTG
2180







AAAGAG

GGGAAGGA

GGACCCTTTCC






VEGF.1
NM_003376
NM_003376.3
VEGFA
7
CTGCTGTCTTGGGT
717
GCAGCCTGGGA
1449
TTGCCTTGCTGCTCT
2181







GCATTG

CCACTTG

ACCTCCACCA






VEGFB.1
NM_003377
NM_003377.2
VEGFB
964
TGACGATGGCCTG
718
GGTACCGGATCA
1450
CTGGGCAGCACCAA
2182







GAGTGT

TGAGGATCTG

GTCCGGA






VHL.1
NM_000551
NM_000551.2
VHL
4102
CGGTTGGTGACTT
719
AAGACTTGTCCC
1451
ATGCCTCAGTCTTCC
2183







GTCTGC

TGCCTCAC

CAAAGCAGG






VIM.3
NM_003380
NM_003380.1
VIM
339
TGCCCTTAAAGGAA
720
GCTTCAACGGCA
1452
ATTTCACGCATCTGG
2184







CCAATGA

AAGTTCTCTT

CGTTCCA






VTCN1.1
NM_024626
NM_024626.2
VTCN1
4754
ACAGTGGTCTGGG
721
GCTCAAAGCTGG
1453
CGAGAAGTTGGCTC
2185







CATCC

TATTGGAGAC

CCTGGTCAAC






VTN.1
NM_000638
NM_000638.2
VTN
4502
AGTCAATCTTCGCA
722
GTACTGAGCGAT
1454
TGGACACTGTGGAC
2186







CACGG

GGAGCGT

CCTCCCTACC






VWF.1
NM_000552
NM_000552.3
VWF
6212
TGAAGCACAGTGC
723
CCAGTCTCCCAT
1455
CTCCATGTCACTGTG
2187







CCTCTC

TCACCGT

CAGCTCGAC






WIF.1
NM_007191
NM_007191.3
WIF1
6077
AACAAGCTGAGTG
724
CACTCGCAGATG
1456
TACAAAAGCCTCCAT
2188







CCCAGG

CGTCTTT

TTCGGCACC






WISP1.1
NM_003882
NM_003882.2
WISP1
603
AGAGGCATCCATG
725
CAAACTCCACAG
1457
CGGGCTGCATCAGC
2189







AACTTCACA

TACTTGGGTTGA

ACACGC






WT1.1
NM_000378
NM_000378.3
WT1
6458
TGTACGGTCGGCA
726
TTATTGCAGCCT
1458
CAGTGAGAAACGCC
2190







TCTGAG

GGGTAAGC

CCTTCATGTG






WWOX.5
NM_016373
NM_016373.1
WWOX
974
ATCGCAGCTGGTG
727
AGCTCCCTGTTG
1459
CTGCTGTTTACCTTG
2191







GGTGTAC

CATGGACTT

GCGAGGCCTTTC






XDH.1
NM_000379
NM_000379.3
XDH
5089
TGGTGGCAGACAT
728
GCCACAACTGTC
1460
TGAAGCCAACCTTGT
2192







CCCTT

CCAGTCTT

ATCTGGCCA






XIAP.1
NM_001167
NM_001167.1
XIAP
80
GCAGTTGGAAGAC
729
TGCGTGGCACTA
1461
TCCCCAAATTGCAGA
2193







ACAGGAAAGT

TTTTCAAGA

TTTATCAACGGC






XPNPEP2.2
NM_003399
NM_003399.5
XPNPEP2
6503
CACCCTGCACTGAA
730
AAGGAGGATGAA
1462
CCTGCTGGCCCATT
2194







CATACC

TGCAAAGG

GCCTAGAA






YB-1.2
NM_004559
NM_004559.1
YBX1
395
AGACTGTGGAGTTT
731
GGAACACCACCA
1463
TTGCTGCCTCCGCA
2195







GATGTTGTTGA

GGACCTGTAA

CCCTTTTCT






ZHX2.1
NM_014943
NM_014943.3
ZHX2
6215
GAGTACGACCAGTT
732
TCTCCTTGAACC
1464
ATCTCAGTTCGGACC
2196







AGCGGC

AACGCAC

AGGCCAGTC



















TABLE B






Target





Sequence

SEQ


Gene
Length
Amplicon Sequence
ID NO.


















A-Catenin.2
78
CGTTCCGATCCTCTATACTGCATCCCAGGCATGCCTACAGCACCCTGATGTCGCAGCCTAT
2197




AAGGCCAACAGGGACCT






A2M.1
66
CTCTCCCGCCTTCCTAGCTGTCCCAGTGGAGAAGGAACAAGCGCCTCACTGCATCTGTGCA
2198




AACGG






AAMP.1
66
GTGTGGCAGGTGGACACTAAGGAGGAGGTCTGGTCCTTTGAAGCGGGAGACCTGGAGTGGA
2199




TGGAG






ABCB1.5
77
AAACACCACTGGAGCATTGACTACCAGGCTCGCCAATGATGCTGCTCAAGTTAAAGGGGCT
2200




ATAGGTTCCAGGCTTG






ACADSB.1
68
TGGCGGAGAACTAGCCATCAGCCTCCTGAAGCCTGCCATCATTGTTAATTTGAGGACTGGG
2201




CTGTCTT






ACE.1
67
CCGCTGTACGAGGATTTCACTGCCCTCAGCAATGAAGCCTACAAGCAGGACGGCTTCACAG
2202




ACACGG






ACE2.1
66
TACAATGAGAGGCTCTGGGCTTGGGAAAGCTGGAGATCTGAGGTCGGCAAGCAGCTGAGGC
2203




CATTA






ADAM17.1
73
GAAGTGCCAGGAGGCGATTAATGCTACTTGCAAAGGCGTGTCCTACTGCACAGGTAATAGC
2204




AGTGAGTGCCCG






ADAM8.1
67
GTCACTGTGTCCAGCCCACCCTTCCCAGTTCCTGTCTACACCCGGCAGGCACCAAAGCAGG
2205




TCATCA






ADAMTS1.1
73
GGACAGGTGCAAGCTCATCTGCCAAGCCAAAGGCATTGGCTACTTCTTCGTTTTGCAGCCC
2206




AAGGTTGTAGAT






ADAMTS2.1
66
GAGAATGTCTGCCGCTGGGCCTACCTCCAGCAGAAGCCAGACACGGGCCACGATGAATACC
2207




ACGAT






ADAMTS4.1
71
TTTGACAAGTGCATGGTGTGCGGAGGGGACGGTTCTGGTTGCAGCAAGCAGTCAGGCTCCT
2208




TCAGGAAATT






ADAMTS5.1
79
CACTGTGGCTCACGAAATCGGACATTTACTTGGCCTCTCCCATGACGATTCCAAATTCTGT
2209




GAAGAGACCTTTGGTTCC






ADAMTS8.1
72
GCGAGTTCAAAGTGTTCGAGGCCAAGGTGATTGATGGCACCCTGTGTGGGCCAGAAACACT
2210




GGCCATCTGTG






ADAMTS9.1
66
GCACAGGTTACACAACCCAACAGAATGTCCCTATAACGGGAGCCGGCGCGATGACTGCCAA
2211




TGTCG






ADD1.1
74
GTCTACCCAGCAGCTCCGCAAGGAGGGATGGCTGCCTTAAACATGAGTCTTGGTATGGTGA
2212




CTCCTGTGAACGA






ADFP.1
67
AAGACCATCACCTCCGTGGCCATGACCAGTGCTCTGCCCATCATCCAGAAGCTAGAGCCGC
2213




AAATTG






ADH1B.1
84
AAGCCAACAAACCTTCCTTCTTAACCATTCTACTGTGTCACCTTTGCCATTGAGGAAAAAT
2214




ATTCCTGTGACTTCTTGCATTTT






ADH6.1
68
TGTTGGGGAGTAAACACTTGGACCTCTTGTATCCCACCATCTTGGGCCATGAAGGGGCTGG
2215




AATCGTT






ADM.1
75
TAAGCCACAAGCACACGGGGCTCCAGCCCCCCCGAGTGGAAGTGCTCCCCACTTTCTTTAG
2216




GATTTAGGCGCCCA






AGR2.1
70
AGCCAACATGTGACTAATTGGAAGAAGAGCAAAGGGTGGTGACGTGTTGATGAGGCAGATG
2217




GAGATCAGA






AGT.1
73
GATCCAGCCTCACTATGCCTCTGACCTGGACAAGGTGGAGGGTCTCACTTTCCAGCAAAAC
2218




TCCCTCAACTGG






AGTR1.1
67
AGCATTGATCGATACCTGGCTATTGTTCACCCAATGAAGTCCCGCCTTCGACGCACAATGC
2219




TTGTAG






AHR.1
69
GCGGCATAGAGACCGACTTAATACAGAGTTGGACCGTTTGGCTAGCCTGCTGCCTTTCCCA
2220




CAAGATGT






AIF1.1
71
GACGTTCAGCTACCCTGACTTTCTCAGGATGATGCTGGGCAAGAGATCTGCCATCCTAAAA
2221




ATGATCCTGA






AKT1.3
71
CGCTTCTATGGCGCTGAGATTGTGTCAGCCCTGGACTACCTGCACTCGGAGAAGAACGTGG
2222




TGTACCGGGA






AKT2.3
71
TCCTGCCACCCTTCAAACCTCAGGTCACGTCCGAGGTCGACACAAGGTACTTCGATGATGA
2223




ATTTACCGCC






AKT3.2
75
TTGTCTCTGCCTTGGACTATCTACATTCCGGAAAGATTGTGTACCGTGATCTCAAGTTGGA
2224




GAATCTAATGCTGG






ALDH4.2
68
GGACAGGGTAAGACCGTGATCCAAGCGGAGATTGACGCTGCAGCGGAACTCATCGACTTCT
2225




TCCGGTT






ALDH6A1.1
66
GGCTCTTTCAACAGCAGTCCTTGTGGGAGAAGCCAAGAAGTGGCTGCCAGAGCTGGTGGAG
2226




CATGC






ALDOA.1
69
GCCTGTACGTGCCAGCTCCCCGACTGCCAGAGCCTCAACTGTCTCTGCTTCGAGATCAAGC
2227




TCCGATGA






ALDOB.1
80
CCCTCTACCAGAAGGACAGCCAGGGAAAGCTGTTCAGAAACATCCTCAAGGAAAAGGGATC
2228




GTGGTGGGAATCAAGTTA






ALOX12.1
67
AGTTCCTCAATGGTGCCAACCCCATGCTGTTGAGACGCTCGACCTCTCTGCCCTCCAGGCT
2229




AGTGCT






ALOX5.1
66
GAGCTGCAGGACTTCGTGAACGATGTCTACGTGTACGGCATGCGGGGCCGCAAGTCCTCAG
2230




GCTTC






AMACR1.1
71
GGACAGTCAGTTTTAGGGTTGCCTGTATCCAGTAACTCGGGGCCTGTTTCCCCGTGGGTCT
2231




CTGGGCTGTC






ANGPT1.1
71
TCTACTTGGGGTGACAGTGCTCACGTGGCTCGACTATAGAAAACTCCACTGACTGTCGGGC
2232




TTTAAAAAGG






ANGPT2.1
69
CCGTGAAAGCTGCTCTGTAAAAGCTGACACAGCCCTCCCAAGTGAGCAGGACTGTTCTTCC
2233




CACTGCAA






ANGPTL2.1
66
GCCATCTGCGTCAACTCCAAGGAGCCTGAGGTGCTTCTGGAGAACCGAGTGCATAAGCAGG
2234




AGCTA






ANGPTL3.3
78
GTTGCGATTACTGGCAATGTCCCCAATGCAATCCCGGAAAACAAAGATTTGGTGTTTTCTA
2235




CTTGGGATCACAAAGCA






ANGPTL4.1
66
ATGACCTCAGATGGAGGCTGGACAGTAATTCAGAGGCGCCACGATGGCTCAGTGGACTTCA
2236




ACCGG






ANGPTL7.1
67
CTGCACAGACTCCAACCTCAATGGAGTGTACTACCGCCTGGGTGAGCACAATAAGCACCTG
2237




GATGGC






ANTXR1.1
67
CTCCAGGTGTACCTCCAACCCTAGCCTTCTCCCACAGCTGCCTACAACAGAGTCTCCCAGC
2238




CTTCTC






ANXA1.2
67
GCCCCTATCCTACCTTCAATCCATCCTCGGATGTCGCTGCCTTGCATAAGGCCATAATGGT
2239




TAAAGG






ANXA2.2
71
CAAGACACTAAGGGCGACTACCAGAAAGCGCTGCTGTACCTGTGTGGTGGAGATGACTGAA
2240




GCCCGACACG






ANXA4.1
67
TGGGAGGGATGAAGGAAATTATCTGGACGATGCTCTCGTGAGACAGGATGCCCAGGACCTG
2241




TATGAG






ANXA5.1
67
GCTCAAGCCTGGAAGATGACGTGGTGGGGGACACTTCAGGGTACTACCAGCGGATGTTGGT
2242




GGTTCT






AP-1 (JUN official).2
81
GACTGCAAAGATGGAAACGACCTTCTATGACGATGCCCTCAACGCCTCGTTCCTCCCGTCC
2243




GAGAGCGGACCTTATGGCTA






AP1M2.1
67
ACAACGACCGCACCATCTCCTTCATCCCGCCTGATGGTGACTTTGAGCTCATGTCATACCG
2244




CCTCAG






APAF1.2
66
CACAAGGAAGAAGCTGGTGAATGCAATTCAGCAGAAGCTCTCCAAATTGAAAGGTGAACCA
2245




GGATG






APC.4
69
GGACAGCAGGAATGTGTTTCTCCATACAGGTCACGGGGAGCCAATGGTTCAGAAACAAATC
2246




GAGTGGGT






APOC1.3
70
CCAGCCTGATAAAGGTCCTGCGGGCAGGACAGGACCTCCCAACCAAGCCCTCCAGCAAGGA
2247




TTCAGAGTG






APOE.1
75
GCCTCAAGAGCTGGTTCGAGCCCCTGGTGGAAGACATGCAGCGCCAGTGGGCCGGGCTGGT
2248




GGAGAAGGTGCAGG






APOL1.1
73
CGGACCAAGAACTGTGACCACAGGGCAGGGCAGCCACCAGGAGAGATATGCCTGGCAGGGG
2249




CCAGGACAAAAT






APOLD1.1
66
GAGCAGCTGGAGTCTCGGGTTCAGCTCTGCACCAAGTCCAGTCGTGGCCACGACCTCAAGA
2250




TCTCT






AQP1.1
66
GCTTGCTGTATGACCCCTGGCCACAGCCTTCCCTCTGCATTGACCTGGAGGGGAGAGGTCA
2251




GCCTT






AREG.2
82
TGTGAGTGAAATGCCTTCTAGTAGTGAACCGTCCTCGGGAGCCGACTATGACTACTCAGAA
2252




GAGTATGATAACGAACCACAA






ARF1.1
64
CAGTAGAGATCCCCGCAACTCGCTTGTCCTTGGGTCACCCTGCATTCCATAGCCATGTGCT
2253




TGT






ARG99.1
67
GCATGGGCTACTGCATCCTTTTTGTGCACGGACTGAGCAAGCTCTGCACTTGGCTGAATCG
2254




ATGTGG






ARGHEF18.1
71
ACTCTGCTTCCCAAGGGCAACCGTTGCTGTTCACACGCTCAGCCTGTCTGGGGGAGCGGGC
2255




CTCTAGCTTC






ARHA.1
73
GGTCCTCCGTCGGTTCTCTCATTAGTCCACGGTCTGGTCTTCAGCTACCCGCCTTCGTCTC
2256




CGAGTTTGCGAC






ARHGDIB.1
66
TGGTCCCTAGAACAAGAGGCTTAAAACCGGGCTTTCACCCAACCTGCTCCCTCTGATCCTC
2257




CATCA






ARRB1.1
69
TGCAGGAACGCCTCATCAAGAAGCTGGGCGAGCACGCTTACCCTTTCACCTTTGAGATCCC
2258




TCCAAACC






ASS1.1
85
CCCCCAGATAAAGGTCATTGCTCCCTGGAGGATGCCTGAATTCTACAACCGGTTCAAGGGC
2259




CGCAATGACCTGATGGAGTACGCA






ATP1A1.1
67
AGAACGCCTATTTGGAGCTGGGGGGCCTCGGAGAACGAGTCCTAGGTTTCTGCCACCTCTT
2260




TCTGCC






ATP5E.1
66
CCGCTTTCGCTACAGCATGGTGGCCTACTGGAGACAGGCTGGACTCAGCTACATCCGATAC
2261




TCCCA






ATP6V1B1.1
67
AACCATGGGGAACGTCTGCCTCTTCCTGAACTTGGCCAATGACCCCACGATCGAGCGGATC
2262




ATCACC






AXL.1
66
TTGCAGCCCTGTCTTCCTACCTATCCCACCTCCATCCCAGACAGGTCCCTCCCCTTCTCTG
2263




TGCAG






AZU1.1
74
CCGAGGCCCTGACTTCTTCACCCGAGTGGCGCTCTTCCGAGACTGGATCGATGGTGTTCTC
2264




AACAACCCGGGAC






B-Catenin.3
80
GGCTCTTGTGCGTACTGTCCTTCGGGCTGGTGACAGGGAAGACATCACTGAGCCTGCCATC
2265




TGTGCTCTTCGTCATCTGA






B2M.4
67
GGGATCGAGACATGTAAGCAGCATCATGGAGGTTTGAAGATGCCGCATTTGGATTGGATGA
2266




ATTCCA






BAD.1
73
GGGTCAGGGGCCTCGAGATCGGGCTTGGGCCCAGAGCATGTTCCAGATCCCAGAGTTTGAG
2267




CCGAGTGAGCAG






BAG1.2
81
CGTTGTCAGCACTTGGAATACAAGATGGTTGCCGGGTCATGTTAATTGGGAAAAAGAACAG
2268




TCCACAGGAAGAGGTTGAAC






BAG2.1
69
CTAGGGGCAAAAAGCATGACTGCTTTTTCCTGTCTGGCATGGAATCACGCAGTCACCTTGG
2269




GCATTTAG






Bak.2
66
CCATTCCCACCATTCTACCTGAGGCCAGGACGTCTGGGGTGTGGGGATTGGTGGGTCTATG
2270




TTCCC






Bax.1
70
CCGCCGTGGACACAGACTCCCCCCGAGAGGTCTTTTTCCGAGTGGCAGCTGACATGTTTTC
2271




TGACGGCAA






BBC3.2
83
CCTGGAGGGTCCTGTACAATCTCATCATGGGACTCCTGCCCTTACCCAGGGGCCACAGAGC
2272




CCCCGAGATGGAGCCCAATTAG






Bcl2.2
73
CAGATGGACCTAGTACCCACTGAGATTTCCACGCCGAAGGACAGCGATGGGAAAAATGCCC
2273




TTAAATCATAGG






BCL2A1.1
79
CCAGCCTCCATGTATCATCATGTGTCATAACTCAGTCAAGCTCAGTGAGCATTCTCAGCAC
2274




ATTGCCTCAACAGCTTCA






BCL2L12.1
73
AACCCACCCCTGTCTTGGAGCTCCGGGTAGCTCTCAAACTCGAGGCTGCGCACCCCCTTTC
2275




CCGTCAGCTGAG






Bclx.2
70
CTTTTGTGGAACTCTATGGGAACAATGCAGCAGCCGAGAGCCGAAAGGGCCAGGAACGCTT
2276




CAACCGCTG






BCRP.1
74
TGTACTGGCGAAGAATATTTGGTAAAGCAGGGCATCGATCTCTCACCCTGGGGCTTGTGGA
2277




AGAATCACGTGGC






BFGF.3
71
CCAGGAAGAATGCTTAAGATGTGAGTGGATGGATCTCAATGACCTGGCGAAGACTGAAAAT
2278




ACAACTCCCATCACCA






BGN.1
66
GAGCTCCGCAAGGATGACTTCAAGGGTCTCCAGCACCTCTACGCCCTCGTCCTGGTGAACA
2279




ACAAG






BHLHB3.1
68
AGGAAGATCCCTCGCAGCCAGGAAAGGAAGCTCCCTGAATCCTTGCGTCCCGAAGGACGGA
2280




GGTTCAA






BIK.1
70
ATTCCTATGGCTCTGCAATTGTCACCGGTTAACTGTGGCCTGTGCCCAGGAAGAGCCATTC
2281




ACTCCTGCC






BIN1.3
76
CCTGCAAAAGGGAACAAGAGCCCTTCGCCTCCAGATGGCTCCCCTGCCGCCACCCCCGAGA
2282




TCAGAGTCAACCACG






BLR1.1
67
GACCAAGCAGGAAGCTCAGACTGGTTGAGTTCAGGTAGCTGCCCCTGGCTCTGACCGAAAC
2283




AGCGCT






BNIP3.1
68
CTGGACGGAGTAGCTCCAAGAGCTCTCACTGTGACAGCCCACCTCGCTCGCAGACACCACA
2284




AGATACC






BRCA1.1
65
TCAGGGGGCTAGAAATCTGTTGCTATGGGCCCTTCACCAACATGCCCACAGATCAACTGGA
2285




ATGG






BTRC.1
63
GTTGGGACACAGTTGGTCTGCAGTCGGCCCAGGACGGTCTACTCAGCACAACTGACTGCTT
2286




CA






BUB1.1
68
CCGAGGTTAATCCAGCACGTATGGGGCCAAGTGTAGGCTCCCAGCAGGAACTGAGAGCGCC
2287




ATGTCTT






BUB3.1
73
CTGAAGCAGATGGTTCATCATTTCCTGGGCTGTTAAACAAAGCGAGGTTAAGGTTAGACTC
2288




TTGGGAATCAGC






c-kit.2
75
GAGGCAACTGCTTATGGCTTAATTAAGTCAGATGCGGCCATGACTGTCGCTGTAAAGATGC
2289




TCAAGCCGAGTGCC






C13orf15.1
84
TAGAATCTGCTGCCAGAGGGGACAAAGACGTGCACTCAACCTTCTACCAGGCCACTCTCAG
2290




GCTCACCTTAAAATCAGCCCTTG






C1QA.1
66
CGGTCATCACCAACCAGGAAGAACCGTACCAGAACCACTCCGGCCGATTCGTCTGCACTGT
2291




ACCCG






C1QB.1
70
CCAGTGGCCTCACAGGACACCAGCTTCCCAGGAGGCGTCTGACACAGTATGATGATGAAGA
2292




TCCCATGGG






C20orf1.1
65
TCAGCTGTGAGCTGCGGATACCGCCCGGCAATGGGACCTGCTCTTAACCTCAAACCTAGGA
2293




CCGT






C3.1
67
CGTGAAGGAGTGCAGAAAGAGGACATCCCACCTGCAGACCTCAGTGACCAAGTCCCGGACA
2294




CCGAGT






C3AR1.1
66
AAGCCGCATCCCAGACTTGCTGAATCGGAATCTCTGGGGGTTGGGACCCAGCAAGGGCACT
2295




TAACA






C7.1
69
ATGTCTGAGTGTGAGGCGGGCGCTCTGAGATGCAGAGGGCAGAGCATCTCTGTCACCAGCA
2296


CA12.1
66
CTCTCTGAAGGTGTCCTGGCCAGCCCTGGAGAAGCACTGGTGTCTGCAGCACCCCTCAGTT
2297




CCTGT






CA2.1
69
CAACGTGGAGTTTGATGACTCTCAGGACAAAGCAGTGCTCAAGGGAGGACCCCTGGATGGC
2298




ACTTACAG






CA9.3
72
ATCCTAGCCCTGGTTTTTGGCCTCCTTTTTGCTGTCACCAGCGTCGCGTTCCTTGTGCAGA
2299




TGAGAAGGCAG






CACNA2D1.1
68
CAAACATTAGCTGGGCCTGTTCCATGGCATAACACTAAGGCGCAGACTCCTAAGGCACCCA
2300




CTGGCTG






CALD1.2
78
CACTAAGGTTTGAGACAGTTCCAGAAAGAACCCAAGCTCAAGACGCAGGACGAGCTCAGTT
2301




GTAGAGGGCTAATTCGC






CASP1.1
77
AGAAAGCCCACATAGAGAAGGATTTTATCGCTTTCTGCTCTTCCACACCAGATAATGTTTC
2302




TTGGAGACATCCCACA






CASP10.1
66
ACCTTTCTCTTGGCCGGATGTCCTCAGGGCTGGCAGATGCAGTAGACTGCAGTGGACAGTC
2303




CCCAC






CASP6.1
67
CCTCACACTGGTGAACAGGAAAGTTTCTCAGCGCCGAGTGGACTTTTGCAAAGACCCAAGT
2304




GCAATT






Caspase 3.1
66
TGAGCCTGAGCAGAGACATGACTCAGCCTGTTCCATGAAGGCAGAGCCATGGACCACGCAG
2305




GAAGG






CAT.1
78
ATCCATTCGATCTCACCAAGGTTTGGCCTCACAAGGACTACCCTCTCATCCCAGTTGGTAA
2306




ACTGGTCTTAAACCGGA






CAV1.1
74
GTGGCTCAACATTGTGTTCCCATTTCAGCTGATCAGTGGGCCTCCAAGGAGGGGCTGTAAA
2307




ATGGAGGCCATTG






CAV2.1
66
CTTCCCTGGGACGACTTGCCAGCTCTGAGGCATGACAGTACGGGCCCCCAGAAGGGTGACC
2308




AGGAG






CCL18.1
68
GCTCCTGTGCACAAGTTGGTACCAACAAAGAGCTCTGCTGCCTCGTCTATACCTCCTGGCA
2309




GATTCCA






CCL19.1
78
GAACGCATCATCCAGAGACTGCAGAGGACCTCAGCCAAGATGAAGCGCCGCAGCAGTTAAC
2310




CTATGACCGTGCAGAGG






CCL20.1
69
CCATGTGCTGTACCAAGAGTTTGCTCCTGGCTGCTTTGATGTCAGTGCTGCTACTCCACCT
2311




CTGCGGCG






CCL4.2
70
GGGTCCAGGAGTACGTGTATGACCTGGAACTGAACTGAGCTGCTCAGAGACAGGAAGTCTT
2312




CAGGGAAGG






CCL5.2
65
AGGTTCTGAGCTCTGGCTTTGCCTTGGCTTTGCCAGGGCTCTGTGACCAGGAAGGAAGTCA
2313




GCAT






CCNB1.2
84
TTCAGGTTGTTGCAGGAGACCATGTACATGACTGTCTCCATTATTGATCGGTTCATGCAGA
2314




ATAATTGTGTGCCCAAGAAGATG






CCND1.3
69
GCATGTTCGTGGCCTCTAAGATGAAGGAGACCATCCCCCTGACGGCCGAGAAGCTGTGCAT
2315




CTACACCG






CCNE1.1
71
AAAGAAGATGATGACCGGGTTTACCCAAACTCAACGTGCAAGCCTCGGATTATTGCACCAT
2316




CCAGAGGCTC






CCNE2 variant 1.1
85
GGTCACCAAGAAACATCAGTATGAAATTAGGAATTGTTGGCCACCTGTATTATCTGGGGGG
2317




ATCAGTCCTTGCATTATCATTGAA






CCNE2.2
82
ATGCTGTGGCTCCTTCCTAACTGGGGCTTTCTTGACATGTAGGTTGCTTGGTAATAACCTT
2318




TTTGTATATCACAATTTGGGT






CCR1.1
66
TCCAAGACCCAATGGGAATTCACTCACCACACCTGCAGCCTTCACTTTCCTCACGAAAGCC
2319




TACGA






CCR2.1
67
CTCGGGAATCCTGAAAACCCTGCTTCGGTGTCGAAACGAGAAGAAGAGGCATAGGGCAGTG
2320




AGAGTC






CCR4.2
82
AGACCCTGGTGGAGCTAGAAGTCCTTCAGGACTGCACCTTTGAAAGATACTTGGACTATGC
2321




CATCCAGGCCACAGAAACTCT






CCR5.1
67
CAGACTGAATGGGGGTGGGGGGGGCGCCTTAGGTACTTATTCCAGATGCCTTCTCCAGACA
2322




AACCAG






CCR7.1
64
GGATGACATGCACTCAGCTCTTGGCTCCACTGGGATGGGAGGAGAGGACAAGGGAAATGTC
2323




AGG






CD105.1
75
GCAGGTGTCAGCAAGTATGATCAGCAATGAGGCGGTGGTCAATATCCTGTCGAGCTCATCA
2324




CCACAGCGGAAAAA






CD14.1
66
GTGTGCTAGCGTACTCCCGCCTCAAGGAACTGACGCTCGAGGACCTAAAGATAACCGGCAC
2325




CATGC






CD18.2
81
CGTCAGGACCCACCATGTCTGCCCCATCACGCGGCCGAGACATGGCTTGGCCACAGCTCTT
2326




GAGGATGTCACCAATTAACC






CD1A.1
78
GGAGTGGAAGGAACTGGAAACATTATTCCGTATACGCACCATTCGGTCATTTGAGGGAATT
2327




CGTAGATACGCCCATGA






CD24.1
77
TCCAACTAATGCCACCACCAAGGCGGCTGGTGGTGCCCTGCAGTCAACAGCCAGTCTCTTC
2328




GTGGTCTCACTCTCTC






CD274.2
69
GCTGCATGATCAGCTATGGTGGTGCCGACTACAAGCGAATTACTGTGAAAGTCAATGCCCC
2329




ATACAACA






CD31.3
75
TGTATTTCAAGACCTCTGTGCACTTATTTATGAACCTGCCCTGCTCCCACAGAACACAGCA
2330




ATTCCTCAGGCTAA






CD34.1
67
CCACTGCACACACCTCAGAGGCTGTTCTTGGGGCCCTACACCTTGAGGAGGGGCAGGTAAA
2331




CTCCTG






CD36.1
67
GTAACCCAGGACGCTGAGGACAACACAGTCTCTTTCCTGCAGCCCAATGGTGCCATCTTCG
2332




AACCTT






CD3z.1
65
AGATGAAGTGGAAGGCGCTTTTCACCGCGGCCATCCTGCAGGCACAGTTGCCGATTACAGA
2333




GGCA






CD4.1
67
GTGCTGGAGTCGGGACTAACCCAGGTCCCTTGTCCCAAGTTCCACTGCTGCCTCTTGAATG
2334




CAGGGA






CD44.1
67
GGCACCACTGCTTATGAAGGAAACTGGAACCCAGAAGCACACCCTCCCCTCATTCACCATG
2335




AGCATC






CD44s.1
78
GACGAAGACAGTCCCTGGATCACCGACAGCACAGACAGAATCCCTGCTACCAGAGACCAAG
2336




ACACATTCCACCCCAGT






CD44v6.1
78
CTCATACCAGCCATCCAATGCAAGGAAGGACAACACCAAGCCCAGAGGACAGTTCCTGGAC
2337




TGATTTCTTCAACCCAA






CD53.1
72
CGACAGCATCCACCGTTACCACTCAGACAATAGCACCAAGGCAGCGTGGGACTCCATCCAG
2338




TCATTTCTGCA






CD68.2
74
TGGTTCCCAGCCCTGTGTCCACCTCCAAGCCCAGATTCAGATTCGAGTCATGTACACAACC
2339




CAGGGTGGAGGAG






CD82.3
84
GTGCAGGCTCAGGTGAAGTGCTGCGGCTGGGTCAGCTTCTACAACTGGACAGACAACGCTG
2340




AGCTCATGAATCGCCCTGAGGTC






CD8A.1
68
AGGGTGAGGTGCTTGAGTCTCCAACGGCAAGGGAACAAGTACTTCTTGATACCTGGGATAC
2341




TGTGCCC






CD99.1
77
GTTCCTCCGGTAGCTTTTCAGATGCTGACCTTGCGGATGGCGTTTCAGGTGGAGAAGGAAA
2342




AGGAGGCAGTGATGGT






cdc25A.4
71
TCTTGCTGGCTACGCCTCTTCTGTCCCTGTTAGACGTCCTCCGTCCATATCAGAACTGTGC
2343




CACAATGCAG






CDC25B.1
85
AAACGAGCAGTTTGCCATCAGACGCTTCCAGTCTATGCCGGTGAGGCTGCTGGGCCACAGC
2344




CCCGTGCTTCGGAACATCACCAAC






CDH1.3
81
TGAGTGTCCCCCGGTATCTTCCCCGCCCTGCCAATCCCGATGAAATTGGAAATTTTATTGA
2345




TGAAAATCTGAAAGCGGCTG






CDH13.1
67
GCTACTTCTCCACTGTCCCGTTCAGTCTGAATGCTGCCACAACCAGCCAGGCAGGTCCACA
2346




GAGAGG






CDH16.1
67
GACTGTCTGAATGGCCCAGGCAGCTCTAGCTGGGAGCTTGGCCTCTGGCTCCATCTGAGTC
2347




CCCTGG






CDH2.1
66
TGACCGATAAGGATCAACCCCATACACCAGCCTGGAACGCAGTGTACAGAATCAGTGGCGG
2348




AGATC






CDH5.1
67
ACAGGAGACGTGTTCGCCATTGAGAGGCTGGACCGGGAGAATATCTCAGAGTACCACCTCA
2349




CTGCTG






CDH6.1
66
ACACAGGCGACATACAGGCCACCAAGAGGCTGGACAGGGAAGAAAAACCCGTTTACATCCT
2350




TCGAG






CDK4.1
66
CCTTCCCATCAGCACAGTTCGTGAGGTGGCTTTACTGAGGCGACTGGAGGCTTTTGAGCAT
2351




CCCAA






CDK6.1
67
AGTGCCCTGTCTCACCCATACTTCCAGGACCTGGAAAGGTGCAAAGAAAACCTGGATTCCC
2352




ACCTGC






CDKN2A.2
79
AGCACTCACGCCCTAAGCGCACATTCATGTGGGCATTTCTTGCGAGCCTCGCAGCCTCCGG
2353




AAGCTGTCGACTTCATGA






CEACAM1.1
71
ACTTGCCTGTTCAGAGCACTCATTCCTTCCCACCCCCAGTCCTGTCCTATCACTCTAATTC
2354




GGATTTGCCA






CEBPA.1
66
TTGGTTTTGCTCGGATACTTGCCAAAATGAGACTCTCCGTCGGCAGCTGGGGGAAGGGTCT
2355




GAGAC






CENPF.1
68
CTCCCGTCAACAGCGTTCTTTCCAAACACTGGACCAGGAGTGCATCCAGATGAAGGCCAGA
2356




CTCACCC






CFLAR.1
66
GGACTTTTGTCCAGTGACAGCTGAGACAACAAGGACCACGGGAGGAGGTGTAGGAGAGAAG
2357




CGCCG






CGA (CHGA official).
76
CTGAAGGAGCTCCAAGACCTCGCTCTCCAAGGCGCCAAGGAGAGGGCACATCAGCAGAAGA
2358




AACACAGCGGTTTTG






Chk1.2
82
GATAAATTGGTACAAGGGATCAGCTTTTCCCAGCCCACATGTCCTGATCATATGCTTTTGA
2359




ATAGTCAGTTACTTGGCACCC






Chk2.3
78
ATGTGGAACCCCCACCTACTTGGCGCCTGAAGTTCTTGTTTCTGTTGGGACTGCTGGGTAT
2360




AACCGTGCTGTGGACTG






CIAP1.2
72
TGCCTGTGGTGGGAAGCTCAGTAACTGGGAACCAAAGGATGATGCTATGTCAGAACACCGG
2361




AGGCATTTTCC






cIAP2.2
86
GGATATTTCCGTGGCTCTTATTCAAACTCTCCATCAAATCCTGTAAACTCCAGAGCAAATC
2362




AAGATTTTTCTGCCTTGATGAGAAG






CLCNKB.1
67
GTGACCCTGAAGCTGTCCCCAGAGACTTCCCTGCATGAGGCACACAACCTCTTTGAGCTGT
2363




TGAACC






CLDN10.1
66
GGTCTGTGGATGAACTGCGCAGGTAACGCGTTGGGTTCTTTCCATTGCCGACCGCATTTTA
2364




CTATC






CLDN7.2
74
GGTCTGCCCTAGTCATCCTGGGAGGTGCACTGCTCTCCTGTTCCTGTCCTGGGAATGAGAG
2365




CAAGGCTGGGTAC






CLU.3
76
CCCCAGGATACCTACCACTACCTGCCCTTCAGCCTGCCCCACCGGAGGCCTCACTTCTTCT
2366




TTCCCAAGTCCCGCA






cMet.2
86
GACATTTCCAGTCCTGCAGTCAATGCCTCTCTGCCCCACCCTTTGTTCAGTGTGGCTGGTG
2367




CCACGACAAATGTGTGCGATCGGAG






cMYC.3
84
TCCCTCCACTCGGAAGGACTATCCTGCTGCCAAGAGGGTCAAGTTGGACAGTGTCAGAGTC
2368




CTGAGACAGATCAGCAACAACCG






COL18A1.1
67
AGCTGCCATCACGCCTACATCGTGCTCTGCATTGAGAACAGCTTCATGACTGCCTCCAAGT
2369




AGCCAC






COL1A1.1
68
GTGGCCATCCAGCTGACCTTCCTGCGCCTGATGTCCACCGAGGCCTCCCAGAACATCACCT
2370




ACCACTG






COL1A2.1
80
CAGCCAAGAACTGGTATAGGAGCTCCAAGGACAAGAAACACGTCTGGCTAGGAGAAACTAT
2371




CAATGCTGGCAGCCAGTTT






COL4A1.1
66
ACAAAGGCCTCCCAGGATTGGATGGCATCCCTGGTGTCAAAGGAGAAGCAGGTCTTCCTGG
2372




GACTC






COL4A2.1
67
CAACCCTGGTGATGTCTGCTACTATGCCAGCCGGAACGACAAGTCCTACTGGCTCTCTACC
2373




ACTGCG






COL5A2.2
72
GGTCGAGGAACCCAAGGTCCGCCTGGTGCTACAGGATTTCCTGGTTCTGCGGGCAGAGTTG
2374




GACCTCCAGGC






COL7A1.1
66
GGTGACAAAGGACCTCGGGGAGACAATGGGGACCCTGGTGACAAGGGCAGCAAGGGAGAGC
2375




CTGGT






COX2.1
79
TCTGCAGAGTTGGAAGCACTCTATGGTGACATCGATGCTGTGGAGCTGTATCCTGCCCTTC
2376




TGGTAGAAAAGCCTCGGC






CP.1
73
CGTGAGTACACAGATGCCTCCTTCACAAATCGAAAGGAGAGAGGCCCTGAAGAAGAGCATC
2377




TTGGCATCCTGG






CPB2.1
67
GGCACATACGGATTCTTGCTGCCGGAGCGTTACATCAAACCCACCTGTAGAGAAGCTTTTG
2378




CCGCTG






CRADD.1
69
GATGGTGCCTCCAGCAACCGCTGGGGAGTGTGTCCCTGAGTCATGTGGGCTGAATCCTGAC
2379




TTTCACTC






cripto (TDGF1 official
65
GGGTCTGTGCCCCATGACACCTGGCTGCCCAAGAAGTGTTCCCTGTGTAAATGCTGGCACG
2380




GTCA






CRP.1
66
GACGTGAACCACAGGGTGTCCTGTCAGAGGAGCCCATCTCCCATCTCCCCAGCTCCCTATC
2381




TGGAG






CSF1.1
74
TGCAGCGGCTGATTGACAGTCAGATGGAGACCTCGTGCCAAATTACATTTGAGTTTGTAGA
2382




CCAGGAACAGTTG






CSF1R.2
80
GAGCACAACCAAACCTACGAGTGCAGGGCCCACAACAGCGTGGGGAGTGGCTCCTGGGCCT
2383




TCATACCCATCTCTGCAGG






CSF2.1
76
GAACCTGAAGGACTTTCTGCTTGTCATCCCCTTTGACTGCTGGGAGCCAGTCCAGGAGTGA
2384




GACCGGCCAGATGAG






CSF2RA.2
67
TACCACACCCAGCATTCCTCCTGATCCCAGAGAAATCGGATCTGCGAACAGTGGCACCAGC
2385




CTCTAG






CSF3.2
79
CCCAGGCCTCTGTGTCCTTCCCTGCATTTCTGAGTTTCATTCTCCTGCCTGTAGCAGTGAG
2386




AAAAAGCTCCTGTCCTCC






CTGF.1
76
GAGTTCAAGTGCCCTGACGGCGAGGTCATGAAGAAGAACATGATGTTCATCAAGACCTGTG
2387




CCTGCCATTACAACT






CTSB.1
62
GGCCGAGATCTACAAAAACGGCCCCGTGGAGGGAGCTTTCTCTGTGTATTCGGACTTCCTG
2388




C






CTSD.2
80
GTACATGATCCCCTGTGAGAAGGTGTCCACCCTGCCCGCGATCACACTGAAGCTGGGAGGC
2389




AAAGGCTACAAGCTGTCCC






CTSH.2
77
GCAAGTTCCAACCTGGAAAGGCCATCGGCTTTGTCAAGGATGTAGCCAACATCACAATCTA
2390




TGACGAGGAAGCGATG






CTSL.2
74
GGGAGGCTTATCTCACTGAGTGAGCAGAATCTGGTAGACTGCTCTGGGCCTCAAGGCAATG
2391




AAGGCTGCAATGG






CTSL2.1
67
TGTCTCACTGAGCGAGCAGAATCTGGTGGACTGTTCGCGTCCTCAAGGCAATCAGGGCTGC
2392




AATGGT






CTSS.1
76
TGACAACGGCTTTCCAGTACATCATTGATAACAAGGGCATCGACTCAGACGCTTCCTATCC
2393




CTACAAAGCCATGGA






CUBN.1
71
GAGGCCGTTACTGTGGCACCGACATGCCCCATCCTATCACATCCTTCAGCAGCGCCCTGAC
2394




GCTGAGATTC






CUL1.1
71
ATGCCCTGGTAATGTCTGCATTCAACAATGACGCTGGCTTTGTGGCTGCTCTTGATAAGGC
2395




TTGTGGTCGC






CUL4A.1
75
AAGCATCTTCCTGTTCTTGGACCGCACCTATGTGCTGCAGAACTCCACGCTGCCCTCCATC
2396




TGGGATATGGGATT






CX3CL1.1
66
GACCCTTGCCGTCTACCTGAGGGGCCTCTTATGGGCTGGGTTCTACCCAGGTGCTAGGAAC
2397




ACTCC






CX3CR1.1
68
TTCCCAGTTGTGACATGAGGAAGGATCTGAGGCTGGCCCTCAGTGTGACTGAGACGGTTGC
2398




ATTTAGC






CXCL10.1
68
GGAGCAAAATCGATGCAGTGCTTCCAAGGATGGACCACACAGAGGCTGCCTCTCCCATCAC
2399




TTCCCTA






CXCL12.1
67
GAGCTACAGATGCCCATGCCGATTCTTCGAAAGCCATGTTGCCAGAGCCAACGTCAAGCAT
2400




CTCAAA






CXCL14.1
74
TGCGCCCTTTCCTCTGTACATATACCCTTAAGAACGCCCCCTCCACACACTGCCCCCCAGT
2401




ATATGCCGCATTG






CXCL9.1
70
ACCAGACCATTGTCTCAGAGCAGGTGCTGGCTCTTTCCTGGCTACTCCATGTTGGCTAGCC
2402




TCTGGTAAC






CXCR4.3
72
TGACCGCTTCTACCCCAATGACTTGTGGGTGGTTGTGTTCCAGTTTCAGCACATCATGGTT
2403




GGCCTTATCCT






CXCR6.1
67
CAGAGCCTGACGGATGTGTTCCTGGTGAACCTACCCCTGGCTGACCTGGTGTTTGTCTGCA
2404




CTCTGC






CYP2C8.2
73
CCGTGTTCAAGAGGAAGCTCACTGCCTTGTGGAGGAGTTGAGAAAAACCAAGGCTTCACCC
2405




TGTGATCCCACT






CYP2C8v2.1
70
GCTGTAGTGCACCAGATCCAGAGATACAGTGACCTTGTCCCCACCGGTGTGCCCCATGCAG
2406




TGACCACTG






CYP3A4.2
79
AGAACAAGGACAACATAGATCCTTACATATACACACCCTTTGGAAGTGGACCCAGAAACTG
2407




CATTGGCATGAGGTTTGC






CYR61.1
76
TGCTCATTCTTGAGGAGCATTAAGGTATTTCGAAACTGCCAAGGGTGCTGGTGCGGATGGA
2408




CACTAATGCAGCCAC






DAG1.1
67
GTGACTGGGCTCATGCCTCCAAGTCAGAGTTTCCCTGGTGCCCCAGAGACAGGAGCACAAG
2409




TGGGAT






DAPK1.3
77
CGCTGACATCATGAATGTTCCTCGACCGGCTGGAGGCGAGTTTGGATATGACAAAGACACA
2410




TCGTTGCTGAAAGAGA






DCBLD2.1
69
TCACCAGGGCAGGAAGTTTATCATGCCTATGCTGAACCACTCCCAATTACGGGGCCTGAGT
2411




ATGCAACC






DCC.3
75
AAATGTCCTCCTCGACTGCTCCGCGGAGTCCGACCGAGGAGTTCCAGTGATCAAGTGGAAG
2412




AAAGATGGCATTCA






DCN.1
67
GAAGGCCACTATCATCCTCCTTCTGCTTGCACAAGTTTCCTGGGCTGGACCGTTTCAACAG
2413




AGAGGC






DCXR.1
66
CCATAGCGTCTACTGCTCCACCAAGGGTGCCCTGGACATGCTGACCAAGGTGATGGCCCTA
2414




GAGCT






DDC.1
67
CAGAGCCCAGACACCATGAACGCAAGTGAATTCCGAAGGAGAGGGAAGGAGATGGTGGATT
2415




ACGTGG






DEFB1.1
68
GATGGCCTCAGGTGGTAACTTTCTCACAGGCCTTGGCCACAGATCTGATCATTACAATTGC
2416




GTCAGCA






DET1.1
70
CTTGTGGAGATCACCCAATCAGGTTCTATGCCCGGGACTCGGGCCTGCTCAAGTTTGAGAT
2417




CCAGGCGGG






DHPS.3
78
GGGAGAACGGGATCAATAGGATCGGAAACCTGCTGGTGCCCAATGAGAATTACTGCAAGTT
2418




TGAGGACTGGCTGATGC






DIABLO.1
73
CACAATGGCGGCTCTGAAGAGTTGGCTGTCGCGCAGCGTAACTTCATTCTTCAGGTACAGA
2419




CAGTGTTTGTGT






DIAPH1.1
62
CAAGCAGTCAAGGAGAACCAGAAGCGGCGGGAGACAGAAGAAAAGATGAGGCGAGCAAAAC
2420




T






DICER1.2
68
TCCAATTCCAGCATCACTGTGGAGAAAAGCTGTTTGTCTCCCCAGCATACTTTATCGCCTT
2421




CACTGCC






DKFZP564O0823.1
66
CAGCTACACTGTCGCAGTCCGCTGCTGAGCCTCCCACACTCATCTCCCCTCAAGCTCCAGC
2422




CTCAT






DLC1.1
68
GATTCAGACGAGGATGAGCCTTGTGCCATCAGTGGCAAATGGACTTTCCAAAGGGACAGCA
2423




AGAGGTG






DLL4.1
67
CACGGAGGTATAAGGCAGGAGCCTACCTGGACATCCCTGCTCAGCCCCGCGGCTGGACCTT
2424




CCTTCT






DPEP1.1
72
GGACTCCAGATGCCAGGAGCCCTGCTGCCCACATGCAAGGACCAGCATCTCCTGAGAGGAC
2425




GCCTGGGCTTA






DPYS.1
70
AAAGAATGGCACCATGCAGCCCACCATGTCATGGGTCCACCTTTGCGACCAGACCCCTCAA
2426




CACCCGACT






DR4.2
83
TGCACAGAGGGTGTGGGTTACACCAATGCTTCCAACAATTTGTTTGCTTGCCTCCCATGTA
2427




CAGCTTGTAAATCAGATGAAGA






DR5.2
84
CTCTGAGACAGTGCTTCGATGACTTTGCAGACTTGGTGCCCTTTGACTCCTGGGAGCCGCT
2428




CATGAGGAAGTTGGGCCTCATGG






DUSP1.1
76
AGACATCAGCTCCTGGTTCAACGAGGCCATTGACTTCATAGACTCCATCAAGAATGCTGGA
2429




GGAAGGGTGTTTGTC






DUSP9.1
77
CGTCCTAATCAACGTGCCTATGGCGGGACCACGCTCGGAGCCTGCCTCTTCTGCGACTGTT
2430




ACTTTTTCTTTGCGGG






E2F1.3
75
ACTCCCTCTACCCTTGAGCAAGGGCAGGGGTCCCTGAGCTGTTCTTCTGCCCCATACTGAA
2431




GGAACTGAGGCCTG






EBAG9.1
66
CGCTCCTGTTTTTCTCATCTGTGCAGTGGGTTTTGATTCCCACCATGGCCATCACCCAGTT
2432




TCGGT






ECRG4.1
66
GCTCCTGCTCCTGTGCTGGGGCCCAGGTGGCATAAGTGGAAATAAACTCAAGCTGATGCTT
2433




CAAAA






EDG2.1
72
ACGAGTCCATTGCCTTCTTTTATAACCGAAGTGGAAAGCATCTTGCCACAGAATGGAACAC
2434




AGTCAGCAAGC






EDN1 endothelin.1
73
TGCCACCTGGACATCATTTGGGTCAACACTCCCGAGCACGTTGTTCCGTATGGACTTGGAA
2435




GCCCTAGGTCCA






EDN2.1
79
CGACAAGGAGTGCGTCTACTTCTGCCACTTGGACATCATCTGGGTGAACACTCCTGAACAG
2436




ACAGCTCCTTACGGCCTG






EDNRA.2
76
TTTCCTCAAATTTGCCTCAAGATGGAAACCCTTTGCCTCAGGGCATCCTTTTGGCTGGCAC
2437




TGGTTGGATGTGTAA






EDNRB.1
72
ACTGTGAACTGCCTGGTGCAGTGTCCACATGACAAAGGGGCAGGTAGCACCCTCTCTCACC
2438




CATGCTGTGGT






EEF1A1.1
67
CGAGTGGAGACTGGTGTTCTCAAACCCGGTATGGTGGTCACCTTTGCTCCAGTCAACGTTA
2439




CAACGG






EFNB1.2
66
GGAGCCCGTATCCTGGAGCTCCCTCAACCCCAAGTTCCTGAGTGGGAAGGGCTTGGTGATC
2440




TATCC






EFNB2.1
73
TGACATTATCATCCCGCTAAGGACTGCGGACAGCGTCTTCTGCCCTCACTACGAGAAGGTC
2441




AGCGGGGACTAC






EGF.3
84
CTTTGCCTTGCTCTGTCACAGTGAAGTCAGCCAGAGCAGGGCTGTTAAACTCTGTGAAATT
2442




TGTCATAAGGGTGTCAGGTATTT






EGFR.2
62
TGTCGATGGACTTCCAGAACCACCTGGGCAGCTGCCAAAAGTGTGATCCAAGCTGTCCCAA
2443




T






EGLN3.1
68
GCTGGTCCTCTACTGCGGGAGCCGGCTGGGCAAATACTACGTCAAGGAGAGGTCTAAGGCA
2444




ATGGTGG






EGR1.1
76
GTCCCCGCTGCAGATCTCTGACCCGTTCGGATCCTTTCCTCACTCGCCCACCATGGACAAC
2445




TACCCTAAGCTGGAG






EIF2C1.1
67
CCCTCACGGACTCTCAGCGCGTTCGCTTCACCAAGGAGATCAAGGGCCTGAAGGTGGAAGT
2446




CACCCA






EIF4EBP1.1
66
GGCGGTGAAGAGTCACAGTTTGAGATGGACATTTAAAGCACCAGCCATCGTGTGGAGCACT
2447




ACCAA






ELTD1.1
66
AGGTCTTGTGCAAGAGGAGCCCTCGCTCTTCTGTTCCTTCTCGGCACCACCTGGATCTTTG
2448




GGGTT






EMCN.1
73
AGGCACTGAGGGTGGAAAAAATGCAAGCACTTCAGCAACCAGCCGGTCTTATTCCAGTATT
2449




ATTTTGCCGGTG






EMP1.1
75
GCTAGTACTTTGATGCTCCCTTGATGGGGTCCAGAGAGCCTCCCTGCAGCCACCAGACTTG
2450




GCCTCCAGCTGTTC






ENO2.1
67
TCCTTGGCTTACCTGACCTCTTGCTGTCTCTGCTCGCCCTCCTTTCTGTGCCCTACTCATT
2451




GGGGTT






ENPEP.1
67
CACCTACACGGAGAACGGACAAGTCAAGAGCATAGTGGCCACCGATCATGAACCAACAGAT
2452




GCCAGG






ENPP2.1
67
CTCCTGCGCACTAATACCTTCAGGCCAACCATGCCAGAGGAAGTTACCAGACCCAATTATC
2453




CAGGGA






EPAS1.1
72
AAGCCTTGGAGGGTTTCATTGCCGTGGTGACCCAAGATGGCGACATGATCTTTCTGTCAGA
2454




AAACATCAGCA






EPB41L3.1
66
TCAGTGCCATACGCTCTCACTCTCTCCTTCCCTCTGGCTCTGTGCCTCTGCTACCTGGAGC
2455




CCAAG






EPHA2.1
72
CGCCTGTTCACCAAGATTGACACCATTGCGCCCGATGAGATCACCGTCAGCAGCGACTTCG
2456




AGGCACGCCAC






EPHB1.3
67
CCTTGGGAGGGAAGATCCCTGTGAGATGGACAGCTCCAGAGGCCATCGCCTACCGCAAGTT
2457




CACTTC






EPHB2.1
66
CAACCAGGCAGCTCCATCGGCAGTGTCCATCATGCATCAGGTGAGCCGCACCGTGGACAGC
2458




ATTAC






EPHB4.1
77
TGAACGGGGTATCCTCCTTAGCCACGGGGCCCGTCCCATTTGAGCCTGTCAATGTCACCAC
2459




TGACCGAGAGGTACCT






EPO.1
84
CAGTGCCAGCAATGACATCTCAGGGGCCAGAGGAACTGTCCAGAGAGCAACTCTGAGATCT
2460




AAGGATGTCACAGGGCCAACTTG






ErbB3.1
81
CGGTTATGTCATGCCAGATACACACCTCAAAGGTACTCCCTCCTCCCGGGAAGGCACCCTT
2461




TCTTCAGTGGGTCTCAGTTC






ERBBR.3
86
TGGCTCTTAATCAGTTTCGTTACCTGCCTCTGGAGAATTTACGCATTATTCGTGGGACAAA
2462




ACTTTATGAGGATCGATATGCCTTG






ERCC1.2
67
GTCCAGGTGGATGTGAAAGATCCCCAGCAGGCCCTCAAGGAGCTGGCTAAGATGTGTATCC
2463




TGGCCG






ERCC4.1
67
CTGCTGGAGTACGAGCGACAGCTGGTGCTGGAACTGCTCGACACTGACGGGCTAGTAGTGT
2464




GCGCCC






EREG.1
91
ATAACAAAGTGTAGCTCTGACATGAATGGCTATTGTTTGCATGGACAGTGCATCTATCTGG
2465




TGGACATGAGTCAAAACTACTGCAGGTGTG






ERG.1
70
CCAACACTAGGCTCCCCACCAGCCATATGCCTTCTCATCTGGGCACTTACTACTAAAGACC
2466




TGGCGGAGG






ERK1.3
67
ACGGATCACAGTGGAGGAAGCGCTGGCTCACCCCTACCTGGAGCAGTACTATGACCCGACG
2467




GATGAG






ERK2.3
68
AGTTCTTGACCCCTGGTCCTGTCTCCAGCCCGTCTTGGCTTATCCACTTTGACTCCTTTGA
2468




GCCGTTT






ESPL1.3
70
ACCCCCAGACCGGATCAGGCAAGCTGGCCCTCATGTCCCCTTCACGGTGTTTGAGGAAGTC
2469




TGCCCTACA






ESRRG.3
67
CCAGCACCATTGTTGAAGATCCCCAGACCAAGTGTGAATACATGCTCAACTCGATGCCCAA
2470




GAGACT






F2.1
77
GCTGCATGTCTGGAAGGTAACTGTGCTGAGGGTCTGGGTACGAACTACCGAGGGCATGTGA
2471




ACATCACCCGGTCAGG






F3.1
73
GTGAAGGATGTGAAGCAGACGTACTTGGCACGGGTCTTCTCCTACCCGGCAGGGAATGTGG
2472




AGAGCACCGGTT






FABP1.1
66
GGGTCCAAAGTGATCCAAAACGAATTCACGGTGGGGGAGGAATGTGAGCTGGAGACAATGA
2473




CAGGG






FABP7.1
72
GGAGACAAAGTGGTCATCAGGACTCTCAGCACATTCAAGAACACGGAGATTAGTTTCCAGC
2474




TGGGAGAAGAG






FAP.1
66
CTGACCAGAACCACGGCTTATCCGGCCTGTCCACGAACCACTTATACACCCACATGACCCA
2475




CTTCC






fas.1
91
GGATTGCTCAACAACCATGCTGGGCATCTGGACCCTCCTACCTCTGGTTCTTACGTCTGTT
2476




GCTAGATTATCGTCCAAAAGTGTTAATGCC






fasl.2
80
GCACTTTGGGATTCTTTCCATTATGATTCTTTGTTACAGGCACCGAGAATGTTGTATTCAG
2477




TGAGGGTCTTCTTACATGC






FBXW7.1
73
CCCCAGTTTCAACGAGACTTCATTTCATTGCTCCCTAAAGAGTTGGCACTCTATGTGCTTT
2478




CATTCCTGGAAC






FCER1G.2
73
TGCCATCCTGTTTCTGTATGGAATTGTCCTCACCCTCCTCTACTGTCGACTGAAGATCCAA
2479




GTGCGAAAGGCA






FCGR3A.1
67
GTCTCCAGTGGAAGGGAAAAGCCCATGATCTTCAAGCAGGGAAGCCCCAGTGAGTAGCTGC
2480




ATTCCT






FDPS.1
77
GGATGATTACCTTGACCTCTTTGGGGACCCCAGTGTGACCGGCAAAATTGGCACTGACATC
2481




CAGGACAACAAATGCA






FEN1.1
66
GTGGAGAAGGGTACGCCAGGGTCGCTGAGAGACTCTGTTCTCCCTGGAGGGACTGGTTGCC
2482




ATGAG






FGF1.1
66
GACACCGACGGGCTTTTATACGGCTCACAGACACCAAATGAGGAATGTTTGTTCCTGGAAA
2483




GGCTG






FGF2.2
76
AGATGCAGGAGAGAGGAAGCCTTGCAAACCTGCAGACTGCTTTTTGCCCAATATAGATTGG
2484




GTAAGGCTGCAAAAC






FGF9.1
67
CACAGCTGCCATACTTCGACTTATCAGGATTCTGGCTGGTGGCCTGCGCGAGGGTGCAGTC
2485




TTACTT






FGFR1.3
74
CACGGGACATTCACCACATCGACTACTATAAAAAGACAACCAACGGCCGACTGCCTGTGAA
2486




GTGGATGGCACCC






FGFR2 isoform 1.1
80
GAGGGACTGTTGGCATGCAGTGCCCTCCCAGAGACCAACGTTCAAGCAGTTGGTAGAAGAC
2487




TTGGATCGAATTCTCACTC






FH.1
67
ATGGTTGCAGCCCAAGTCATGGGGAACCATGTTGCTGTCACTGTCGGAGGCAGCAATGGAC
2488




ATTTTG






FHIT.1
67
CCAGTGGAGCGCTTCCATGACCTGCGTCCTGATGAAGTGGCCGATTTGTTTCAGACGACCC
2489




AGAGAG






FHL1.1
66
ATCCAGCCTTTGCCGAATACATCCTATCTGCCACACATCCAGCGTGAGGTCCCTCCAGCTA
2490




CAAGG






FIGF.1
72
GGTTCCAGCTTTCTGTAGCTGTAAGCATTGGTGGCCACACCACCTCCTTACAAAGCAACTA
2491




GAACCTGCGGC






FILIP1.1
66
ACACCGGTCACAACGTCATCTGCTCGAGGAACCCAGTCAGTGTCAGGACAAGACGGGTCAT
2492




CCCAG






FKBP1A.1
76
CTGCCCTGACTGAATGTGTTCTGTCACTCAGCTTTGCTTCCGACACCTCTGTTTCCTCTTC
2493




CCCTTTCTCCTCGTA






FLJ22655.1
82
CTCCTTCACACAGAACCTTTCATTTATTGTACAACATCACACTCACCCTAACCTACTGGCG
2494




GACAGCGATCCCAGTTTGCCT






FLT1.1
75
GGCTCCTGAATCTATCTTTGACAAAATCTACAGCACCAAGAGCGACGTGTGGTCTTACGGA
2495




GTATTGCTGTGGGA






FLT3LG.1
71
TGGGTCCAAGATGCAAGGCTTGCTGGAGCGCGTGAACACGGAGATACACTTTGTCACCAAA
2496




TGTGCCTTTC






FLT4.1
69
ACCAAGAAGCTGAGGACCTGTGGCTGAGCCCGCTGACCATGGAAGATCTTGTCTGCTACAG
2497




CTTCCAGG






FN1.1
69
GGAAGTGACAGACGTGAAGGTCACCATCATGTGGACACCGCCTGAGAGTGCAGTGACCGGC
2498




TACCGTGT






FOLR1.1
67
GAACGCCAAGCACCACAAGGAAAAGCCAGGCCCCGAGGACAAGTTGCATGAGCAGTGTCGA
2499




CCCTGG






FOS.1
67
CGAGCCCTTTGATGACTTCCTGTTCCCAGCATCATCCAGGCCCAGTGGCTCTGAGACAGCC
2500




CGCTCC






FRAP1.1
66
AGCGCTAGAGACTGTGGACCGCCTGACGGAGTCCCTGGATTTCACTGACTATGCCTCCCGG
2501




ATCAT






FRP1.3
75
TTGGTACCTGTGGGTTAGCATCAAGTTCTCCCCAGGGTAGAATTCAATCAGAGCTCCAGTT
2502




TGCATTTGGATGTG






FST.1
72
GTAAGTCGGATGAGCCTGTCTGTGCCAGTGACAATGCCACTTATGCCAGCGAGTGTGCCAT
2503




GAAGGAAGCTG






FZD2.2
78
TGGATCCTCACCTGGTCGGTGCTGTGCTGCGCTTCCACCTTCTTCACTGTCACCACGTACT
2504




TGGTAGACATGCAGCGC






G-Catenin.1
68
TCAGCAGCAAGGGCATCATGGAGGAGGATGAGGCCTGCGGGCGCCAGTACACGCTCAAGAA
2505




AACCACC






GADD45B.1
70
ACCCTCGACAAGACCACACTTTGGGACTTGGGAGCTGGGGCTGAAGTTGCTCTGTACCCAT
2506




GAACTCCCA






GAS2.1
68
AACATGTCATGGTCCGTGTGGGAGGAGGCTGGGAAACTTTTGCAGGGTATTTGTTGAAACA
2507




CGACCCC






GATA3.3
75
CAAAGGAGCTCACTGTGGTGTCTGTGTTCCAACCACTGAATCTGGACCCCATCTGTGAATA
2508




AGCCATTCTGACTC






GATM.1
67
GATCTCGGCTTGGACGAACCTTGACAGGATGGGTGCAGCGAACTTTCCAGAGCACCCAGGC
2509




AGCTAC






GBL.1
66
GCTGTCAATAGCACCGGAAACTGCTATGTCTGGAATCTGACGGGGGGCATTGGTGACGAGG
2510




TGACC






GBP2.2
83
GCATGGGAACCATCAACCAGCAGGCCATGGACCAACTTCACTATGTGACAGAGCTGACAGA
2511




TCGAATCAAGGCAAACTCCTCA






GCLC.3
71
CTGTTGCAGGAAGGCATTGATCATCTCCTGGCCCAGCATGTTGCTCATCTCTTTATTAGAG
2512




ACCCACTGAC






GCLM.2
85
TGTAGAATCAAACTCTTCATCATCAACTAGAAGTGCAGTTGACATGGCCTGTTCAGTCCTT
2513




GGAGTTGCACAGCTGGATTCTGTG






GFRA1.1
69
TCCGGGTTAAGAACAAGCCCCTGGGGCCAGCAGGGTCTGAGAATGAAATTCCCACTCATGT
2514




TTTGCCAC






GJA1.1
68
GTTCACTGGGGGTGTATGGGGTAGATGGGTGGAGAGGGAGGGGATAAGAGAGGTGCATGTT
2515




GGTATTT






GLYAT.1
68
TACCATTGCAAGGTGCCCAGATGCTGCAGATGCTGGAGAAATCCTTGAGGAAGAGCCTCCC
2516




AGCATCC






GMNN.1
67
GTTCGCTACGAGGATTGAGCGTCTCCACCCAGTAAGTGGGCAAGAGGCGGCAGGAAGTGGG
2517




TACGCA






GNAS.1
72
GAACGTGCCTGACTTTGACTTCCCTCCCGAATTCTATGAGCATGCCAAGGCTCTGTGGGAG
2518




GATGAAGGAGT






GPC3.1
68
TGATGCGCCTGGAAACAGTCAGCAGGCAACTCCGAAGGACAACGAGATAAGCACCTTTCAC
2519




AACCTCG






GPX1.2
67
GCTTATGACCGACCCCAAGCTCATCACCTGGTCTCCGGTGTGTCGCAACGATGTTGCCTGG
2520




AACTTT






GPX2.2
75
CACACAGATCTCCTACTCCATCCAGTCCTGAGGAGCCTTAGGATGCAGCATGCCTTCAGGA
2521




GACACTGCTGGACC






GPX3.1
69
GCTCTAGGTCCAATTGTTCTGCTCTAACTGATACCTCAACCTTGGGGCCAGCATCTCCCAC
2522




TGCCTCCA






GRB14.1
76
TCCCACTGAAGCCCTTTCAGTTGCGGTTGAAGAAGACTCGCTTGGAGGAAAAAAGGATGTT
2523




TACGCCTGGGCACT






GRB7.2
67
CCATCTGCATCCATCTTGTTTGGGCTCCCCACCCTTGAGAAGTGCCTCAGATAATACCCTG
2524




GTGGCC






GRO1.2
73
CGAAAAGATGCTGAACAGTGACAAATCCAACTGACCAGAAGGGAGGAGGAAGCTCACTGGT
2525




GGCTGTTCCTGA






GSTM1.1
86
AAGCTATGAGGAAAAGAAGTACACGATGGGGGACGCTCCTGATTATGACAGAAGCCAGTGG
2526




CTGAATGAAAAATTCAAGCTGGGCC






GSTM3.2
76
CAATGCCATCTTGCGCTACATCGCTCGCAAGCACAACATGTGTGGTGAGACTGAAGAAGAA
2527




AAGATTCGAGTGGAC






GSTp.3
76
GAGACCCTGCTGTCCCAGAACCAGGGAGGCAAGACCTTCATTGTGGGAGACCAGATCTCCT
2528




TCGCTGACTACAACC






GSTT1.3
66
CACCATCCCCACCCTGTCTTCCACAGCCGCCTGAAAGCCACAATGAGAATGATGCACACTG
2529




AGGCC






GZMA.1
79
GAAAGAGTTTCCCTATCCATGCTATGACCCAGCCACACGCGAAGGTGACCTTAAACTTTTA
2530




CAGCTGACGGAAAAAGCA






HADH.1
66
CCACCAGACAAGACCGATTCGCTGGCCTCCATTTCTTCAACCCAGTGCCTGTCATGAAACT
2531




TGTGG






HAVCR1.1
76
CCACCCAAGGTCACGACTACTCCAATTGTCACAACTGTTCCAACCGTCACGACTGTTCGAA
2532




CGAGCACCACTGTTC






HADC1.1
74
CAAGTACCACAGCGATGACTACATTAAATTCTTGCGCTCCATCCGTCCAGATAACATGTCG
2533




GAGTACAGCAAGC






Hepsin.1
84
AGGCTGCTGGAGGTCATCTCCGTGTGTGATTGCCCCAGAGGCCGTTTCTTGGCCGCCATCT
2534




GCCAAGACTGTGGCCGCAGGAAG






HER2.3
70
CGGTGTGAGAAGTGCAGCAAGCCCTGTGCCCGAGTGTGCTATGGTCTGGGCATGGAGCACT
2535




TGCGAGAGG






HGD.1
76
CTCAGGTCTGCCCCTACAATCTCTATGCTGAGCAGCTCTCAGGATCGGCTTTCACTTGTCC
2536




ACGGAGCACCAATAA






HGF.4
65
CCGAAATCCAGATGATGATGCTCATGGACCCTGGTGCTACACGGGAAATCCACTCATTCCT
2537




TGGG






HGFAC.1
72
CAGGACACAAGTGCCAGATTGCGGGCTGGGGCCACTTGGATGAGAACGTGAGCGGCTACTC
2538




CAGCTCCCTGC






HIF1A.3
82
TGAACATAAAGTCTGCAACATGGAAGGTATTGCACTGCACAGGCCACATTCACGTATATGA
2539




TACCAACAGTAACCAACCTCA






HIF1AN.1
66
TGTTGGCCAGGTCTCACTGCAGCCTGCCCGAGGCTAACTGGCTAGAGCCTCCAGGCCCTAT
2540




GATGC






HIST1H1D.1
67
AAAAAGGCGAAGAAGGCAGGCGCAACTGCTGGGAAACGCAAAGCATCCGGACCCCCAGTAT
2541




CTGAGC






HLA-B.1
78
CTTGTGAGGGACTGAGATGCAGGATTTCTTCACGCCTCCCCTTTGTGACTTCAAGAGCCTC
2542




TGGCATCTCTTTCTGCA






HLA-DPA1.1
78
CGCCCTGAAGACAGAATGTTCCATATCAGAGCTGTGATCTTGAGAGCCCTCTCCTTGGCTT
2543




TCCTGCTGAGTCTCCGA






HLA-DPB1.1
73
TCCATGATGGTTCTGCAGGTTTCTGCGGCCCCCCGGACAGTGGCTCTGACGGCGTTACTGA
2544




TGGTGCTGCTCA






HLA-DQB1.1
67
GGTCTGCTCGGTGACAGATTTCTATCCAGGCCAGATCAAAGTCCGGTGGTTTCGGAATGAT
2545




CAGGAG






HLADQA1.2
76
CATCTTTCCTCCTGTGGTCAACATCACATGGCTGAGCAATGGGCAGTCAGTCACAGAAGGT
2546




GTTTCTGAGACCAGC






HMGB1.1
71
TGGCCTGTCCATTGGTGATGTTGCGAAGAAACTGGGAGAGATGTGGAATAACACTGCTGCA
2547




GATGACAAGC






HNRPAB.1
84
AGCAGGAGCGACCAACTGATCGCACACATGCTTTGTTTGGATATGGAGTGAACACAATTAT
2548




GTACCAAATTTAACTTGGCAAAC






HPCAL1.1
70
CAGGCAGATGGACACCAACAATGACGGCAAACTGTCCTTGGAAGAATTCATCAGAGGTGCC
2549




AAGAGCGAC






HPD.1
78
AGCTGAAGACGGCCAAGATCAAGGTGAAGGAGAACATTGATGCCCTGGAGGAGCTGAAAAT
2550




CCTGGTGGACTACGACG






HSD11B2.1
69
CCAACCTGCCTCAAGAGCTGCTGCAGGCCTACGGCAAGGACTACATCGAGCACTTGCATGG
2551




GCAGTTCC






HSP90AB1.1
66
GCATTGTGACCAGCACCTACGGCTGGACAGCCAATATGGAGCGGATCATGAAAGCCCAGGC
2552




ACTTC






HSPA1A.1
70
CTGCTGCGACAGTCCACTACCTTTTTCGAGAGTGACTCCCGTTGTCCCAAGGCTTCCCAGA
2553




GCGAACCTG






HSPA8.1
73
CCTCCCTCTGGTGGTGCTTCCTCAGGGCCCACCATTGAAGAGGTTGATTAAGCCAACCAAG
2554




TGTAGATGTAGC






HSPB1.1
84
CCGACTGGAGGAGCATAAAAGCGCAGCCGAGCCCAGCGCCCCGCACTTTTCTGAGCAGACG
2555




TCCAGAGCAGAGTCAGCCAGCAT






HSPG2.1
66
GAGTACGTGTGCCGAGTGTTGGGCAGCTCCGTGCCTCTAGAGGCCTCTGTCCTGGTCACCA
2556




TTGAG






HTATIP.1
66
TCGAATTGTTTGGGCACTGATGAGGACTCCCAGGACAGCTCTGATGGAATACCGTCAGCAC
2557




CACGC






HYAL1.1
78
TGGCTGTGGAGTTCAAATGTCGATGCTACCCTGGCTGGCAGGCACCGTGGTGTGAGCGGAA
2558




GAGCATGTGGTGATTGG






HYAL2.1
67
CAACCATGCACTCCCAGTCTACGTCTTCACACGACCCACCTACAGCCGCAGGCTCACGGGG
2559




CTTAGT






HYAL3.1
67
TATGTCCGCCTCACACACCGGAGATCTGGGAGGTTCCTGTCCCAGGATGACCTTGTGCAGT
2560




CCATTG






ICAM1.1
68
GCAGACAGTGACCATCTACAGCTTTCCGGCGCCCAACGTGATTCTGACGAAGCCAGAGGTC
2561




TCAGAAG






ICAM2.1
62
GGTCATCCTGACACTGCAACCCACTTTGGTGGCTGTGGGCAAGTCCTTCACCATTGAGTGC
2562




A






ICAM3.1
67
GCCTTCAATCTCAGCAACGTGACTGGCAACAGTCGGATCCTCTGCTCAGTGTACTGCAATG
2563




GCTCTC






ID1.1
70
AGAACCGCAAGGTGAGCAAGGTGGAGATTCTCCAGCACGTCATCGACTACATCAGGGACCT
2564




TCAGTTGGA






ID2.4
76
AACGACTGCTACTCCAAGCTCAAGGAGCTGGTGCCCAGCATCCCCCAGAACAAGAAGGTGA
2565




GCAAGATGGAAATCC






ID3.1
80
CTTCACCAAATCCCTTCCTGGAGACTAAACCTGGTGCTCAGGAGCGAAGGACTGTGAACTT
2566




GTGGCCTGAAGAGCCAGAG






IFI27.1
71
CTCTCCGGATTGACCAAGTTCATCCTGGGCTCCATTGGGTCTGCCATTGCGGCTGTCATTG
2567




CGAGGTTCTA






IGF1.2
76
TCCGGAGCTGTGATCTAAGGAGGCTGGAGATGTATTGCGCACCCCTCAAGCCTGCCAAGTC
2568




AGCTCGCTCTGTCCG






IGF1R.3
83
GCATGGTAGCCGAAGATTTCACAGTCAAAATCGGAGATTTTGGTATGACGCGAGATATCTA
2569




TGAGACAGACTATTACCGGAAA






IGF2.2
72
CCGTGCTTCCGGACAACTTCCCCAGATACCCCGTGGGCAAGTTCTTCCAATATGACACCTG
2570




GAAGCAGTCCA






IGFBP2.1
73
GTGGACAGCACCATGAACATGTTGGGCGGGGGAGGCAGTGCTGGCCGGAAGCCCCTCAAGT
2571




CGGGTATGAAGG






IGFBP3.1
66
ACATCCCAACGCATGCTCCTGGAGCTCACAGCCTTCTGTGGTGTCATTTCTGAAACAAGGG
2572




CGTGG






IGFBP5.1
69
TGGACAAGTACGGGATGAAGCTGCCAGGCATGGAGTACGTTGACGGGGACTTTCAGTGCCA
2573




CACCTTCG






IGFBP6.1
77
TGAACCGCAGAGACCAACAGAGGAATCCAGGCACCTCTACCACGCCCTCCCAGCCCAATTC
2574




TGCGGGTGTCCAAGAC






IL-7.1
71
GCGGTGATTCGGAAATTCGCGAATTCCTCTGGTCCTCATCCAGGTGCGCGGGAAGCAGGTG
2575




CCCAGGAGAG






IL-8.1
70
AAGGAACCATCTCACTGTGTGTAAACATGACTTCCAAGCTGGCCGTGGCTCTCTTGGCAGC
2576




CTTCCTGAT






IL10.3
79
GGCGCTGTCATCGATTTCTTCCCTGTGAAAACAAGAGCAAGGCCGTGGAGCAGGTGAAGAA
2577




TGCCTTTAATAAGCTCCA






IL11.2
66
TGGAAGGTTCCACAAGTCACCCTGTGATCAACAGTACCCGTATGGGACAAAGCTGCAAGGT
2578




CAAGA






IL15.1
79
GGCTGGGTACCAATGCTGCAGGTCAACAGCTATGCTGGTAGGCTCCTGCCAGTGTGGAACC
2579




ACTGACTACTGGCTCTCA






IL1B.1
67
AGCTGAGGAAGATGCTGGTTCCCTGCCCACAGACCTTCCAGGAGAATGACCTGAGCACCTT
2580




CTTTCC






IL6.3
72
CCTGAACCTTCCAAAGATGGCTGAAAAAGATGGATGCTTCCAATCTGGATTCAATGAGGAG
2581




ACTTGCCTGGT






IL6ST.3
74
GGCCTAATGTTCCAGATCCTTCAAAGAGTCATATTGCCCAGTGGTCACCTCACACTCCTCC
2582




AAGGCACAATTTT






ILT-2.2
63
AGCCATCACTCTCAGTGCAGCCAGGTCCTATCGTGGCCCCTGAGGAGACCCTGACTCTGCA
2583




GT






IMP3.1
72
GTGGACTCGTCCAAGATCAAGCGGCACGTGCTAGAGTACAATGAGGAGCGCGATGACTTCG
2584




ATCTGGAAGCC






INDO.1
66
CGCCTTGCACGTCTAGTTCTGGGATGCATCACCATGGCATATGTGTGGGGCAAAGGTCATG
2585




GAGAT






INHBA.1
72
GTGCCCGAGCCATATAGCAGGCACGTCCGGGTCCTCACTGTCCTTCCACTCAACAGTCATC
2586




AACCACTACCG






INHBB.1
72
AGCCTCCAGGATACCAGCAAATGGATGCGGTGACAAATGGCAGCTTAGCTACAAATGCCTG
2587




TCAGTCGGAGA






INSR.1
67
CAGTCTCCGAGAGCGGATTGAGTTCCTCAATGAGGCCTCGGTCATGAAGGGCTTCACCTGC
2588




CATCAC






IQGAP2.1
66
AGAGACACCAGCAACTGCGCAACAGGAGGTAGACCATGCCACGGACATGGTGAGCCGTGCA
2589




ATGAT






ITGA3.2
77
GTGTCAGACTGAAGCCCCATCCAGCCCGTTCCGCAGGGACTAGAGGCTTTCGGCTTTTTGG
2590




GACAGCAAC






ITGA3.2
77
CCATGATCCTCACTCTGCTGGTGGACTATACACTCCAGACCTCGCTTAGCATGGTAAATCA
2591




CCGGCTACAAAGCTTC






ITGA4.2
66
CAACGCTTCAGTGATCAATCCCGGGGCGATTTACAGATGCAGGATCGGAAAGAATCCCGGC
2592




CAGAC






ITGA5.1
75
AGGCCAGCCCTACATTATCAGAGCAAGAGCCGGATAGAGGACAAGGCTCAGATCTTGCTGG
2593




ACTGTGGAGAAGAC






ITGA6.2
69
CAGTGACAAACAGCCCTTCCAACCCAAGGAATCCCACAAAAGATGGCGATGACGCCCATGA
2594




GGCTAAAC






ITGA7.1
79
GATATGATTGGTCGCTGCTTTGTGCTCAGCCAGGACCTGGCCATCCGGGATGAGTTGGATG
2595




GTGGGGAATGGAAGTTCT






ITGAV.1
79
ACTCGGACTGCACAAGCTATTTTTGATGACAGCTATTTGGGTTATTCTGTGGCTGTCGGAG
2596




ATTTCAATGGTGATGGCA






ITGB1.1
74
TCAGAATTGGATTTGGCTCATTTGTGGAAAAGACTGTGATGCCTTACATTAGCACAACACC
2597




AGCTAAGCTCAGG






ITGB3.1
78
ACCGGGGAGCCCTACATGACGAAAATACCTGCAACCGTTACTGCCGTGACGAGATTGAGTC
2598




AGTGAAAGAGCTTAAGG






ITGB4.2
66
CAAGGTGCCCTCAGTGGAGCTCACCAACCTGTACCCGTATTGCGACTATGAGATGAAGGTG
2599




TGCGC






ITGB5.1
71
TCGTGAAAGATGACCAGGAGGCTGTGCTATGTTTCTACAAAACCGCCAAGGACTGCGTCAT
2600




GATGTTCACC






JAG1.1
69
TGGCTTACACTGGCAATGGTAGTTTCTGTGGTTGGCTGGGAAATCGAGTGCCGCATCTCAC
2601




AGCTATGC






K-ras.10
71
GTCAAAATGGGGAGGGACTAGGGCAGTTTGGATAGCTCAACAAGATACAATCTCACTCTGT
2602




GGTGGTCCTG






KCNJ15.1
67
GGACGTTCTACCTGCCTTGAAGAAGACACCTGACCTGCGGAGTGAGTGACCAGTGTTTCCA
2603




GAGCCT






KDR.6
68
GAGGACGAAGGCCTCTACACCTGCCAGGCATGCAGTGTTCTTGGCTGTGCAAAAGTGGAGG
2604




CATTTTT






Ki-67.2
80
CGGACTTTGGGTGCGACTTGACGAGCGGTGGTTCGACAAGTGGCCTTGCGGGCCGGATCGT
2605




CCCAGTGGAAGAGTTGTAA






KIAA1303 raptor.1
66
ACTACAGCGGGAGCAGGAGCTGGAGGTAGCTGCAATCAACCCAAATCACCCTCTTGCTCAG
2606




ATGCC






KIF1A.1
66
CTCCTACTGGTCGCACACCTCACCTGAGGACATCAACTACGCGTCGCAGAAGCAGGTGTAC
2607




CGGGA






Kiting.4
79
GTCCCCGGGATGGATGTTTTGCCAAGTCATTGTTGGATAAGCGAGATGGTAGTACAATTGT
2608




CAGACAGCTTGACTGATC






KL.1
72
GAGGTCCTGTCTAAACCCTGTGTCCCTGAGGGATCTGTCTCACTGGCATCTTGTTGAGGGC
2609




CTTGCACATAG






KLK3.1
66
CCAAGCTTACCACCTGCACCCGGAGAGCTGTGTCACCATGTGGGTCCCGGTTGTCTTCCTC
2610




ACCCT






KLRK1.2
70
TGAGAGCCAGGCTTCTTGTATGTCTCAAAATGCCAGCCTTCTGAAAGTATACAGCAAAGAG
2611




GACCAGGAT






KRT19.3
77
TGAGCGGCAGAATCAGGAGTACCAGCGGCTCATGGACATCAAGTCGCGGCTGGAGCAGGAG
2612




ATTGCCACCTACCGCA






KRT5.3
69
TCAGTGGAGAAGGAGTTGGACCAGTCAACATCTCTGTTGTCACAAGCAGTGTTTCCTCTGG
2613




ATATGGCA






KRT7.1
71
TTCAGAGATGAACCGGGCCATCCAGAGGCTGCAGGCTGAGATCGACAACATCAAGAACCAG
2614




CGTGCCAAGT






L1CAM.1
66
CTTGCTGGCCAATGCCTACATCTACGTTGTCCAGCTGCCAGCCAAGATCCTGACTGCGGAC
2615




AATCA






LAMA3.1
73
CAGATGAGGCACATGGAGACCCAGGCCAAGGACCTGAGGAATCAGTTGCTCAACTACCGTT
2616




CTGCCATTTCAA






LAMA4.1
67
GATGCACTGCGGTTAGCAGCGCTCTCCATCGAGGAAGGCAAATCCGGGGTGCTGAGCGTAT
2617




CCTCTG






LAMB1.1
66
CAAGGAGACTGGGAGGTGTCTCAAGTGCCTGTACCACACGGAAGGGGAACACTGTCAGTTC
2618




TGCCG






LAMB3.1
67
ACTGACCAAGCCTGAGACCTACTGCACCCAGTATGGCGAGTGGCAGATGAAATGCTGCAAG
2619




TGTGAC






LAMC2.2
80
ACTCAAGCGGAAATTGAAGCAGATAGGTCTTATCAGCACAGTCTCCGCCTCCTGGATTCAG
2620




TGTCTCGGCTTCAGGGAGT






LAPTM5.1
66
TGCTGGACTTCTGCCTGAGCATCCTGACCCTCTGCAGCTCCTACATGGAAGTGCCCACCTA
2621




TCTCA






LDB1.2
67
AACACCCAGTTTGACGCAGCCAACGGCATTGACGACGAGGACAGCTTTAACAACTCCCCTG
2622




CACTGG






LDB2.1
66
ATCACGGTGGACTGCGACCAGTGTACCATGGTCACCCAGCACGGGAAGCCCATGTTTACCA
2623




AGGTA






LDHA.2
74
AGGCTACACATCCTGGGCTATTGGACTCTCTGTAGCAGATTTGGCAGAGAGTATAATGAAG
2624




AATCTTAGGCGGG






LGALS1.1
72
GGGTGGAGTCTTCTGACAGCTGGTGCGCCTGCCCGGGAACATCCTCCTGGACTCAATCATG
2625




GCTTGTGGTCT






LGALS3.1
69
AGCGGAAAATGGCAGACAATTTTTCGCTCCATGATGCGTTATCTGGGTCTGGAAACCCAAA
2626




CCCTCAAG






LGALS9.1
67
AGTACTTCCACCGCGTGCCCTTCCACCGTGTGGACACCATCTCCGTCAATGGCTCTGTGCA
2627




GCTGTC






LIMK1.1
67
GCTTCAGGTGTTGTGACTGCAGTGCCTCCCTGTCGCACCAGTACATATGAGAAGGATGGGC
2628




AGCTCTT






LMNB1.1
66
TGCAAACGCTGGTGTCACAGCCAGCCCCCCAACTGACCTCATCTGGAAGAACCAGAACTCG
2629




TGGGG






LMO2.1
74
GGCTGCCAGCAGAACATCGGGGACCGCTACTTCCTGAAGGCCATCGACCAGTACTGGCACG
2630




AGGACTGCCTGAG






LOX.1
66
CCAATGGGAGAACAACGGGCAGGTGTTCAGCTTGCTGAGCCTGGGCTCACAGTACCAGCCT
2631




CAGCG






LRP2.1
66
GGCTGTAGACTGGGTTTCCAGAAAGCTCTACTGGTTGGATGCCCGCCTGGATGGCCTCTTT
2632




GTCTC






LRRC2.1
71
CCAGTGTCCCAATCTGTGTCCTGCGGATGTCGAATTTGCAGTGGTTGGATATCAGCAGCAA
2633




TAACCTGACC






LTF.1
68
AACGGAAGCCTGTGACTGAGGCTAGAAGCTGCCATCTTGCCATGGCCCCGAATCATGCCGT
2634




GGTGTCT






LYZ.1
80
TTGCTGCAAGATAACATCGCTGATGCTGTAGCTTGTGCAAAGAGGGTTGTCCGTGATCCAC
2635




AAGGCATTAGAGCATGGGT






MADH2.1
70
GCTGCCTTTGGTAAGAACATGTCGTCCATCTTGCCATTCACGCCGCCAGTTGTGAAGAGAC
2636




TGCTGGGAT






MADH4.1
76
GGACATTACTGGCCTGTTCACAATGAGCTTGCATTCCAGCCTCCCATTTCCAATCATCCTG
2637




CTCCTGAGTATTGGT






MAL.1
66
GTTGGGAGCTTGCTGTGTCTAACCTCCAACTGCTGTGCTGTCTGCTAGGGTCACCTCCTGT
2638




TTGTG






MAL2.1
67
CCTTCGTCTGCCTGGAGATTCTGTTCGGGGGTCTTGTCTGGATTTTGGTTGCCTCCTCCAA
2639




TGTTCC






MAP2K1.1
76
GCCTTTCTTACCCAGAAGCAGAAGGTGGGAGAACTGAAGGATGACGACTTTGAGAAGATCA
2640




GTGAGCTGGGGGCTG






MAP2K3.1
67
GCCCTCCAATGTCCTTATCAACAAGGAGGGCCATGTGAAGATGTGTGACTTTGGCATCAGT
2641




GGCTAC






MAP4.1
72
GCCGGTCAGGCACACAAGGGGCCCTTGGAGCGTGGACTGGTTGGTTTTGCCATTTTGTTGT
2642




GTGTATGCTGC






MARCKS.1
67
CCCCTCTTGGATCTGTTGAGTTTCTTTGTTGAAGAAGCCAGCATGGGTGCCCAGTTCTCCA
2643




AGACCG






Maspin.2
77
CAGATGGCCACTTTGAGAACATTTTAGCTGACAACAGTGTGAACGACCAGACCAAAATCCT
2644




TGTGGTTAATGCTGCC






MCAM.1
66
CGAGTTCCAGTGGCTGAGAGAAGAGACAGGCCAGGTGCTGGAAAGGGGGCCTGTGCTTCAG
2645




TTGCA






MCM2.2
75
GACTTTTGCCCGCTACCTTTCATTCCGGCGTGACAACAATGAGCTGTTGCTCTTCATACTG
2646




AAGCAGTTAGTGGC






MCM3.3
75
GGAGAACAATCCCCTTGAGACAGAATATGGCCTTTCTGTCTACAAGGATCACCAGACCATC
2647




ACCATCCAGGAGAT






MCM6.3
82
TGATGGTCCTATGTGTCACATTCATCACAGGTTTCATACCAACACAGGCTTCAGCACTTCC
2648




TTTGGTGTGTTTCCTGTCCCA






MCP1.1
71
CGCTCAGCCAGATGCAATCAATGCCCCAGTCACCTGCTGTTATAACTTCACCAATAGGAAG
2649




ATCTCAGTGC






MDH2.1
63
CCAACACCTTTGTTGCAGAGCTGAAGGGTTTGGATCCAGCTCGAGTCAACGTCCCTGTCAT
2650




TG






MDK.1
66
GGAGCCGACTGCAAGTACAAGTTTGAGAACTGGGGTGCGTGTGATGGGGGCACAGGCACCA
2651




AAGTC






MDM2.1
68
CTACAGGGACGCCATCGAATCCGGATCTTGATGCTGGTGTAAGTGAACATTCAGGTGATTG
2652




GTTGGAT






MGMT.1
69
GTGAAATGAAACGCACCACACTGGACAGCCCTTTGGGGAAGCTGGAGCTGTCTGGTTGTGA
2653




GCAGGGTC






mGST1.2
79
ACGGATCTACCACACCATTGCATATTTGACACCCCTTCCCCAGCCAAATAGAGCTTTGAGT
2654




TTTTTTGTTGGATATGGA






MICA.1
68
ATGGTGAATGTCACCCGCAGCGAGGCCTCAGAGGGCAACATTACCGTGACATGCAGGGCTT
2655




CTGGCTT






MIF.2
66
CCGGACAGGGTCTACATCAACTATTACGACATGAACGCGGCCAATGTGGGCTGGAACAACT
2656




CCACC






MMP1.1
72
GGGAGATCATCGGGACAACTCTCCTTTTGATGGACCTGGAGGAAATCTTGCTCATGCTTTT
2657




CAACCAGGCCC






MMP10.1
66
TGGAGGTGACAGGGAAGCTAGACACTGACACTCTGGAGGTGATGCGCAAGCCCAGGTGTGG
2658




AGTTC






MMP14.1
66
GCTGTGGAGCTCTCAGGAAGGGCCCTGAGGAAGGCACACTTGCTCCTGTTGGTCCCTGTCC
2659




TTGCT






MMP2.2
86
CCATGATGGAGAGGCAGACATCATGATCAACTTTGGCCGCTGGGAGCATGGCGATGGATAC
2660




CCCTTTGACGGTAAGGACGGACTCC






MMP7.1
79
GGATGGTAGCAGTCTAGGGATTAACTTCCTGTATGCTGCAACTCATGAACTTGGCCATTCT
2661




TTGGGTATGGGACATTCC






MMP9.1
67
GAGAACCAATCTCACCGACAGGCAGCTGGCAGAGGAATACCTGTACCGCTATGGTTACACT
2662




CGGGTG






MRP1.1
79
TCATGGTGCCCGTCAATGCTGTGATGGCGATGAAGACCAAGACGTATCAGGTGGCCCACAT
2663




GAAGAGCAAAGACAATCG






MRP2.3
65
AGGGGATGACTTGGACACATCTGCCATTCGACATGACTGCAATTTTGACAAAGCCATGCAG
2664




TTTT






MRP3.1
91
TCATCCTGGCGATCTACTTCCTCTGGCAGAACCTAGGTCCCTCTGTCCTGGCTGGAGTCGC
2665




TTTCATGGTCTTGCTGATTCCACTCAACGG






MRP4.2
66
AGCGCCTGGAATCTACAACTCGGAGTCCAGTGTTTTCCCACTTGTCATCTTCTCTCCAGGG
2666




GCTCT






MSH2.3
73
GATGCAGAATTGAGGCAGACTTTACAAGAAGATTTACTTCGTCGATTCCCAGATCTTAACC
2667




GACTTGCCAAGA






MSH3.2
82
TGATTACCATCATGGCTCAGATTGGCTCCTATGTTCCTGCAGAAGAAGCGACAATTGGGAT
2668




TGTGGATGGCATTTTCACAAG






MSH6.3
68
TCTATTGGGGGATTGGTAGGAACCGTTACCAGCTGGAAATTCCTGAGAATTTCACCACTCG
2669




CAATTTG






MT1B.1
66
GTGGGCTGTGCCAAGTGTGCCCAGGGCTGTGTCTGCAAAGGCTCATCAGAGAAGTGCCGCT
2670




GCTGT






MT1G.1
74
GTGCACCCACTGCCTCTTCCCTTCTCGCTTGGGAACTCTAGTCTCGCCTCGGGTTGCAATG
2671




GACCCCAACTGCT






MT1H.1
74
CGTGTTCCACTGCCTCTTCTCTTCTCGCTTGGGAACTCCAGTCTCACCTCGGCTTGCAATG
2672




GACCCCAACTGCT






MT1X.1
80
CTCCTGCAAATGCAAAGAGTGCAAATGCACCTCCTGCAAGAAGAGCTGCTGCTCCTGCTGC
2673




CCTGTGGGCTGTGCCAAGT






MUC1.2
71
GGCCAGGATCTGTGGTGGTACAATTGACTCTGGCCTTCCGAGAAGGTACCATCAATGTCCA
2674




CGACGTGGAG






MVP.1
75
ACGAGAACGAGGGCATCTATGTGCAGGATGTCAAGACCGGAAAGGTGCGCGCTGTGATTGG
2675




AAGCACCTACATGC






MX1.1
78
GAAGGAATGGGAATCAGTCATGAGCTAATCACCCTGGAGATCAGCTCCCGAGATGTCCCGG
2676




ATCTGACTCTAATAGAC






MYBL2.1
74
GCCGAGATCGCCAAGATGTTGCCAGGGAGGACAGACAATGCTGTGAAGAATCACTGGAACT
2677




CTACCATCAAAAG






MYH11.1
85
CGGTACTTCTCAGGGCTAATATATACGTACTCTGGCCTCTTCTGCGTGGTGGTCAACCCCT
2678




ATAAACACCTGCCCATCTACTCGG






MYRIP.2
69
CCTTCACCTTCCTCGTCAACACCAAGCGCCAGTGTGGAGATTGCAAATTCAATGTCTGCAA
2679




GAGCTGCT






NBN.1
76
GCATCTACTTGCCAGAACCAAATTAACTTACTTCCAAGTTCTGGCTGCTTGCAGGTGGAAC
2680




TCCAGCTGCAAGGGA






NCF1.1
66
GACACCTTCATCCGTCACATCGCCCTGCTGGGCTTTGAGAAGCGCTTCGTACCCAGCCAGC
2681




ACTAT






NFAT5.1
70
CTGAACCCCTCTCCTGGTCACCGAGAATCAGTCCCCGTGGAGTTCCCCCTCCACCTCGCCA
2682




TCGTTTCCT






NFATC2.1
72
CAGTCAAGGTCAGAGGCTGAGCCCGGGTTCCTACCCCACAGTCATTCAGCAGCAGAATGCC
2683




ACGAGCCAAAG






NFKBp50.3
73
CAGACCAAGGAGATGGACCTCAGCGTGGTGCGGCTCATGTTTACAGCTTTTCTTCCGGATA
2684




GCACTGGCAGCT






NFKBp65.3
68
CTGCCGGGATGGCTTCTATGAGGCTGAGCTCTGCCCGGACCGCTGCATCCACAGTTTCCAG
2685




AACCTGG






NFX1.1
74
CCCTGCCATACCAGCTCACCCTGCCCTGTGACTGCTTGTAAAGCTAAGGTAGAGCTACAGT
2686




GTGAATGTGGACG






NME2.1
66
ATGCTTGGGGAGACCAATCCAGCAGATTCAAAGCCAGGCACCATTCGTGGGGACTTCTGCA
2687




TTCAG






NNMT.1
67
CCTAGGGCAGGGATGGAGAGAGAGTCTGGGCATGAGGAGAGGGTCTCGGGATGTTTGGCTG
2688




GACTAG






NOL3.1
72
CAGCCTTGGGAAGTGAGACTAGAAGAGGGGAGCAGAAAGGGACCTTGAGTAGACAAAGGCC
2689




ACACACATCAT






NOS2A.3
67
GGGTCCATTATGACTCCCAAAAGTTTGACCAGAGGACCCAGGGACAAGCCTACCCCTCCAG
2690




ATGAGC






NOS3.1
68
ATCTCCGCCTCGCTCATGGGCACGGTGATGGCGAAGCGAGTGAAGGCGACAATCCTGTATG
2691




CCTCCGA






NOTCH1.1
76
CGGGTCCACCAGTTTGAATGGTCAATGCGAGTGGCTGTCCCGGCTGCAGAGCGGCATGGTG
2692




CCGAACCAATACAAC






NOTCH2.1
75
CACTTCCCTGCTGGGATTATATCAACAACCAGTGTGATGAGCTGTGCAACACGGTCGAGTG
2693




CCTGTTTGACAACT






NOTCH3.1
67
TGTGGACGAGTGTGCTGGCCCCGCACCCTGTGGCCCTCATGGTATCTGCACCAACCTGGCA
2694




GGGAGT






NPD009 (ABAT offici
73
GGCTGTGGCTGAGGCTGTAGCATCTCTGCTGGAGGTGAGACACTCTGGGAACTGATTTGAC
2695




CTCGAATGCTCC






NPM1.2
84
AATGTTGTCCAGGTTCTATTGCCAAGAATGTGTTGTCCAAAATGCCTGTTTAGTTTTTAAA
2696




GATGGAACTCCACCCTTTGCTTG






NPPB.1
66
GACACCTGCTTCTGATTCCACAAGGGGCTTTTTCCTCAACCCTGTGGCCGCTTTGAAGTGA
2697




CTCA






NPR1.1
66
ACATCTGCAGCTCCCCTGATGCCTTCAGAACCCTCATGCTCCTGGCCCTGGAAGCTGGCTT
2698




GTGTG






NPY1R.1
70
GGATCTTCCCCACTCTGCTCCCTTCCATTCCCACCCTTCCTTCTTTAATAAGCAGGAGCGA
2699




AAAAGACAA






NRG1.3
83
CGAGACTCTCCTCATAGTGAAAGGTATGTGTCAGCCATGACCACCCCGGCTCGTATGTCAC
2700




CTGTAGATTTCCACACGCCAAG






NUDT1.1
77
ACTGGTTTCCACTCCTGCTTCAGAAGAAGAAATTCCACGGGTACTTCAAGTTCCAGGGTCA
2701




GGACACCATCCTGGAC






OGG1.1
71
ACCAAGGTGGCTGACTGCATCTGCCTGATGGCCCTAGACAAGCCCCAGGCTGTGCCCGTGG
2702




ATGTCCATAT






OPN, osteopontin.3
80
CAACCGAAGTTTTCACTCCAGTTGTCCCCACAGTAGACACATATGATGGCCGAGGTGATAG
2703




TGTGGTTTATGGACTGAGG






p21.3
65
TGGAGACTCTCAGGGTCGAAAACGGCGGCAGACCAGCATGACAGATTTCTACCACTCCAAA
2704




CGCC






p27.3
66
CGGTGGACCACGAAGAGTTAACCCGGGACTTGGAGAAGCACTGCAGAGACATGGAAGAGGC
2705




GAGCC






P53.2
68
CTTTGAACCCTTGCTTGCAATAGGTGTGCGTCAGAAGCACCCAGGACTTCCATTTGCTTTG
2706




TCCCGGG






PAH.1
80
TGGCTGATTCCATTAACAGTGAAATTGGAATCCTTTGCAGTGCCCTCCAGAAAATAAAGTA
2707




AAGCCATGGACAGAATGTG






PAI1.3
81
CCGCAACGTGGTTTTCTCACCCTATGGGGTGGCCTCGGTGTTGGCCATGCTCCAGCTGACA
2708




ACAGGAGGAGAAACCCAGCA






Pak1.2
70
GAGCTGTGGGTTGTTATGGAATACTTGGCTGGAGGCTCCTTGACAGATGTGGTGACAGAAA
2709




CTTGCATGG






PARD6A.1
66
GATCCTCGAGGTCAATGGCATTGAAGTAGCCGGGAAGACCTTGGACCAAGTGACGGACATG
2710




ATGGT






PBOV1.1
72
GCAAAGCCTTTCCAGAAAAATAAAAATGGTTGAAAAGGCAATTCTGCTACCAATGACTGTT
2711




TAAGCCCAGCC






PCCA.1
68
GGTGAAATCTGTGCACTGTCAAGCTGGAGACACAGTTGGAGAAGGGGATCTGCTCGTGGAG
2712




CTGGAAT






PCK1.1
66
CTTAGCATGGCCCAGCACCCAGCAGCCAAACTGCCCAAGATCTTCCATGTCAACTGGTTCC
2713




GGAAG






PCNA.2
71
GAAGGTGTTGGAGGCACTCAAGGACCTCATCAACGAGGCCTGCTGGGATATTAGCTCCAGC
2714




GGTGTAAACC






PCSK6.1
67
ACCTTGAGTAGCAGAGGCCCTCACACCTTCCTCAGAATGGACCCCCAGGTGAAATGGCTCC
2715




AGCAAC






PDCD1.1
73
GACAACGCCACCTTCACCTGCAGCTTCTCCAACACATCGGAGAGCTTCGTGCTAAACTGGT
2716




ACCGCATGAGCC






PDE4DIP.1
73
GCTTCGTCTTGCTGTGAGAGAGCGAGATCATGACTTAGAGAGACTGCGCGATGTCCTCTCC
2717




TCCAATGAAGCT






PDGFA.3
67
TTGTTGGTGTGCCCTGGTGCCGTGGTGGCGGTCACTCCCTCTGCTGCCAGTGTTTGGACAG
2718




AACCCA






PDGFB.3
62
ACTGAAGGAGACCCTTGGAGCCTAGGGGCATCGGCAGGAGAGTGTGTGGGCAGGGTTATTT
2719




A






PDGFC.3
79
AGTTACTAAAAAATACCACGAGGTCCTTCAGTTGAGACCAAAGACCGGTGTCAGGGGATTG
2720




CACAAATCACTCACCGAC






PDGFD.2
74
TATCGAGGCAGGTCATACCATGACCGGAAGTCAAAAGTTGACCTGGATAGGCTCAATGATG
2721




ATGCCAAGCGTTA






PDGFRa.2
72
GGGAGTTTCCAAGAGATGGACTAGTGCTTGGTCGGGTCTTGGGGTCTGGAGCGTTTGGGAA
2722




GGTGGTTGAAG






PDGFRb.3
66
CCAGCTCTCCTTCCAGCTACAGATCAATGTCCCTGTCCGAGTGCTGGAGCTAAGTGAGAGC
2723




CACCC






PDZK1.1
75
AATGACCTCCACCTTCAACCCCCGAGAATGTAAACTGTCCAAGCAAGAAGGGCAAAACTAT
2724




GGCTTCTTCCTGCG






PDZK3.1
68
GAGCTGAGAGCCTTGAGCATGCCTGACCTTGACAAGCTCTGCAGCGAGGATTACTCAGCAG
2725




GGCCGAG






PF4.1
73
GCAGTGCCTGTGTGTGAAGACCACCTCCCAGGTCCGTCCCAGGCACATCACCAGCCTGGAG
2726




GTGATCAAGGCC






PFKP.1
68
AGCTGATGCCGCATACATTTTCGAAGAGCCCTTCGACATCAGGGATCTGCAGTCCAACGTG
2727




GAGCACC






PFN2.1
82
TCTATACGTCGATGGTGACTGCACAATGGACATCCGGACAAAGAGTCAAGGTGGGGAGCCA
2728




ACATACAATGTGGCTGTCGGC






PGF.1
71
GTGGTTTTCCCTCGGAGCCCCCTGGCTCGGGACGTCTGAGAAGATGCCGGTCATGAGGCTG
2729




TTCCCTTGCT






PI3K.2
98
TGCTACCTGGACAGCCCGTTGGTGCGCTTCCTCCTGAAACGAGCTGTGTCTGACTTGAGAG
2730




TGACTCACTACTTCTTCTGGTTACTGAAGGACGGCCT






PI3KC2A.1
83
ATACCAATCACCGCACAAACCCAGGCTATTTGTTAAGTCCAGTCACAGCACAAAGAAACAT
2731




ATGCGGAGAAAATGCTAGTGTG






PIK3CA.1
67
GTGATTGAAGAGCATGCCAATTGGTCTGTATCCCGAGAAGCAGGATTTAGCTATTCCCACG
2732




CAGGAC






PLA2G4C.1
68
CCCTTTCCCCAAGTAGAAGAGGCTGAGCTGGATTTGTGGTCCAAGGCCCCCGCCAGCTGCT
2733




ACATCCT






PLAT.1
67
GATTTGCTGGGAAGTGCTGTGAAATAGATACCAGGGCCACGTGCTACGAGGACCAGGGCAT
2734




CAGCTA






PLAUR.3
76
CCCATGGATGCTCCTCTGAAGAGACTTTCCTCATTGACTGCCGAGGCCCCATGAATCAATG
2735




TCTGGTAGCCACCGG






PLG.1
77
GGCAAAATTTCCAAGACCATGTCTGGACTGGAATGCCAGGCCTGGGACTCTCAGAGCCCAC
2736




ACGCTCATGGATACAT






PLN.1
84
TGATGCTTCTCTGAAGTTCTGCTACAACCTCTAGATCTGCAGCTTGCCACATCAGCTTAAA
2737




ATCTGTCATCCCATGCAGACAGG






PLOD2.1
84
CAGGGAGGTGGTTGCAAATTTCTAAGGTACAATTGCTCTATTGAGTCACCACGAAAAGGCT
2738




GGAGCTTCATGCATCCTGGGAGA






PLP1.1
66
AGAACAGACTGGCCTGAGGAGCAGCAGTTGCTGGTGGCTAATGGTGTAACCTGAGATGGCC
2739




CTCTG






PMP22.1
66
CCATCTACACGGTGAGGCACCCGGAGTGGCATCTCAACTCGGATTACTCCTACGGTTTCGC
2740




CTACA






PPAP2B.1
77
ACAAGCACCATCCCAGTGATGTTCTGGCAGGATTTGCTCAAGGAGCCCTGGTGGCCTGCTG
2741




CATAGTTTTCTTCGTG






PPARG.3
72
TGACTTTATGGAGCCCAAGTTTGAGTTTGCTGTGAAGTTCAATGCACTGGAATTAGATGAC
2742




AGCGACTTGGC






PPP1R3C.1
82
TTCCTTCCCTCTCAATCCACTAGCTTTCATGTTGGGCAAGGAAAAGTTGAGGAAGGATGGC
2743




TGATGGTGATGGAAAGCTGTG






PPP2CA.1
78
GCAATCATGGAACTTGACGATACTCTAAAATACTCTTTCTTGCAGTTTGACCCAGCACCTC
2744




GTAGAGGCGAGCCACAT






PRCC.1
67
GAGGAAGAGGAGGCGGTGGCTCCTACATCTGGGCCCGCTTTAGGGGGCTTGTTCGCTTCTC
2745




TCCCTG






PRKCA.1
70
CAAGCAATGCGTCATCAATGTCCCCAGCCTCTGCGGAATGGATCACACTGAGAAGAGGGGG
2746




CGGATTTAC






PRKCB1.1
67
GACCCAGCTCCACTCCTGCTTCCAGACCATGGACCGCCTGTACTTTGTGATGGAGTACGTG
2747




AATGGG






PRKCD.2
68
CTGACACTTGCCGCAGAGAATCCCTTTCTCACCCACCTCATCTGCACCTTCCAGACCAAGG
2748




ACCACCT






PRKCH.1
68
CTCCACCTATGAGCGTCTGTCTCTGTGGGCTTGGGATGTTAACAGGAGCCAAAAGGAGGGA
2749




AAGTGTG






PRO2000.3
79
ATTGGAAAAACCTCGTCACCAGAGAAAGCCCAACATATTTTATAGTGGCCCAGCTTCTCCT
2750




GCAAGACCAAGATACCGA






PROM1.1
74
CTATGACAGGCATGCCACCCCGACCACCCGAGGCTGTGTCTCCAACACCGGAGGCGTCTTC
2751




CTCATGGTTGGAG






PROM2.1
67
CTTCAGCGCATCCACTACCCCGACTTCCTCGTTCAGATCCAGAGGCCCGTGGTGAAGACCA
2752




GCATGG






PRPS2.1
69
CACTGCACCAAGATTCAGGTCATTGACATTTCCATGATCTTGGCCGAAGCAATCCGAAGGA
2753




CACACAAT






PRSS8.1
68
GTACACTCTGGCCTCCAGCTATGCCTCCTGGATCCAAAGCAAGGTGACAGAACTCCAGCCT
2754




CGTGTGG






PSMA7.1
67
GCCAAACTGCAGGATGAAAGAACAGTGCGGAAGATCTGTGCTTTGGATGACAACGTCTGCA
2755




TGGCCT






PSMB8.1
66
CAGTGGCTATCGGCCTAATCTTAGCCCTGAAGAGGCCTATGACCTTGGCCGCAGGGCTATT
2756




GCTTA






PSMB9.1
66
GGGGTGTCATCTACCTGGTCACTATTACAGCTGCCGGTGTGGACCATCGAGTCATCTTGGG
2757




CAATG






PTEN.2
81
TGGCTAAGTGAAGATGACAATCATGTTGCAGCAATTCACTGTAAAGCTGGAAAGGGACGAA
2758




CTGGTGTAATGATATGTGCA






PTGIS.1
66
CCACACTGGCATCTCCCTGACCTTCTCCAGGGACAGAAGCAGGAGTAAGTTTCTCATCCCA
2759




TGGGC






PTHR1.1
73
CGAGGTACAAGCTGAGATCAAGAAATCTTGGAGCCGCTGGACACTGGCACTGGACTTCAAG
2760




CGAAAGGCACGC






PTK2.1
68
GACCGGTCGAATGATAAGGTGTACGAGAATGTGACGGGCCTGGTGAAAGCTGTCATCGAGA
2761




TGTCCAG






PTK2B.1
74
CAAGCCCAGCCGACCTAAGTACAGACCCCCTCCGCAAACCAACCTCCTGGCTCCAAAGCTG
2762




CAGTTCCAGGTTC






PTN.1
67
CCTTCCAGTCCAAAAATCCCGCCAAGAGAGCCCCAGAGCAGAGGAAAATCCAAAGTGGAGA
2763




GAGGGG






PTPNS1.1
77
CTCCAGCTAGCACTAAGCAACATCTCGCTGTGGACGCCTGTAAATTACTGAGAAATGTGAA
2764




ACGTGCAATCTTGAAA






PTPRB.1
68
GATATGCGGTGAGGAACAGCTTGATGCACACAGACTCATCCGCCACTTTCACTATACGGTG
2765




TGGCCAG






PTPRC.1
74
TGGCCGTCAATGGAAGAGGGCACTCGGGCTTTTGGAGATGTTGTTGTAAAGATCAACCAGC
2766




ACAAAAGATGTCC






PTPRG.1
71
GGACAGCGACAAAGACTTGAAAGCCACCATTAGCCATGTCTCACCCGATAGCCTTTACCTG
2767




TTCCGAGTCC






PTTG1.2
74
GGCTACTCTGATCTATGTTGATAAGGAAAATGGAGAACCAGGCACCCGTGTGGTTGCTAAG
2768




GATGGGCTGAAGC






PVALB.1
81
AAACCAAGATGCTGATGGCTGCTGGAGACAAAGATGGGGACGGCAAAATTGGGGTTGACGA
2769




ATTCTCCACTCTGGTGGCTG






PXDN.1
67
GCTGCTCAAGCTGAACCCGCACTGGGACGGCGACACCATCTACTATGAGACCAGGAAGATC
2770




GTGGGT






RAC1.3
66
TGTTGTAAATGTCTCAGCCCCTCGTTCTTGGTCCTGTCCCTTGGAACCTTTGTACGCTTTG
2771




CTCAA






RAD51.1
66
AGACTACTCGGGTCGAGGTGAGCTTTCAGCCAGGCAGATGCACTTGGCCAGGTTTCTGCGG
2772




ATGCT






RAF1.3
73
CGTCGTATGCGAGAGTCTGTTTCCAGGATGCCTGTTAGTTCTCAGCACAGATATTCTACAC
2773




CTCACGCCTTCA






RALBP1.1
84
GGTGTCAGATATAAATGTGCAAATGCCTTCTTGCTGTCCTGTCGGTCTCAGTACGTTCACT
2774




TTATAGCTGCTGGCAATATCGAA






RARB.2
78
TGCCTGGACATCCTGATTCTTAGAATTTGCACCAGGTATACCCCAGAACAAGACACCATGA
2775




CTTTCTCAGACGGCCTT






RASSF1.1
75
AGGGCACGTGAAGTCATTGAGGCCCTGCTGCGAAAGTTCTTGGTGGTGGATGACCCCCGCA
2776




AGTTTGCACTCTTT






RB1.1
77
CGAAGCCCTTACAAGTTTCCTAGTTCACCCTTACGGATTCCTGGAGGGAACATCTATATTT
2777




CACCCCTGAAGAGTCC






RBM35A.1
66
TGGTTTTGAATCACCAGGGCCGCCCATCAGGAGATGCCTTTATCCAGATGAAGTCTGCGGA
2778




CAGAG






REG4.1
83
TGCTAACTCCTGCACAGCCCCGTCCTCTTCCTTTCTGCTAGCCTGGCTAAATCTGCTCATT
2779




ATTTCAGAGGGGAAACCTAGCA






RET.1
71
GCCTGTGCAGTTCTTGTGCCCCAACATCAGCGTGGCCTACAGGCTCCTGGAGGGTGAGGGT
2780




CTGCCCTTCC






RGS1.1
84
TGCCCTGTAAAGCAGAAGAGATATATAAAGCATTTGTGCATTCAGATGCTGCTAAACAAAT
2781




CAATATTGACTTCCGCACTCGAG






RGS5.1
79
TTCAAACGGAGGCTCCTAAAGAGGTGAATATTGACCACTTCACTAAGGACATCACAATGAA
2782




GAACCTGGTGGAACCTTC






RHEB.2
78
GATGATTGAGAACAGCCTTGCCTGTCACTGTCCTAGAACACCCTGGAGTTTAGTGTTCTGT
2783




GTCAGAGTCTTGGGAGC






RhoB.1
67
AAGCATGAACAGGACTTGACCATCTTTCCAACCCCTGGGGAAGACATTTGCAACTGACTTG
2784




GGGAGG






rhoC.1
68
CCCGTTCGGTCTGAGGAAGGCCGGGACATGGCGAACCGGATCAGTGCCTTTGGCTACCTTG
2785




AGTGCTC






RIPK1.1
67
AGTACCTTCAAGCCGGTCAAATTCAGCCACAGAACAGCCTGGTTCACTGCACAGTTCCCAG
2786




GGACTT






RND3.1
66
TCGGAATTGGACTTGGGAGGCGCGGTGAGGAGTCAGGCTTAAAACTTGTTGGAGGGGAGTA
2787




ACCAG






ROCK1.1
73
TGTGCACATAGGAATGAGCTTCAGATGCAGTTGGCCAGCAAAGAGAGTGATATTGAGCAAT
2788




TGCGTGCTAAAC






ROCK2.1
66
GATCCGAGACCCTCGCTCCCCCATCAACGTGGAGAGCTTGCTGGATGGCTTAAATTCCTTG
2789




GTCCT






RPLP1.1
68
CAAGGTGCTCGGTCCTTCCGAGGAAGCTAAGGCTGCGTTGGGGTGAGGCCCTCACTTCATC
2790




CGGCGAC






RPS23.1
67
GTTCTGGTTGCTGGATTTGGTCGCAAAGGTCATGCTGTTGGTGATATTCCTGGAGTCCGCT
2791




TTAAGG






RPS27A.1
74
CTTACGGGGAAGACCATCACCCTCGAGGTTGAACCCTCGGATACGATAGAAAATGTAAAGG
2792




CCAAGATCCAGGA






RPS6KAI.1
70
GCTCATGGAGCTAGTGCCTCTGGACCCGGAGAATGGACAGACCTCAGGGGAAGAAGCTGGA
2793




CTTCAGCCG






RPS6KB1.3
81
GCTCATTATGAAAAACATCCCAAACTTTAAAATGCGAAATTATTGGTTGGTGTGAAGAAAG
2794




CCAGACAACTTCTGTTTCTT






RRM1.2
66
GGGCTACTGGCAGCTACATTGCTGGGACTAATGGCAATTCCAATGGCCTTGTACCGATGCT
2795




GAGAG






RRM2.1
71
CAGCGGGATTAAACAGTCCTTTAACCAGCACAGCCAGTTAAAAGATGCAGCCTCACTGCTT
2796




CAACGCAGAT






RUNX1.1
70
AACAGAGACATTGCCAACCATATTGGATCTGCTTGCTGTCCAAACCAGCAAACTTTCCTGG
2797




GCAAATCAC






S100A1.1
70
TGGACAAGGTGATGAAGGAGCTAGACGAGAATGGAGACGGGGAGGTGGACTTCCAGGAGTA
2798




TGTGGTGCT






S100A10.1
77
ACACCAAAATGCCATCTCAAATGGAACACGCCATGGAAACCATGATGTTTACATTTCACAA
2799




ATTCGCTGGGGATAAA






S100A2.1
73
TGGCTGTGCTGGTCACTACCTTCCACAAGTACTCCTGCCAAGAGGGCGACAAGTTCAAGCT
2800




GAGTAAGGGGGA






SAA2.2
72
CTACAGCACAGATCAGCACCATGAAGCTTCTCACGGGCCTGGTTTTCTGCTCCTTGGTCCT
2801




GAGTGTCAGCA






SCN4B.1
67
GCCTTCCTGGAGTACCCGAGTGCTCCCTATGCCTTTCCAAGCATTTCTACTTGGGGAATTG
2802




GGCCAC






SCNN1A.2
66
ATCAACATCCTGTCGAGGCTGCCAGAGACTCTGCCATCCCTGGAGGAGGACACGCTGGGCA
2803




ACTTC






SDHA.1
67
GCAGAACTGAAGATGGGAAGATTTATCAGCGTGCATTTGGTGGACAGAGCCTCAAGTTTGG
2804




AAAGGG






SDPR.1
66
ACCAGCACAAGATGGAGCAGCGACAGATCAGTTTGGAGGGCTCCGTGAAGGGCATCCAGAA
2805




TGACC






SELE.1
71
ACACTGGTCTGGCCTGCTACCTACCTGTGAAGCTCCCACTGAGTCCAACATTCCCTTGGTA
2806




GCTGGACTTT






SELENBP1.1
67
GGTACCAGCCTCGACACAATGTCATGATCAGCACTGAGTGGGCAGCTCCCAATGTCTTACG
2807




AGATGG






SELL.1
67
TGCAACTGTGATGTGGGGTACTATGGGCCCCAGTGTCAGTTTGTGATTCAGTGTGAGCCTT
2808




TGGAGG






SELPLG.1
83
TGGCCACTATCTTCTTCGTGTGCACTGTGGTGCTGGCGGTCCGCCTCTCCCGCAAGGGCCA
2809




CATGTACCCCGTGCGTAATTAC






SEMA3B.1
71
GCTCCAGGATGTGTTTCTGTTGTCCTCGCGGGACCACCGGACCCCGCTGCTCTATGCCGTC
2810




TTCTCCACGT






SEMA3C.1
66
ATGGCCATTCCTGTTCCAGATTCTACCCAACTGGGAAACGGAGGAGCCGAAGACAAGATGT
2811




GAGAC






SEMA3F.3
86
CGCGAGCCCCTCATTATACACTGGGCAGCCTCCCCACAGCGCATCGAGGAATGCGTGCTCT
2812




CAGGCAAGGATGTCAACGGCGAGTG






SEMA5B.1
67
CTCGAGGACAGCTCCAACATGAGCCTCTGGACCCAGAACATCACCGCCTGTCCTGTGCGGA
2813




ATGTGA






SERPINA5.1
66
CAGCATGGTAGTGGCAAAGAGAGGTCCAGAGTCCTGGCCCTTGATGCCCAGCTCAGTGCCA
2814




CAAAG






SFN.1
70
GAGAGAGCCAGTCTGATCCAGAAGGCCAAGCTGGCAGAGCAGGCCGAACGCTATGAGGACA
2815




TGGCAGCCT






SGK.1
73
TCCGCAAGACACCTCCTGGAGGGCCTCCTGCAGAAGGACAGGACAAAGCGGCTCGGGGCCA
2816




AGGATGACTTCA






SHANK3.1
68
CTGTGCCCTCTACAACCAGGAGAGCTGTGCTCGTGTCCTGCTCTTCCGTGGAGCTAACAGG
2817




GATGTCC






SHC1.1
71
CCAACACCTTCTTGGCTTCTGGGACCTGTGTTCTTGCTGAGCACCCTCTCCGGTTTGGGTT
2818




GGGATAACAG






SILV.1
66
CCGCATCTTCTGCTCTTGTCCCATTGGTGAGAATAGCCCCCTCCTCAGTGGGCAGCAGGTC
2819




TGAGT






SKIL.1
66
AGAGGCTGAATATGCAGGACAGTTGGCAGAACTGAGGCAGAGATTGGACCATGCTGAGGCC
2820




GATAG






SLC13A3.1
66
CTTGCCCTCCAACAAGGTCTGCCCCCAGTACTTCCTCGACACCAACTTCCTCTTCCTCAGT
2821




GGGCT






SLC16A3.1
68
ATGCGACCCACGTCTACATGTACGTGTTCATCCTGGCGGGGGCCGAGGTGCTCACCTCCTC
2822




CCTGATT






SLC22A3.1
66
ATCGTCAGCGAGTTTGACCTTGTCTGTGTCAATGCGTGGATGCTGGACCTCACCCAAGCCA
2823




TCCTG






SLCC22A6.1
68
TCCGCCACCTCTTCCTCTGCCTCTCCATGCTGTGGTTTGCCACTAGCTTTGCATACTATGG
2824




GCTGGTC






SLC2A1.1
67
GCCTGAGTCTCCTGTGCCCACATCCCAGGCTTCACCCTGAATGGTTCCATGCCTGAGGGTG
2825




GAGACT






SLC23A1.1
66
GCTGAGACCCACTGACCTGCAGACCTCATAGTGGGTGCCCAGGATGTTGTCCTACGGAGAG
2826




AGGCT






SLC7A5.2
70
GCGCAGAGGCCAGTTAAAGTAGATCACCTCCTCGAACCCACTCCGGTTCCCCGCAACCCAC
2827




AGCTCAGCT






SLC9A1.1
67
CTTCGAGATCTCCCTCTGGATCCTTCTGGCCTGCCTCATGAAGATAGGTTTCCATGTGATC
2828




CCCACT






SLIT2.2
67
TTTACCGATGCACCTGTCCATATGGTTTCAAGGGGCAGGACTGTGATGTCCCAATTCATGC
2829




CTGCAT






SNAI1.1
69
CCCAATCGGAAGCCTAACTACAGCGAGCTGCAGGACTCTAATCCAGAGTTTACCTTCCAGC
2830




AGCCCTAC






SNRK.1
71
GAGGAAAAGTCAGGGCCGGGGCTCCAGCTGCAGTAGTTCGGAGACCAGTGATGATGATTCT
2831




GAAAGCCGGC






SOD1.1
70
TGAAGAGAGGCATGTTGGAGACTTGGGCAATGTGACTGCTGACAAAGATGGTGTGGCCGAT
2832




GTGTCTATT






SP3.1
69
TCAAGAGTCTCAGCAGCCAACCAGTCAAGCCCAAATTGTGCAAGGTATTACACCACAGACA
2833




ATCCATGG






SPARC.1
73
TCTTCCCTGTACACTGGCAGTTCGGCCAGCTGGACCAGCACCCCATTGACGGGTACCTCTC
2834




CCACACCGAGCT






SPARCL1.1
67
GGCACAGTGCAAGTGATGACTACTTCATCCCAAGCCAGGCCTTTCTGGAGGCCGAGAGAGC
2835




TCAATC






SPAST.1
66
CCTGAGTTGTTCACAGGGCTTAGAGCTCCTGCCAGAGGGCTGTTACTCTTTGGTCCACCTG
2836




GGAAT






SPHK1.1
67
GGCAGCTTCCTTGAACCATTATGCTGGCTATGAGCAGGTCACCAATGAAGACCTCCTGACC
2837




AACTGC






SPRY1.1
77
CAGACCAGTCCCTGGTCATAGGTCTGAAAGGGCAATCCGGACCCAGCCCAAGCAACTGATT
2838




GTGGATGACTTGAAGG






SQSTM1.1
69
GGACCCGTCTACAGGTGAACTCCAGTCCCTACAGATGCCAGAATCCGAAGGGCCAAGCTCT
2839




CTGGACCC






STAT1.3
81
GGGCTCAGCTTTCAGAAGTGCTGAGTTGGCAGTTTTCTTCTGTCACCAAAAGAGGTCTCAA
2840




TGTGGACCAGCTGAACATGT






STAT3.1
70
TCACATGCCACTTTGGTGTTTCATAATCTCCTGGGAGAGATTGACCAGCAGTATAGCCGCT
2841




TCCTGCAAG






STAT5A.1
77
GAGGCGCTCAACATGAAATTCAAGGCCGAAGTGCAGAGCAACCGGGGCCTGACCAAGGAGA
2842




ACCTCGTGTTCCTGGC






STAT5B.2
74
CCAGTGGTGGTGATCGTTCATGGCAGCCAGGACAACAATGCGACGGCCACTGTTCTCTGGG
2843




ACAATGCTTTTGC






STC2.1
67
AAGGAGGCCATCACCCACAGCGTGCAGGTTCAGTGTGAGCAGAACTGGGGAAGCCTGTGCT
2844




CCATCT






STK11.1
66
GGACTCGGAGACGCTGTGCAGGAGGGCCGTCAAGATCCTCAAGAAGAAGAAGTTGCGAAGG
2845




ATCCC






STK15.2
69
CATCTTCCAGGAGGACCACTCTCTGTGGCACCCTGGACTACCTGCCCCCTGAAATGATTGA
2846




AGGTCGGA






STK4.1
66
GAGCCATCTTCCTGCAACTTTACCTCTTTCCCTCAGATGGGGAGCCATGACTGGGTTGCAC
2847




CTCAG






STMY3.3
90
CCTGGAGGCTGCAACATACCTCAATCCTGTCCCAGGCCGGATCCTCCTGAAGCCCTTTTCG
2848




CAGCACTGCTATCCTCCAAAGCCATTGTA






SUYCLG1.1
66
CCAAGCCTGTAGTGTCCTTCATTGCTGGTTTAACTGCTCCTCCTGGGAGAAGAATGGGTCA
2849




TGCCG






SULT1C2.1
67
GGGACCCAAAGCATGAAATTCGGAAGGTGATGCAGTTCATGGGAAAGAAGGTGGATGAAAC
2850




AGTGCT






SURV.2
80
TGTTTTGATTCCCGGGCTTACCAGGTGAGAAGTGAGGGAGGAAGAAGGCAGTGTCCCTTTT
2851




GCTAGAGCTGACAGCTTTG






TACSTD2.1
80
ATCACCAACCGGAGAAAGTCGGGGAAGTACAAGAAGGTGGAGATCAAGGAACTGGGGGAGT
2852




TGAGAAAGGAACCGAGCTT






TAGLN.1
73
GATGGAGCAGGTGGCTCAGTTCCTGAAGGCGGCTGAGGACTATGGGGTCATCAAGACTGAC
2853




ATGTTCCAGACT






TAP1.1
72
GTATGCTGCTGAAAGTGGGAATCCTCTACATTGGTGGGCAGCTGGTGACCAGTGGGGCTGT
2854




AAGCAGTGGGA






TCF4.1
67
CACACCCTGGAATGGGAGACGCATCGAATCACATGGGACAGATGTAAAAGGGTCCAAGTTG
2855




CCACAT






TCOF1.2
66
AGCGAGGATGAGGACGTGATCCCCGCTACACAGTGCTTGACTCCTGGCATCAGAACCAATG
2856




TGGTG






TEK.1
76
ACTTCGGTGCTACTTAACAACTTACATCCCAGGGAGCAGTACGTGGTCCGAGCTAGAGTCA
2857




ACACCAAGGCCCAGG






TERT.1
85
GACATGGAGAACAAGCTGTTTGCGGGGATTCGGCGGGACGGGCTGCTCCTGCGTTTGGTGG
2858




ATGATTTCTTGTTGGTGACACCTC






TFAP2B.1
67
CGTGTGACGTGCGAGAGACGCGATGGACGCGCCTTGCTCTTACTGTGCAGGTCCTGAGAGC
2859




GTGTGG






TFAP2C.1
68
CATGCCTCACCAGATGGACGAGGTGCAGAATGTCGACGACCAGCACCTGTTGCTGCACGAT
2860




CAGACAG






TFPI.1
69
CCGAATGGTTTCCAGGTGGATAATTATGGAACCCAGCTCAATGCTGTGAATAACTCCCTGA
2861




CTCCGCAA






TGFA.2
83
GGTGTGCCACAGACCTTCCTACTTGGCCTGTAATCACCTGTGCAGCCTTTTGTGGGCCTTC
2862




AAAACTCTGTCAAGAACTCCGT






TGFb1.1
80
CTGTATTTAAGGACACCCGTGCCCCAAGCCCACCTGGGGCCCCATTAAAGATGGAGAGAGG
2863




ACTGCGGATCTCTGTGTCA






TGFB2.2
75
ACCAGTCCCCCAGAAGACTATCCTGAGCCCGAGGAAGTCCCCCCGGAGGTGATTTCCATCT
2864




ACAACAGCACCAGG






TGFBI.1
67
GCTACGAGTGCTGTCCTGGATATGAAAAGGTCCCTGGGGAGAAGGGCTGTCCAGCAGCCCT
2865




ACCACT






TGFBR1.1
67
GTCATCACCTGGCCTTGGTCCTGTGGAACTGGCAGCTGTCATTGCTGGACCAGTGTGCTTC
2866




GTCTGC






TGFBR2.3
66
AACACCAATGGGTTCCATCTTTCTGGGCTCCTGATTGCTCAAGCACAGTTTGGCCTGATGA
2867




AGAGG






THBD.1
68
AGATCTGCGACGGACTGCGGGGCCACCTAATGACAGTGCGCTCCTCGGTGGCTGCCGATGT
2868




CATTTCC






THBS1.1
85
CATCCGCAAAGTGACTGAAGAGAACAAAGAGTTGGCCAATGAGCTGAGGCGGCCTCCCCTA
2869




TGCTATCACAACGGAGTTCAGTAC






TIMP1.1
76
TCCCTGCGGTCCCAGATAGCCTGAATCCTGCCCGGAGTGGAAGCTGAAGCCTGCACAGTGT
2870




CCACCCTGTTCCCAC






TIMP2.1
69
TCACCCTCTGTGACTTCATCGTGCCCTGGGACACCCTGAGCACCACCCAGAAGAAGAGCCT
2871




GAACCACA






TIMP3.3
67
CTACCTGCCTTGCTTTGTGACTTCCAAGAACGAGTGTCTCTGGACCGACATGCTCTCCAAT
2872




TTCGGT






TK1.2
84
GCCGGGAAGACCGTAATTGTGGCTGCACTGGATGGGACCTTCCAGAGGAAGCCATTTGGGG
2873




CCATCCTGAACCTGGTGCCGCTG






TLR3.1
71
GGTTGGGCCACCTAGAAGTACTTGACCTGGGCCTTAATGAAATTGGGCAAGAACTCACAGG
2874




CCAGGAATGG






TMEM27.1
75
CCCTGAAAGAATGTTGTGGCTGCTCTTTTTTCTGGTGACTGCCATTCATGCTGAACTCTGT
2875




CAACCAGGTGCAGA






TMEM47.1
71
GGATTCCACTGTTAGAGCCCTTACCGCCTGCTTATCCTACCCAATGACTACATTGGCTGTT
2876




GGTTATTTGC






TMSB10.1
68
GAAATCGCCAGCTTCGATAAGGCCAAGCTGAAGAAAACGGAGACGCAGGAGAAGAACACCC
2877




TGCCGAC






TNF.1
69
GGAGAAGGGTGACCGACTCAGCGCTGAGATCAATCGGCCCGACTATCTCGACTTTGCCGAG
2878




TCTGGGCA






TNFAIP3.1
68
ATCGTCTTGGCTGAGAAAGGGAAAAGACACACAAGTCGCGTGGGTTGGAGAAGCCAGAGCC
2879




ATTCCAC






TNFAIP6.1
67
AGGAGTGAAAGATGGGATGCCTATTGCTACAACCCACACGCAAAGGAGTGTGGTGGCGTCT
2880




TTACAG






TNFRSF10C.3
67
GGAGTTTGACCAGAGATGCAAGGGGTGAAGGAGCGCTTCCTACCGTTAGGGAACTCTGGGG
2881




ACAGAG






TNFRSF10D.1
66
CCTCTCGCTTCTGGTGGTCTGTGAACTGAGTCCCTGGGATGCCTTTTAGGGCAGAGATTCC
2882




TGAGC






TNFRSF11B.1
67
TGGCGACCAAGACACCTTGAAGGGCCTAATGCACGCACTAAAGCACTCAAAGACGTACCAC
2883




TTTCCC






TNFRSF1A.1
71
ACTGCCCTGAGCCCAAATGGGGGAGTGAGAGGCCATAGCTGTCTGGCATGGGCCTCTCCAC
2884




CGTGCCTGAC






TNFSF12.1
68
TAGGCCAGGAGTTCCCAAATGTGAGGGGCGAGAAACAAGACAAGCTCCTCCCTTGAGAATT
2885




CCCTGTG






TNFSF13B.1
80
CCTACGCCATGGGACATCTAATTCAGAGGAAGAAGGTCCATGTCTTTGGGGATGAATTGAG
2886




TCTGGTGACTTTGTTTCGA






TNFSF7.1
67
CCAACCTCACTGGGACACTTTTGCCTTCCCGAAACACTGATGAGACCTTCTTTGGAGTGCA
2887




GTGGGT






TNIP2.1
66
CATGTCAGAAAGGGCCGATCGGGAACGGGCTCAAAGTAGGATTCAAGAACTGGAGGAAAAG
2888




GTCGC






TOP2A.4
72
AATCCAAGGGGGAGAGTGATGACTTCCATATGGACTTTGACTCAGCTGTGGCTCCTCGGGC
2889




AAAATCTGTAC






TOP2B.2
66
TGTGGACATCTTCCCCTCAGACTTCCCTACTGAGCCACCTTCTCTGCCACGAACCGGTCGG
2890




GCTAG






TP.3
82
CTATATGCAGCCAGAGATGTGACAGCCACCGTGGACAGCCTGCCACTCATCACAGCCTCCA
2891




TTCTCAGTAAGAAACTCGTGG






TRAIL.1
73
CTTCACAGTGCTCCTGCAGTCTCTCTGTGTGGCTGTAACTTACGTGTACTTTACCAACGAG
2892




CTGAAGCAGATG






TS.1
65
GCCTCGGTGTGCCTTTCAACATCGCCAGCTACGCCCTGCTCACGTACATGATTGCGCACAT
2893




CACG






TSC1.1
66
TCACCAAATCTCAGCCCGCTTTCCTCATCGTTCAGCCGATGTCACCACCAGCCCTTATGCT
2894




GACAC






TSC2.1
69
CACAGTGGCCTCTTTCTCCTCCCTGTACCAGTCCAGCTGCCAAGGACAGCTGCACAGGAGC
2895




GTTTCCTG






TSPAN7.2
67
ATCACTGGGGTGATCCTGCTGGCTGTTGGAGTCTGGGGCAAACTTACTCTGGGCACCTATA
2896




TCTCCC






TSPAN8.1
83
CAGAAATCTCTGCAGGCAAGTTGCTCCAGAGCATATTGCAGGACAAGCCTGTAACGAATAG
2897




TTAAATTCACGGCATCTGGATT






TUBB.1
73
CGAGGACGAGGCTTAAAAACTTCTCAGATCAATCGTGCATCCTTAGTGAACTTCTGTTGTC
2898




CTCAAGCATGGT






TUSC2.1
68
CACCAAGAACGGGCAGAAGCGGGCCAAGCTGAGGCGAGTGCATAAGAATCTGATTCCTCAG
2899




GGCATCG






tusc4.2
68
GGAGGAGCTAAATGCCTCAGGCCGGTGCACTCTGCCCATTGATGAGTCCAACACCATCCAC
2900




TTGAAGG






TXLNA.1
68
GCCAGAACGGCTCAGTCTGGGGCCCTTCGTGATGTCTCTGAGGAGCTGAGCCGCCAACTGG
2901




AAGACAT






UBB.1
522
GAGTCGACCCTGCACCTGGTCCTGCGTCTGAGAGGTGGTATGCAGATCTTCGTGAAGACCC
2902




TGACCGGCAAGACCATCACCCTGGAAGTGGAGCCCAGTGACACCATCGAAAATGTGAAGGC





CAAGATCCAGGATAAAGAAGGCATCCCTCCCGACCAGCAGAGGCTCATCTTTGCAGGCAAG





CAGCTGGAAGATGGCCGCACTCTTTCTGACTACAACATCCAGAAGGAGTCGACCCTGCACC





TGGTCCTGCGTCTGAGAGGTGGTATGCAGATCTTCGTGAAGACCCTGACCGGCAAGACCAT





CACTCTGGAAGTGGAGCCCAGTGACACCATCGAAAATGTGAAGGCCAAGATCCAAGATAAA





GAAGGCATCCCTCCCGACCAGCAGAGGCTCATCTTTGCAGGCAAGCAGCTGGAAGATGGCC





GCACTCTTTCTGACTACAACATCCAGAAGGAGTCGACCCTGCACCTGGTCCTGCGCCTGAG





GGGTGGCTGTTAATTCTTCAGTCATGGCATTCGC






UBE1C.1
76
GAATGCACGCTGGAACTTTATCCACCACAGGTTAATTTTCCCATGTGCACCATTGCATCTA
2903




TGCCCAGGCTACCAG






UBE2C.1
67
TGTCTGGCGATAAAGGGATTTCTGCCTTCCCTGAATCAGACAACCTTTTCAAATGGGTAGG
2904




GACCAT






UBE2T.1
67
TGTTCTCAAATTGCCACCAAAAGGTGCTTGGAGACCATCCCTCAACATCGCAACTGTGTTG
2905




ACCTCT






UGCG.1
73
GGCAACTGACAAACAGCCTTATAGCAAGCTCCCAGGTGTCTCTCTTCTGAAACCACTGAAA
2906




GGGGTAGATCCT






UMOD.1
66
GCGTGGACCTGGATGAGTGCGCCATTCCTGGAGCTCACAACTGCTCCGCCAACAGCAGCTG
2907




CGTAA






upa.3
70
GTGGATGTGCCCTGAAGGACAAGCCAGGCGTCTACACGAGAGTCTCACACTTCTTACCCTG
2908




GATCCGCAG






USP34.1
70
AAGCTGTGATGGCCAAGCTTTGCCCTCCCAGGACCCTGAGGTTGCTTTATCTCTCAGTTGT
2909




GGCCATTCC






VCAM1.1
89
TGGCTTCAGGAGCTGAATACCCTCCCAGGCACACACAGGTGGGACACAAATAAGGGTTTTG
2910




GAACCACTATTTTCTCATCACGACAGCA






VCAN.1
69
CCTGCTACACAGCCAACAAGACCACCCACTGTGGAAGACAAAGAGGCCTTTGGACCTCAGG
2911




CGCTTTCT






VDR.2
67
GCCCTGGATTTCAGAAAGAGCCAAGTCTGGATCTGGGACCCTTTCCTTCCTTCCCTGGCTT
2912




GTAACT






VEGF.1
71
CTGCTGTCTTGGGTGCATTGGAGCCTTGCCTTGCTGCTCTACCTCCACCATGCCAAGTGGT
2913




CCCAGGCTGC






BEGFB.1
71
TGACGATGGCCTGGAGTGTGTGCCCACTGGGCAGCACCAAGTCCGGATGCAGATCCTCATG
2914




ATCCGGTACC






VHL.1
67
CGGTTGGTGACTTGTCTGCCTCCTGCTTTGGGAAGACTGAGGCATCCGTGAGGCAGGGACA
2915




AGTCTT






VIM.3
72
TGCCCTTAAAGGAACCAATGAGTCCCTGGAACGCCAGATGCGTGAAATGGAAGAGAACTTT
2916




GCCGTTGAAGC






VTCN1.1
70
ACAGTGGTCTGGGCATCCCAAGTTGACCAGGGAGCCAACTTCTCGGAAGTCTCCAATACCA
2917




GCTTTGAGC






VTN.1
67
AGTCAATCTTCGCACACGGCGAGTGGACACTGTGGACCCTCCCTACCCACGCTCCATCGCT
2918




CAGTAC






VWF.1
66
TGAAGCACAGTGCCCTCTCCGTCGAGCTGCACAGTGACATGGAGGTGACGGTGAATGGGAG
2919




ACTGG






WIF.1
67
AACAAGCTGAGTGCCCAGGCGGGTGCCGAAATGGAGGCTTTTGTAATGAAAGACGCATCTG
2920




CGAGTG






WISP1.1
75
AGAGGCATCCATGAACTTCACACTTGCGGGCTGCATCAGCACACGCTCCTATCAACCCAAG
2921




TACTGTGGAGTTTG






WT1.1
66
TGTACGGTCGGCATCTGAGACCAGTGAGAAACGCCCCTTCATGTGTGCTTACCCAGGCTGC
2922




AATAA






WWOX.5
74
ATCGCAGCTGGTGGGTGTACACACTGCTGTTTACCTTGGCGAGGCCTTTCACCAAGTCCAT
2923




GCAACAGGGAGCT






XDH.1
66
TGGTGGCAGACATCCCTTCCTGGCCAGATACAAGGTTGGCTTCATGAAGACTGGGACAGTT
2924




GTGGC






XIAP.1
77
GCAGTTGGAAGACACAGGAAAGTATCCCCAAATTGCAGATTTATCAACGGCTTTTATCTTG
2925




AAAATAGTGCCACGCA






SPNPEP2.2
72
CACCCTGCACTGAACATACCCCAAGAGCCCCTGCTGGCCCATTGCCTAGAAACCTTTGCAT
2926




TCATCCTCCTT






YB-1.2
76
AGACTGTGGAGTTTGATGTTGTTGAAGGAGAAAAGGGTGCGGAGGCAGCAAATGTTACAGG
2927




TCCTGGTGGTGTTCC






ZHX2.1
67
GAGTACGACCAGTTAGCGGCCAAGACTGGCCTGGTCCGAACTGAGATTGTGCGTTGGTTCA
2928




AGGAGA








Claims
  • 1. A method for determining a likelihood of recurrence of renal cell carcinoma for a human patient comprising: (a) measuring, in a renal cell carcinoma sample obtained from the human patient a level of an RNA transcript of PPAP2B, wherein the measuring is performed using polymerase chain reaction (PCR) with a polynucleotide comprising the sequence of SEQ ID NO: 545 and a polynucleotide comprising the sequence of SEQ ID NO: 1277 as PCR primers and a polynucleotide comprising the sequence of SEQ ID NO: 2009 as a probe to detect PPAP2B polynucleotides produced by PCR;(b) normalizing the level of the RNA transcript of PPAP2B against at least one reference RNA transcript from the sample to obtain a normalized PPAP2B expression level;(c) comparing the normalized PPAP2B expression level to a normalized PPAP2B expression level obtained from a renal cell carcinoma sample from a human patient with recurrent renal cell carcinoma; and(d) determining a decreased likelihood for recurrence of renal cell carcinoma for the human patient if the normalized PPAP2B expression level is increased compared to the normalized PPAP2B expression level obtained from the renal cancer sample from the human patient with recurrent renal cell carcinoma.
  • 2. The method of claim 1, further comprising generating a report based on the normalized PPAP2B expression level.
  • 3. The method of claim 1, further comprising calculating a score estimating the likelihood that the patient will have a recurrence of renal cell carcinoma based on the normalized PPAP2B expression level.
  • 4. The method of claim 3, further comprising generating a report based on the score.
  • 5. The method of claim 1, further comprising wherein the renal cell carcinoma sample is a paraffin-embedded sample.
  • 6. The method of claim 1, wherein the renal cell carcinoma sample is a frozen sample.
  • 7. A method for determining presence of necrosis in a renal cell carcinoma sample obtained from a human patient, comprising: (a) measuring, in a renal cell carcinoma sample obtained from the human patient a level of an RNA transcript of PPAP2B, wherein the measuring is performed using polymerase chain reaction (PCR) with a polynucleotide comprising the sequence of SEQ ID NO: 545 and a polynucleotide comprising the sequence of SEQ ID NO: 1277 as PCR primers and a polynucleotide comprising the sequence of SEQ ID NO: 2009 as a probe to detect PPAP2B polynucleotides produced by PCR;(b) normalizing the level of the RNA transcript of PPAP2B against at least one reference RNA transcript from the sample to obtain a normalized PPAP2B expression level;(c) comparing the normalized PPAP2B expression level to a normalized PPAP2B expression level obtained from a renal cell carcinoma sample without necrosis; and(d) determining the presence of necrosis in the renal cell carcinoma sample if the normalized PPAP2B expression level is decreased compared to the normalized PPAP2B expression level obtained from the renal cancer sample without necrosis.
  • 8. The method of claim 7, wherein the renal cell carcinoma sample is a paraffin-embedded sample.
  • 9. The method of claim 7, wherein the renal cell carcinoma sample is a frozen sample.
  • 10. A method for determining a likelihood of recurrence of renal cell carcinoma for a human patient, comprising: extracting RNA from a renal cell carcinoma sample obtained from the human patient;reverse transcribing an RNA transcript of PPAP2B to produce a cDNA of PPAP2B;amplifying, using polymerase chain reaction (PCR), the cDNA of PPAP2B to produce an amplicon of the RNA transcript of PPAP2B, wherein the PCR uses a polynucleotide comprising the sequence of SEQ ID NO:545 and a polynucleotide comprising the sequence of SEQ ID NO: 1277 as primers;assaying a level of the amplicon of the RNA transcript of PPAP2B with a polynucleotide comprising the sequence of SEQ ID NO: 2009;normalizing the amplicon level of the RNA transcript of PPAP2B against an amplicon level of at least one reference RNA transcript in the renal cell carcinoma sample to provide normalized amplicon level of PPAP2B,comparing the normalized amplicon level of PPAP2B from the human patient to a normalized amplicon level of PPAP2B from a renal cell carcinoma sample from a human patient with recurrent renal cell carcinoma; anddetermining that the human patient has a decreased likelihood of recurrence of renal cell carcinoma if the normalized amplicon level of PPAP2B from the human patient is increased compared to the normalized PPAP2B expression level obtained from the renal cell carcinoma sample from the human patient with recurrent renal cell carcinoma.
  • 11. The method of claim 10, further comprising wherein the renal cell carcinoma sample is a paraffin-embedded sample.
  • 12. The method of claim 10, wherein the renal cell carcinoma sample is a frozen sample.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims priority benefit of U.S. provisional application Ser. No. 61/294,038, filed Jan. 11, 2010 and priority benefit of U.S. provisional application Ser. No. 61/346,230, filed May 19, 2010, each of which applications are incorporated herein in their entireties.

US Referenced Citations (24)
Number Name Date Kind
7135314 Leung et al. Nov 2006 B1
7611839 Twine et al. Nov 2009 B2
20020173461 Pennica et al. Nov 2002 A1
20030180770 Damokosh et al. Sep 2003 A1
20030224374 Dai et al. Dec 2003 A1
20040088746 Grimm et al. May 2004 A1
20040110197 Skinner Jun 2004 A1
20050002904 Wary Jan 2005 A1
20050048542 Baker et al. Mar 2005 A1
20060088823 Haab et al. Apr 2006 A1
20060183120 Teh et al. Aug 2006 A1
20060281122 Bryant et al. Dec 2006 A1
20070037186 Jiang et al. Feb 2007 A1
20070099209 Clarke et al. May 2007 A1
20070105133 Clarke et al. May 2007 A1
20080032299 Burczynski Feb 2008 A1
20080064055 Bryant et al. Mar 2008 A1
20080182255 Baker et al. Jul 2008 A1
20080286273 Starmans et al. Nov 2008 A1
20090023149 Knudsen Jan 2009 A1
20090035312 Griffioen et al. Feb 2009 A1
20090186924 Billen et al. Jul 2009 A1
20090258002 Barrett et al. Oct 2009 A1
20100152055 Kozono et al. Jun 2010 A1
Foreign Referenced Citations (13)
Number Date Country
2005211023 Aug 2005 JP
WO 02079411 Oct 2002 WO
WO2004048933 Jun 2004 WO
WO2004097052 Nov 2004 WO
WO 2005117943 Dec 2005 WO
2006089185 Aug 2006 WO
2006124022 Nov 2006 WO
WO2006124836 Nov 2006 WO
2007026896 Mar 2007 WO
WO2007072225 Jun 2007 WO
WO2008021115 Feb 2008 WO
WO2008138579 Nov 2008 WO
WO2009105640 Aug 2009 WO
Non-Patent Literature Citations (22)
Entry
Whitehead. Genome Biology. 2005. 6(2): Article R13.
Anders. Molecular Carcninogenesis. 2011.
Yao. Int. J. Cancer. 2008. 123: 1126-1132.
Chan. G&P magazine. 2006. 6(3): 20-26.
Hoshikawa. Physical Genomics. 2003. 12: 209-219. 2003.
Sengupta. Cancer. 2005. 104: 511-520.
Tan. Int. J. Cancer. 2008. 123: 1080-1088.
Takahashi. PNAS. (2001) 98(17): 9754-9759, p. 9755.
GenBank: AB385541.1 (Oct. 3, 2008).
GenBank: AF043329.1 (Jan. 5, 1999).
NCBI Reference Sequence: NM—003713.3 (Oct. 22, 2008).
Hata et al. Immunology Letters. 2009. 126:29-36.
Tomsig et al. Biochem. J. 2009. 419:611-618.
Yang, et al. (2004) “Caffeine Suppresses Metastasis in a Transgenic Mouse Model: A Prototype Molecule for Prophylaxis of Metastasis” Clin. Exp. Metastasis 21(8):719-735.
De Kok et al., “Normalization of Gene Expression Measurements in Tumor Tissues: Comparison of 13 Endogenous Control Genes,” Laboratory Investigation 85:154-159 (2005).
International Search Report and Written Opinion in PCT Application No. PCT/US2011/020596, 10 pages (mailed Nov. 25, 2011).
Search Report and Written Opinion for Singapore Patent Application No. 201204514-2 dated Jul. 29, 2013.
Zhao, H. at al., “Gene Expression Profiling Predicts Survival in Conventional Renal Cell Carcinoma”, Plos Medicine, www.plosmedicine.org. 2006, vol. 3. Issue 1, e13. pp. 1-11.
Annual Meeting of the Japanese Cancer Association, 2006, vol. 65, pp. 367, P-888.
Unwin et al., “Proteomic changes in renal cancer and co-ordinate demonstration of both the glycolytic and mitochondrial aspects of the Warburg effect”, Proteomics, 2003, vol. 3, pp. 1620-1632.
Partial European Search Report dated Apr. 11 2016; for European Application No. 15203193.6, 7 pages.
Extended European Search Report dated Jul. 28 2016, for European Application No. 15203193.6, 12 pages.
Related Publications (1)
Number Date Country
20110171633 A1 Jul 2011 US
Provisional Applications (2)
Number Date Country
61294038 Jan 2010 US
61346230 May 2010 US